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Background.Commonmanufactured depth sensors generate depth images that humans normally obtain from their eyes and hands.
Various designs converting spatial data into sound have been recently proposed, speculating on their applicability as sensory
substitution devices (SSDs). Objective. We tested such a design as a travel aid in a navigation task. Methods. Our portable device
(MeloSee) converted 2D array of a depth image into melody in real-time. Distance from the sensor was translated into sound
intensity, stereo-modulated laterally, and the pitch represented verticality. Twenty-one blindfolded young adults navigated along
four different paths during two sessions separated by one-week interval. In some instances, a dual task required them to recognize a
temporal pattern applied through a tactile vibrator while they navigated. Results. Participants learnt how to use the system on both
new paths and on those they had already navigated from. Based on travel time and errors, performance improved from one week
to the next. The dual task was achieved successfully, slightly affecting but not preventing effective navigation. Conclusions.The use
of Kinect-type sensors to implement SSDs is promising, but it is restricted to indoor use and it is inefficient on too short range.

1. Introduction

Blindness and certain visual disabilities may be partially
compensated by artificial retinae, that is, with light sen-
sors directly implanted in a person’s nervous system [1, 2].
However, less invasive sensory substitution devices (SSDs)
may also be used allowing “the use of one human sense to
receive information normally received by another sense” [3].
In this field, Bach-y-Rita [4] developed different kinds of
devices to translate visual information into tactile feedback
(essentially vibrations) felt by users’ fingers, backs, or even
tongues. The principle is often the same: a video camera
extracts information from the user’s environment, which is
converted into vibrations felt by a specific body part.

In the present work, substitution is also initiated from
optical data, but these are processed to deliver specific
information on depth. In addition, the signal delivered to
the user is auditory. This sensory modality has also been
exploited before for navigation. Depth perception is a major
source of information for navigation. For example, it is used

to anticipate trajectories and avoid obstacles. In humans,
depth perception ismainly visual. Beyondwhat we can touch,
vision providesmore qualitative and quantitative information
than other senses. In the absence of visual input, especially in
blind people, an additional signal can provide information on
depth [5]. Thus, our novel system is based on translating an
array of depth points into amix of simultaneous sonic signals.
Every point in the array potentially produces a pure sound
(defined by intensity, tone, and stereo gain) and the melody
of the overall sound is supposed to be representative of the
visual scene. Such complexity of information may, or may
not, be of advantage to the user. Before considering further
adaptation for blind people, we decided to test its applicability
to an elementary walking navigation task.

1.1. Visual-Auditory Substitution. Our system is inspired by
auditory substitution devices that encode visual scenes from
a video camera and produce sounds as an acoustic rep-
resentation called a “soundscape.” In the vOICe (for Oh I
See) [6], grey tones of a 64 × 64 pixel natural image are
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turned into sound through a left-to-right scanning of the
visual scene. Learning this kind of image-to-sound con-
version allows daily object localization and recognition [7],
navigation (http://seeingwithsound.com/ website), or even
letter recognition [8]. More impressively, after only 70 hours
of training, congenitally blind people passed the blindness
acuity test of the World Health Organization [9].

Loomis et al. [10, 11] also developed a Personal Guidance
System to improve navigation without vision. They tested
the efficiency of various visionless guidance techniques [2]
and navigation abilities [11]. They found that virtual sound
guidance had a clear advantage over spatial language on
navigational performance, but only when the navigation task
was combinedwith a dual task (i.e., a vibration detection task)
[11–13]. The authors argued that virtual sounds can be imme-
diately perceived and understood as spatial information,
whereas spatial language requires that semantic information
be processed and transformed into a spatial representation.

Other authors worked on navigation performance via an
SSD called Brainport [3, 14]. Initially developed by Paul Bach-
y-Rita, this device provides 2D information of the environ-
ment by electrotactile stimulation on the tongue. Recently,
Kaiser [3] trained eight blind people to use the Brainport
device. They compared navigation performances (travel time
and contacts with walls) in a naturalistic environment before
and after training program by using Brainport only, white
cane only, and both. In the posttraining session, participants
gained certain mobility: they were able to navigate in the
courses with less contact than in the pretraining session.They
were more precise in their navigation even if training did not
lead to improving time travel.

