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Some RNA virus genomes bear 50-triphosphates, which can be

recognized in the cytoplasm of infected cells by host proteins

that mediate anti-viral immunity. Both the innate sensor RIG-I

and the interferon-induced IFIT proteins bind to 50-triphosphate

viral RNAs. RIG-I signals for induction of interferons during RNA

virus infection while IFITs sequester viral RNAs to exert an anti-

viral effect. Notably, the structures of these proteins reveal both

similarities and differences, which are suggestive of

independent evolution towards ligand binding. 50-

triphosphates, which are absent from most RNAs in the cytosol

of uninfected cells, are thus a marker of virus infection that is

targeted by the innate immune system for both induction and

execution of the anti-viral response.
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Introduction
The interferon system is one of the cornerstones of innate

immunity in mammals (Figure 1). Interferons were dis-

covered as soluble factors secreted by virally infected

cells that protected uninfected cells from subsequent

viral challenge [1]. The type I interferons (referred to

as IFN in this review) include interferon-b and multiple

interferon-a subtypes, all of which signal through a com-

mon receptor IFNAR [2] (Figure 1). All nucleated cells

can produce IFN in response to nucleic acids generated

during virus infection. Detection of these nucleic acids is

carried out within the infected cell by host proteins

residing in the cytosol, such as RIG-I-like receptors

(RLRs) and other virus-sensing receptors [3]

(Figure 1). In addition, some cells possess the ability to

detect viruses in the extracellular milieu using members
www.sciencedirect.com 
of the toll-like receptor (TLR) family. This generally

involves endocytic uptake of viruses or remnants of virally

infected cells into vesicular compartments surveyed by

TLR3, 7, 8 and 9, all of which bind nucleic acids (Figure 1).

Either RLR or TLR signalling then induces expression of

the IFN genes (Figure 1). Given the abundance of nucleic

acids in uninfected healthy cells and the potential of IFN

to contribute to autoinflammatory and autoimmune dis-

eases [4], it is not surprising that sophisticated mechanisms

ensure that activation of RLRs and TLRs occurs only

during infection. One of these mechanisms is the recog-

nition of viral RNA genomes bearing a 50-triphosphate

(5PPP) moiety by RIG-I, a member of the RLR family.

5PPP groups are present on the genomes of many RNA

viruses (Table 1), but are not found on most cellular RNAs

in the cytosol. As such, the presence of 5PPP RNA in the

cytoplasm is a molecular signature of virus infection.

Secreted IFN acts in autocrine and paracrine fashion to

turn on the transcription of several hundred IFN-stimu-

lated genes (ISGs) (Figure 1) [5]. Examples include the

genes encoding (i) RIG-I and other virus sensing receptors

(providing a positive-feedback loop), (ii) proteins involved

in cell-intrinsic anti-viral defence such as RNaseL, MxA or

tetherin and (iii) molecules facilitating adaptive immune

responses such as CD80 and CD86. One family of ISGs

encodes the IFIT proteins that are characterized by tetra-

tricopeptide repeats [6,7]. IFITs control translation

initiation, cell proliferation and cell migration, and exert

anti-viral effects against a variety of RNA viruses and

human papillomavirus [6,7]. Interestingly, it has recently

been found that some IFITs bind to 5PPP RNAs and

antagonize viruses by sequestering viral RNA [8��,9��].
Here, we review recent progress on the recognition of

5PPP RNA by RIG-I and IFITs and its subsequent impact

on cell-intrinsic immunity to virus infection.

RIG-I detects 5PPP RNA
Studies on the types of RNA that can activate RIG-I have

attracted much attention but have mostly been based on

transfection of synthetic RNAs into reporter cells. Such

experiments revealed that the most potent RIG-I agonists

are RNAs that contain a triphosphate moiety and are

base-paired at the 50-end. RNA sequence is largely irre-

levant so long as it does not impact on the base-pairing. A

blunt end without overhangs is most effective and can be

provided in trans by hybridization between two RNA

molecules or in cis by complementarity between the 50-
end and 30-end of a single RNA molecule (Figure 2a).