Various systems differ in the way they convert images
into sounds. As mentioned before, some techniques use the
sequential scanning of columns in images. By processing only
one column at a time [6], early visual-auditory SSDs suc-
cessfully reduced 2D image information rate. On this basis,
Cronly-Dillon et al. [15] translated columns intomusical form
after high-contrast line selection preprocessing.

More recent systems handle an entire 2D image snapshot
in variousways. Taking the human vision system as amodel, a
multiresolution retina can encode the center in greater detail
than in the rest of the field [16]. Horizontal encoding feeds
the binaural intensity of stereo sound sources. For instance,
González-Mora et al. [17] improved sound generation with
the acquisition of “stereo pixels” depthmap and spatialization
techniques based on head-related transfer function (HRTF)
for binaural encoding. In the VIBE [18], the “retina” is
implemented with a reduced number of receptive fields
(RFs), so that each of them can be assigned a specific sound
source. Another system, called See ColOr (Seeing Colours
with an Orchestra) [19] converts colors into different musical
instrument sounds. It enhances colored object and texture
perception and simultaneously converts depth into sound
rhythm.

1.2. SSD Based on Depth Information. Only a limited number
of audition-based SSDs focus on depth acquisition. Yet in
vertebrates, different procedures evolved to evaluate object

distance independent of vision and touch. For instance,
echolocation was first discovered for bats in the air [20] and
then for whales in the water [21]. The ultrasonic probing
signals involved in these procedures are of an acoustic nature,
both at the emission and the reception stages. Humans
can also use acoustic signals containing spatial parameters
to facilitate navigation and infer depth information from
acoustic stimuli processing [22]. For instance, the Sonic
Pathfinder is an electronic travel aid (ETA) that turns depth
taken from an ultrasonic emitter-receiver system into sound
[13]. However, depth is usually considered an optical-relevant
feature, and man-made devices usually turn optic parameters
into acoustical stimuli that are eventually processed by the
brain to deduce depth. Interestingly, totally blind people are
more efficient than sighted people at distance discrimination
via auditory information [22].

More recently, the emergence of theRGB-DKinect sensor
has paved the way for a new generation of navigation systems
by SSDs based on real-time depth map acquisition [23–
28]. For example, Hicks et al. [24] developed an augmented
reality system for partially sighted individuals, reducing the
amount of information in the depth map. In this system,
distance is converted to brightness and displayed on stereo
12 × 8 LED images mounted on ski goggles. In the same
vein, Ribeiro et al. [27] retraced a sound image of an indoor
environment with plane and face detection, generating low-
pitch clicks when encountering obstacles. However, a long
training period seems necessary to properly use the device.

We propose an SSD prototype constructed based on
Kinect principles calledMeloSee.The emitter-receiver system
is mounted on the user’s head (Figure 1), thus leaving his/her
hands free for other tasks. It implements original methods to
encode the depth environment so as to generate sounds from
depth and azimuth [29]. We use a depth map provided by
the RGB-D camera as an input. We resample the map using
a limited number of receptive fields. The response associated
with each receptive field is transcribed into sound. For the
user’s comfort and discrimination, we associate each RF’s
vertical position with a sound frequency on themusical scale.
A differential stereo gain is also applied to the horizontal
position.This generates amelody associatedwith the image in
real-time. The development of a similar system was recently
motivated by an inquiry among blind people [30].

1.3. Evaluation. Processing optical data to infer depth from
the surrounding environment requires attention and cogni-
tive resources. MeloSee readily extracts depth information in
real-time and transposes it along acoustical scales. The user’s
resourcesmay be spared and left available for tasks other than
navigating.

The goal of our research is to test this depth-to-sound
design in a navigation task. Firstly, does it at least allow
travelling between walls without sight and without touch
via only auditory clues? Secondly, if the depth-to-sound
conversion is relevant, a small amount of training should
be sufficient to achieve navigation, even in an unknown
space. Thirdly, if learning is effective, it should remain for
days without continuous refreshing (long-term learning).
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Figure 1: A blindfolded participant equipped with the set-up called
MeloSee.The participant holds the distraction apparatus in her right
hand.

Finally, if the depth-to-sound comprehension is easy enough
for users, the participants should be able to complete a
distractive task while navigating. To test these four ideas,
blindfolded participants navigated on different unknown
paths for two sessions separated by a one-week interval. In
each experimental session, they also participated in two trials
with a distractive task. Travel time and errors (contacts with
walls and U-turns) were recorded.