These findings have been reviewed in detail elsewhere
Current Opinion in Microbiology 2013, 16:485–492
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Induction and effects of IFN during virus infection. Virus infection delivers nucleic acids into the cytosol or endosomal compartment. Innate nucleic acid

sensors including TLRs, RLRs and the poorly characterized cytosolic DNA receptors (CDRs) detect these DNAs and RNAs and then trigger a signal

transduction cascade that induces IFN. Adaptor proteins, kinases and transcription factors mediate signalling. Note that additional proteins have been

implicated and that the figure only shows some selected key components. IFN signals via IFNAR resulting in the induction of ISGs that have direct and

indirect anti-viral effects.
[10,11] and are well supported by structural data (see

below). Less is known about the types of RNA that

activate RIG-I during virus infection. However, work

from us and others showed that RIG-I recognizes the

5PPP RNA genome of influenza A virus (IAV) and Sendai

virus in infected cells, and that both the 5PPP and the

secondary structure are required for RIG-I-dependent

IFN induction [12,13]. Thus, these two studies in virus

infection models nicely validate the predictions made by

analysis of the RIG-I-mediated response to synthetic

RNAs [12,13]. Recent work shows that RIG-I is recruited

to and activated by bunyavirus nucleocapsids, native
Table 1

RIG-I and IFITs target viruses with 5PPP RNA genomes. For select

indicated.

Virus (family) 5

Influenza A virus (Orthomyxoviridae) P

Vesicular stomatitis virus (Rhabdoviridae) P

Rift Valley fever virus (Bunyaviridae) P

Encephalomyocarditis virus (Picornaviridae) V

Sendai virus (Paramyxoviridae) P

Hantaan virus; Crimean-Congo haemorrhagic fever virus (Bunyaviridae) P

Borna disease virus (Bornaviridae) P

a IFIT1 inhibits viral mRNA translation of parainfluenza virus type 5, another 

unknown but is unlikely to involve 5PPP RNA binding as viral mRNAs are 
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complexes containing a 5PPP RNA genome and viral

proteins [14�]. This demonstrates that RIG-I can indeed

gain access to viral RNAs under physiological conditions.

Like viral RNA, bacterial RNAs can possess 5PPP termini

and secondary structures that are predicted to make them

RIG-I agonists. Consistent with this notion, RIG-I can act

as a sensor of bacterial RNA and may help maintain

homeostasis to gut microbiota [15,16].

Interestingly, some RNAs lacking 5PPPs also trigger

RIG-I upon transfection into cells. These RNAs include

short double-stranded RNAs made by chemical synthesis
ed RNA viruses, recognition by RIG-I and restriction by IFITs is

0-end of genome RIG-I recognition IFIT restriction References

PP Yes Yes [9��,12,13,38]

PP Yes Yes [9��,38,46]

PP Yes Yes [9��,14�,52]

Pg protein No No [9��,38]

PP Yes Not testeda [12,13,38]

 No Not tested [52]

 No Not tested [52]

member of the paramyxovirus family [54]. The mechanism of inhibition is

capped.
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Figure 2
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Model of RIG-I activation and signalling. (a) The most potent RIG-I agonists are characterized by a 5PPP moiety and by base-pairing to a

complementary stretch of RNA. This base-pairing can either be provided by a second molecule of RNA or by complementarity of the 50-end and 30-end

of the 5PPP bearing RNA. As such, RIG-I agonists can be double-stranded (ds) and single-stranded (ss) RNAs. (b) The domain architecture of RIG-I

and MAVS is shown schematically. CARD, caspase recruitment domain; CTD, C-terminal domain; TM, transmembrane domain; Hel-1, Hel-2i and Hel-

2, subdomains of the RIG-I helicase domain; K63-ub, K63-linked polyubiquitin. The RIG-I pincer domain (also called bridging helices) is shown as a red

line connecting the helicase domain and CTD. (c) In the autorepressed conformation, the CTD is flexibly connected to the helicase domain and this

allows for binding of 5PPP groups of viral RNA genomes to the CTD. (d) Upon RNA binding to the CTD, the helicase domain makes contacts with the

RNA and RIG-I undergoes a conformational change that exposes the CARDs. (e) RIG-I is then ubiquitylated or binds to free ubiquitin chains. (f and g)

This facilitates RIG-I tetramerization and interaction with MAVS. Upon initial oligomerization of MAVS, a prion-like mechanism recruits additional MAVS

molecules into the complex (red arrow) and signal transduction is initiated via TBK1 activation.
[17,18], certain forms of the enzymatically prepared RNA

poly I:C [19] and dephosphorylated double-stranded

RNAs made by in vitro transcription [20]. Further sup-

porting the notion that non-5PPP RNAs can activate

RIG-I is the observation that poly I:C triggers RIG-I

signalling in a cell free reconstitution assay [21]. How-

ever, it remains unclear whether 5PPP-independent RIG-

I signalling occurs in infected cells. It will be important to

identify natural RNAs that activate RIG-I in cells

infected with different viruses, including positive sense
www.sciencedirect.com 
RNA viruses, to validate the extent to which RIG-I can be

activated independently of 5PPPs.

Structural insights into RIG-I recognition
RIG-I features two caspase recruitment domains

(CARDs) at its N-terminus, a central DECH-box type

RNA helicase domain and a C-terminal domain (CTD)

(Figure 2b) [22,23]. The helicase domain and CTD are

involved in RNA recognition while the CARDs initiate

downstream signalling. Initial studies using nuclear
Current Opinion in Microbiology 2013, 16:485–492
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magnetic resonance and X-ray crystallography elucidated

the structure of the CTD in the absence [17,24] and

presence of RNA [25,26,27]. They showed that the CTD

contains a positively charged pocket that can accommo-

date 5PPP ends of RNA molecules and thus provided a

structural explanation for detection of this type of RNA

[25,26]. Much progress has been made in the last two

years determining the structure of the other RIG-I

domains and of the full-length protein [22,23]. Without

an RNA ligand, full-length RIG-I adopts an autore-

pressed state. The helicase domain is in an open confor-

mation, flexibly linked to the CTD and bound to the

second CARD [28��,29,30] (Figure 2c). For downstream

signalling to occur, the CARDs need to be free (see

below). However, the CARD2-helicase interaction

observed in RNA-free RIG-I constrains this freedom

and thus explains autorepression [28��,30] (Figure 2c).

Crystal structures of RIG-I bound to short double-

stranded RNAs [28��,31�,32�] or to a 5PPP hairpin

single-stranded RNA [33�] (Figure 3b) reveal how the

autorepressed state is dismantled by structural rearrange-

ment upon RNA agonist binding. The helicase adopts a

closed conformation and completely surrounds the base-

paired RNA along its length, while the CTD caps the 50-
end by directly interacting with the 5PPP and the first few

nucleotides [28��,31�,32�,33�] (Figures 2d and 3b). The

binding site for CARD2 on the helicase domain is now

involved in RNA binding, thus allowing the CARDs to be

released [28��,31�,32�,33�]. Furthermore, in the RNA-

bound conformation, a pincer domain (also called brid-

ging helices) places the CTD in a position overlapping

with that previously occupied by CARD2

[28��,31�,32�,33�] (Figure 2d). RNA binding is therefore

predicted to push away the CARDs. This is likely to

happen in two steps: first, the CTD recognizes the 5PPP

group and, second, the helicase domain binds to the base-

paired region (Figure 2c,d) [22,23]. The hydrolysis of

ATP is thought to tighten the helicase domain around

the RNA, further favouring CARD release [33�].

MDA5 is another RLR. A recent crystal structure of the

MDA5 helicase domain and CTD in complex with

double-stranded RNA shows that these domains form a

ring around the RNA, leaving both ends free to extend

[34��]. This is in contrast to the equivalent domains in

RIG-I that cap one end of 5PPP base-paired RNA, due to

tilting of the RIG-I CTD towards the RNA [34��]. This

structural difference, together with the absence of a

5PPP-binding pocket in the CTD of MDA5

[25,34��,35,36], may explain why the two RLRs recognize

different types of RNA and mediate IFN responses to

different viruses [37,38].