2. MeloSee Specifics

The system presented in Figure 2 comprises two main com-
ponents: a retinal encoder which extracts only relevant
information from the image and a sound generator which
produces a stereophonicmelody.AnRGB-DepthASUSXtion
camera (updated version of Kinect sensor), mounted on
participants’ heads, supplies the depth map as input to the
retinal encoder, and the sound is delivered real-time to them
through headphones. More precisions about the device are
given elsewhere [29].

2.1. Retinal Encoder. The Asus Xtion sensor projects an
infrared pattern on the scene. (For this reason, the system
does not work properly outdoors.) Depth can be inferred
from the deformation of the infrared pattern [31]. The
depth sensor supplies a VGA (640 × 480 pixel resolution)
video stream of the scene, coded on 11 bits at 30Hz. We
introduced RFs to subsample the input images selectively. As
mentioned by Fristot et al. [29, page 1991] “As the entire visual
information of the image (all the pixels) cannot be converted
simultaneously into sound without making a cacophony,
compression of visual information is needed.”

An example of this approach is shown in Figure 3 for a
grayscale depth map. A regular grid of 64 RFs covers the
overall image. Each RF extracts depth from a fixed group

Receptive
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#K = 64

Xtion sensor

Retinal
encoder

Stereo tone
generator Right channel

Left channel

K receptive fields

Figure 2: Visual-auditory sensory substitution flowchart.The high-
input information throughput is significantly reduced before being
converted into sound.

of 10 neighboring pixels around its center. To prevent from
aliasing, pixels are sampled randomly from a 2D normal
distribution [29]. For an illustration of the material and the
experimental set-up, see it in the Supplementary Material
available online at http://dx.doi.org/10.1155/2015/543492.

2.2. Stereo Tone Generator. Each RF’s activity is transformed
into a particular sound source. Pitch is then associated with
each RF according to its vertical position (from C

4
to C
5

on an octave scale, with low frequencies at the bottom
and high frequencies at the top). The horizontal position
defines stereophonic left and right gain (for amplification
or attenuation) applied to the source of the binaural sound
representation. Intensity is translated inversely proportional
to distance. Sounds for all RFs are played in parallel. A
stereo tone generator outputs the auditory scene by adding
the contributions of all RFs as a synthesizer with linear
contributions from oscillators. The audio update rate was
7.5Hz or 132ms.

The Asus Xtion sensor cannot operate closer than 50 cm
from the targeted object or surface. Below this minimum
distance, the set-up becomes silent. Sound intensity also fades
with distance, down to zero at a certain maximum limit. For
our experiment, themaximumwas adjusted to 250 cm.While
we could set the sensor to operate farther away, doing so
would reduce the sound intensity contrast at closer distances.

2.3. Time Latency. In a sensory-motor task, time latency
is a key feature for the system. We accurately assessed the
latency of whole images to sound conversion processing
using a blinking LED, shot by the RGB-D sensor, which also
triggered an oscilloscope (because the LED light prevents
depth calculation at the dazzled point). Based on this, time
latency is the difference between the LED extinction and the
beep’s arrival. With a midrange laptop (Win7, Asus PC Intel
Atom N550 CPU), we measured a latency of approximately
100–150ms, which is commendable for a real-time system.

3. Behavioral Assessment

3.1. Participants. Twenty-one healthy participants took part
in the study (14 women; Age: Mean = 21.2, Standard
deviation = 2.1). They were students at Grenoble University.
They were paid for their participation in each session.
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(a) (b)

(c)

Figure 3: Retinal depth encoder. (a) Grayscale depth map. (b) Activity computation. (c) RF activities: the closer the object, the lighter the
disc (Figure 3(b)) and the louder the sound; the farther the object, the darker the disc and the softer the sound.

The study was conducted in accordance with the Helsinki
Declaration and with the understanding and a written con-
sent of each participant.