RIG-I signalling via MAVS
Upon RNA agonist binding and CARD exposure, RIG-I

initiates a signal transduction cascade that ultimately

results in IFN gene transcription [3]. MAVS is the
Current Opinion in Microbiology 2013, 16:485–492 
RIG-I and MDA5 proximal adaptor protein. It mediates

activation of kinases such as TBK1, which phosphorylate

transcription factors including IRF3 that then translocate

to the cell nucleus to trigger transcription of IFN genes

(Figure 1). MAVS has a C-terminal transmembrane

domain and a single N-terminal CARD, which engages

in CARD-CARD interactions with RIG-I. This inter-

action requires binding to K63-linked polyubiquitin

chains generated by the ubiquitin ligase TRIM25

(Figure 2e) [21,39,40�]. One study suggests that TRIM25

mediates covalent ubiquitylation of RIG-I at lysine 172 in

the second RIG-I CARD [39]. A different study indicates

that the same lysine binds non-covalently to TRIM25-

generated free ubiquitin chains [21]. CARD-associated

ubiquitin chains are key for signalling as they trigger

formation of RIG-I tetramers (Figure 2f) [40�]. The

resulting CARD clusters recruit multiple MAVS mol-

ecules [40�,41��]. Surprisingly, the stoichiometry of this

reaction reveals signal amplification through self-propa-

gation (Figure 2f,g). MAVS forms fibrils that convert

additional MAVS molecules into the fibrillar confor-

mation, in a self-amplification mode reminiscent of prions

[41��]. The MAVS fibrils in turn mediate activation of

TBK1 [41��] (Figure 2g). A subsequent study confirmed

the prion-like behaviour of MAVS and showed that it can

also be triggered by the CARDs of MDA5 [34��]. Self-

propagation allows for sensitive detection of minute

amounts of viral RNA: it has been estimated that 20

molecules of 5PPP RNA are sufficient to activate IRF3

via the RIG-I/MAVS pathway [21]. An important ques-

tion for future studies is how signalling is terminated and

how the self-propagating prion conformation of MAVS is

cleared. Another area for future research is the spatio-

temporal regulation of RLR signalling and how it is

governed by the localization of MAVS [42]. Interestingly,

MAVS has been found on mitochondria, peroxisomes and

so-called MAMs (mitochondrial-associated endoplasmic

reticulum membranes) [43,44]. Much remains to be

learned about how MAVS localization is regulated and

how this impacts on RLR signalling during infection with

different viruses.

IFIT proteins sequester viral 5PPP RNA
The human genome encodes four IFITs (IFIT1-3,

IFIT5) whereas mice have three (IFIT1-3) [6,7]. The

expression of these proteins is potently induced by IFN

and their anti-viral function has been reviewed elsewhere

[6,7]. Recent functional and structural data indicate that

the anti-viral effect of IFIT1 and IFIT5 is due to their

ability to recognize 5PPP RNA. A proteomics study

identified all four human IFITs in a pull-down with

synthetic 5PPP RNA as bait [9��]. IFIT1 and IFIT5

directly bound to the RNA, whereas IFIT2 and IFIT3

did so indirectly, through association with IFIT1 [9��].
Three viruses that produce 5PPP RNA (vesicular stoma-

titis virus (VSV), rift valley fever virus and IAV) showed

enhanced replication in human or mouse cells depleted of
www.sciencedirect.com
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Figure 3
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RIG-I and IFITs recognize 5PPP RNA. (a) Several RNA viruses generate 5PPP RNAs, such as viral genomic RNAs. These RNAs are recognized by RIG-I

that induces IFN production (green). IFNs then induce the expression of IFITs that bind and sequester 5PPP viral RNAs, preventing their translation,

replication and/or packaging (red). Note that IFITs can also be induced directly by RIG-I/MAVS (dashed arrow) [43]. (b) The top row shows overall

structures of RIG-I and IFIT5 in complex with 5PPP RNA; the bottom row zooms in on the 5PPP binding sites. The RIG-I structure is the RIG-I DCARD

plus 5PPP RNA hairpin complex described in [33�] (PDB code 4AY2). IFIT5 is shown in complex with 5PPP-oligo-C [8��] (PDB code 4HOR). Amino acid

residues contacting the 5PPP are shown in stick format and dashed lines indicate hydrogen-bonding interactions.