3.2. Procedure

3.2.1. Navigation Task. Participants were blindfolded with
a sleep eye mask during the entire experiment. Therefore
they never saw the experimental set-up. Then, they were led
to a starting point and using MeloSee they were asked to
walk until the end of a path. They were asked to navigate
as rapidly and accurately as possible, that is, making the
least possible contact with walls and screens. Before starting
the trials, they were informed that there were no barriers,
stairs, cul-de-sacs, or corridors narrower than a doorway
along the route. As participants had to do not touch the
walls, the task could only be performed with SSD switched-
on, and so no baseline trial was recorded (e.g., blindfolded
participants walking with switched-off SSD). During some
trials they had to complete a concurrent discrimination task
monopolizing both hands while navigating. Therefore, there
was no comparative trial with another device requiring the
hand (e.g., a control group using a white cane). Importantly,
during the trials, participants were warned when they started
going in the wrong direction (i.e., U-turns).
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Figure 4: Paths used in the experiment. Path A (left) was 22m long
and path B (right) was 19.6m long. Squares indicate either the start
or finish, depending on the route direction.

Two different paths (Figure 4) were built inside large
rooms, using walls and large paper sheets that covered
standing poster grids in a continuous screen, from one to
two and a half meters above the ground. Path A (22m) was
slightly longer but pathB (19.6m)was narrower andhadmore
corners. Switching the direction (from start to finish) for each
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Table 1: Experimental block design for the two sessions.

Trial Week session 1 Week session 2
11 12 13 21 22 14 11 12 13 21 22 14

Series

#1 A+ A+ A+ B+ B+ A+ A− A− A− B− B− A−
#2 A− A− A− B− B− A− A+ A+ A+ B+ B+ A+
#3 B+ B+ B+ A+ A+ B+ B− B− B− A− A− B−
#4 B− B− B− A− A− B− B+ B+ B+ A+ A+ B+

Each series (#1 to #4) started with a different route and used the four routes (A+ and A−, B+ and B−) in a different order. In each session, the second run of the
second route (22) and the fourth run of the first route (14) were navigated while performing a distractive task (bold routes). For each participant, same-order
trials between the two sessions were run on the same path (either A or B) but in the other direction (either + or −).

path yielded a total of four different routes: A+ and A−, B+
and B−. The four different routes were repeatedly navigated
by each participant in a series totaling 12 trials. Performances
in the four series were grouped and analyzed together.

3.2.2. Distraction Task. The distraction task required par-
ticipants’ attention without impeding “melody” hearing. It
consisted of detecting a temporal pattern of touches. The
participant’s thumb was in contact with a bare loudspeaker
held in one hand and connected to an MP3 player. The
touch stimuli consisted of 100Hz sinus-wave buzzes lasting
for 200ms each.Theywere not audible by participants during
the navigation task but strong enough to stimulate their skin.
Buzzes were emitted alone, by pair, or by triplet, with a
one second interbuzz onset interval. The patterns themselves
were separated by random intervals of 2.7 to 12.0 s and
assembled in blocks lasting for 30 s. Each block contained one
pair, one triplet, and two single-buzz patterns, all randomly
distributed. Ten blocks were assembled in a 5min audio
file played in a loop. While navigating, participants had
to respond to double buzzes, and only double buzzes, by
clapping their thigh with their free hand. Their performance
was monitored and assessed in real-time with the help of a
waveform track representing the sequence of buzzes. Because
the study focused on navigation performance, participants
were asked to prioritize the distraction task each time it was
a part of a trial. Thus, defining navigation performance as
secondary for all participants prevented various trade-offs
between tasks that would obscure the actual distracting effect
expected for navigation.

3.3. Design

3.3.1. Familiarization. Prior to the first trial of the first ses-
sion, participants were familiarized with the upcoming dis-
traction task and the SSD in an anteroom. First, theywere told
to recognize the double buzz within a 30-second sequence.
Then, the rationale of the SSD system was explained to them
while they were equipped and blindfolded. The way sound
intensity changed with distance from walls or screens was
demonstrated (and experienced) in a didactic exchange with
the experimenter. Emphasis was placed on the importance
of head movements. Additional explanations were given
on the system becoming silent at extreme-short range and
when facing wide, open spaces devoid of obstacles. Then,
participants moved around for two minutes in the anteroom

in order to understand the sound coding. During this task,
they were allowed to use their hands to explore the room
with both touch and sound. Finally, they experienced the
distraction task, together with the substitution system, for
one minute. The overall familiarization lasts less than eight
minutes and all participants felt ready for the navigation task.

3.3.2. Experimental Sessions. Two sessions, each lasting less
than one hour, were separated by one week (intersession
interval M = 7, SD = 2 days). Each session included six trials.

The experimental design was within-participant, and the
general procedure was the same in each session. Each par-
ticipant was randomly assigned series # 1, 2, 3, or 4 (Table 1)
in pseudorandom order. Participants navigated the same first
route three times (1

1
, 1
2
, and 1

3
).They then navigated a second

route (2
1
). This was done to test for short-term learning

independently of route-learning. Finally, they ran again the
second and first routes (22 and 14) while performing the
distraction task. Before each trial, participants were informed
whether the route (not the path) to be navigated was new
or had already been run in a previous trial. This was done
to prevent guessing that would inject variability among
participants.

The same procedure was applied the second week to test
for long-term learning. Inverting travel direction for the two
paths resulted in two new routes for the participants.

3.4. Data Analysis. As previously noted, participants had to
navigate as quickly as possible without touching the walls.
For each trial, we measured travel time and navigation
errors (number of contacts with the walls and U-turns). The
performance of the distractive task was also recorded. For
each dependent variable, a repeated-measure ANOVA was
conducted with week session (first, second) and trial ranks
(1
1
, 1
2
, 1
3
, 2
1
, 22, and 14) as independent variables.

4. Results

4.1. Travel Time. The results for travel time are presented
in Figure 5(a). No interaction effect was found (𝑃 > 0.5)
between week session and rank trial, which suggests that
the performances from trial to trial were similar in the first
and in the second experimental session. Interestingly, a main
effect of trial rank, F(5, 95) = 13.26, 𝑃 < 0.001, indicated
that navigation performance changed within experimental
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Figure 5: Navigation performance in the six experimental trials during the first and the second week sessions. Trials 1
1
, 1
2
, 1
3
, and 1

4
are

conducted on the same path and trials 2
1
and 2

2
on another one. Cognitive load was added in trials 22 and 14. Top panel (a): travel time in

seconds (note that the 𝑌-axis starts from 100 s); middle panel (b): number of contacts with the walls; bottom panel (c): number of U-turns.
Error bars represent standard errors of the means. Stars indicate significant differences with ∗∗𝑃 < 0.01; ∗∗∗𝑃 < 0.001.
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sessions. Amain effect of the week session was also observed,
F(1, 19) = 22.12, 𝑃 < 0.001, showing an improvement in navi-
gation performance from the first to the second experimental
session (long-term learning). The simple-effect analysis of
trial rank showed a significant difference between trial 1

1
and

trial 2
1
(both novel paths), F(1, 19) = 30.05, 𝑃 < 0.001. Thus,

the first trial of the second path (trial 2
1
) was accomplished

faster than the first trial of the first path (trial 1
1
) suggesting

short-term learning independent of path familiarization. No
significant difference was found between the last trial of
the first path (trial 1

3
) and the first trial of the second

path (trial 2
1
). To illustrate this long-term improvement, we

compared mean navigation velocity to complete the first trial
of the second path (2

1
). Participants navigated approximately

7m/min the first week against 8.7m/min the second one.
When a cognitive load was added, travel time increased

for the second route (trial 22) only F(1, 19) = 4.81, 𝑃 < 0.05.
Furthermore, no significant difference was found between
trial 1

3
and trial 14 (𝑃 > 0.05). The cognitive load had

no significant impact on travel time for the route already
navigated three times before. It is worthy to note that the
distraction task was correctly completed (day 1, trial 1: 87%,
SD = 10; day 1, trial 2: 80%, SD = 15; day 2, trial 1: 90%, SD =
14; day 2, trial 2: 84%, SD = 12).

4.2. Navigation Errors. An ANOVA on contact with the
walls (Figure 5(b)) showed no significant interaction between
session and trial rank (𝑃 > 0.05) and no significant trial rank
effect (𝑃 > 0.05). The analysis showed a main effect of the
week session, F(1, 20) = 37.09, 𝑃 < 0.001. Participants made
significantly less contact in the second week session than in
the first one.

The same pattern of results was observedwith the number
of U-turns (Figure 5(c)). There was no interaction between
session and trial rank (all 𝑃s > 0.05). The ANOVA showed
a main effect of the week session F(1, 20) = 14.79, 𝑃 <
0.01. Participants made significantly fewer U-turns in the
second than in the first session. Distraction task showed no
significant effect on contacts (𝑃 > 0.5) or U-turns (𝑃 > 0.5).
A significant correlation was observed between the number
of contacts and U-turns (𝑟 = 0.74, 𝑃 < 0.05). Analysis
conducted with combined data yielded the same results as
those on separated error data presented here.

5. Discussion

Together, our results seem to show the applicability of depth
image conversion into sound for navigation along unknown
paths. Interestingly, we noticed time improvement between a
first and a second trial performed in the same path. We also
observed time improvement between the first trial in the first
path and the first trial performed in a new path (short-term
learning). Performance also improved over sessions (long-
term learning), even when a distraction task was introduced.

It is important to consider that the aim of this study
was to test the system alone in a basic navigation task. The
experimental procedure was operational enough to assess
performance with different quantitative variables and with

an additional cognitive load that may be further adjusted
in complexity. The paradigm may inspire assays for future
development of the same real-time device or to compare
different SSDs later.

Our system was employed readily by inexperienced users
(with only eight minutes of familiarization with the device).
Travel time decreased between the first and the second trials
and remained lower along the remainder of each session.
With even shorter travel times a week later, learning was also
demonstrated to be of longer term. In addition to travel time,
a decrease in navigation error frequency confirmed the long-
term improvement, with the agreement of two additional
measures. Moreover, when participants had to deal with a
distraction task via tactile stimulation, learning was robust as
evaluated by both travel time and errors. The distraction task
itself was hardly affected in the process. The additional load
somewhat lengthened travel time in the less-navigated route
only. The effect was slight in comparison with the massive
learning progress observed.

However, the speed performance, around 8.7m/min at
the best, may seem low in general as compared to other
systems (e.g., [25]).

Our results seem consistent with other studies [12, 18, 24]
showing that sound can profitably convey information to
navigate in an unknown environment, using either 2D light
reflection (as with vision) or depth (as with echolocation) as
a primary input. For instance, in the Sonic Pathfinder [32],
depth was evaluated from three-directional ultrasonic beams
and turned into a monodic stereophonic sound stimulus.
Our RGB-D system also delivers depth information directly,
similar to such ETA. However, it provides a 2D array and
a wide scope, compared to the restricted beam focus of the
cetacean, bat, and pathfinder systems. Auvray [33] considers
that an efficient SSD shares common features with natural
sensory-motor coupling. Vision, which is normally used in
navigation, projects a 2D light image from the retina to
specific areas of the central nervous system. Interestingly, our
system produces a depth image which projects a 2D sound
image that may match such brain structures dedicated to
space perception. Thus, the motor-vision coupling involved
in navigation might be favored by our system’s real-time
operation. Moreover, rapid adjustment is crucial for moving
around without vision. In comparison, the vOICe offers
better substitution of vision for recognizing shapes like letters
on a plane, but it is hardly informative for depth and may be
too slow to allow online navigation.

Our system presents the advantage of being constructed
with the RGB-D sensor, a common manufactured com-
ponent. However, it has two functional limitations. First,
because it is based on infrared beams, it cannot operate
outdoors where it is jammed by stronger concurrent signals
from sunlight. Other sensor systems could be considered
as input devices for a version that would deliver a similar
polyphonic signal from a depth array that could be sampled
outdoors. Second, the RGB-D sensor we tested does not pick
up information at very close range (0.5m). Some participants’
main difficulty was finding their way in narrow passes and
confined places, such as corners or door frames. In this
particular situation, they learned to step back to restore the
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acoustic signal, after which they succeeded in walking faster
and better. In subsequent versions of the system, various
methods have to be implemented to help participants discern
between blanks at very close and very long range. Automated
processing may additionally be implemented to help the user
detect relevant patterns [32].

6. Conclusion

The goal of the present experiment was to show that our
portable real-time SSD that turns a depth scene from RGB-
D into polyphonic stimulation can be adapted into a usable
SSD.

As shown by our test, using different paths, polyphonic
conversion of a 2D depth array can help navigation in corri-
dors without vision and without touch. Practice significantly
improved through long- and short-term learning in both
new and more familiar paths. The portable system remained
functional even when a supplementary task diverted partici-
pants’ attention.Thequick online coupling between real space
and auditory mapping seemed to connect with cognitive
processing that is normally implemented from visual natural
input. Its development could help sightless people find their
way in unknown as well as more familiar paths, without
monopolizing the navigator’s hand and attention. Future
works are however required to test the relative efficiency of
our device compared to other SSDs or other guidance systems
(white cane or dog) and to test our device with blind persons.
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