www.sciencedirect.com Current Opinion in Microbiology 2013, 16:485–492



490 Host–microbe interactions: viruses
IFIT1 whereas replication of encephalomyocarditis virus

(EMCV) that lacks 5PPPs was normal [9��]. What is the

molecular basis of IFIT1 mediated inhibition of virus

replication? In vitro assays showed that recombinant IFIT1

blocks translation of 5PPP containing reporter RNAs,

while having little effect on translation of the correspond-

ing dephosphorylated RNA [9��]. IFIT1 also precipitated

viral RNAs from cells infected with VSV or IAV [9��].
Together, these observations suggest that IFIT1 recog-

nizes and sequesters viral 5PPP RNAs and thereby pre-

vents their replication, packaging and/or translation.

Structural data demonstrate that human IFIT5 has a

positively charged cavity accommodating 5PPP RNA

[8��] (Figure 3b). Structure-guided mutation of residues

involved in 5PPP RNA binding diminishes the anti-viral

effects of IFIT5 and IFIT1 against VSV and IAV

[8��,9��]. Similar to 5PPP RNA recognition by RIG-I,

the interaction between IFIT5 and RNA is not sequence

specific [8��,22,23]. However, while RIG-I is most

strongly activated by blunt ended 5PPP base-paired

RNA [11], a 50-overhang is required for RNA to be

accommodated in IFIT5 [8��]. Whether this reflects

binding of different types of RNA to IFITs and RIG-I

or whether base-paired RIG-I agonists are unwound for

IFIT recognition remains to be determined.

Genetically modified mice provide further evidence for a

role of IFITs in host defence against viruses

[9��,45,46,47]. IFIT2-deficient animals are highly

susceptible to intranasal VSV challenge [46], and similar

data have been reported for Ifit1�/� mice [9��]. It is

unclear why another study using IFIT1-deficient mice

independently derived from the same ES cell line failed

to reproduce these results [9��,46]. Interestingly, Ifit1�/�

mice and cells are more susceptible to infection with

viruses lacking 20-O-methyltransferases, including

mutants of West Nile virus, coronavirus and poxvirus

[45,47,48]. The 20-O-methyltransferases encoded by the

wild-type counterparts of these mutant strains modify

the cap structure of viral messenger RNA by 20-O-meth-

ylation. Cellular messenger RNAs are methylated at this

position by a host-encoded methyltransferase,

suggesting that some viruses mimic this to circumvent

recognition by IFIT1 and, possibly, MDA5 [45,47,48].

This indicates that IFIT1 may interact not only with

5PPP RNA, but also with capped RNA lacking 20-O-

methyl groups, although the latter interaction could be

indirect, perhaps via other IFITs. Indeed, a large spec-

trum of different RNAs may be targeted by IFITs: IFIT5

not only binds to 5PPP RNA but also to transfer RNAs

that bear a single 50-phosphate [49�] and IFIT2 interacts

with AU-rich RNAs independently of 50-phosphorylation

[50]. It will be important to identify and characterize

RNAs bound by IFITs in virally infected cells to further

understand the role of these proteins in immune

responses to virus infection.
Current Opinion in Microbiology 2013, 16:485–492 
Conclusions
The IFN system operates in two phases: first, virus

presence is detected, resulting in the expression of

IFN; second, IFN induces ISGs that exert anti-viral

effects (Figure 1). Recent work shows that the IFN

system targets 5PPP RNAs during both phases: both

RIG-I, a virus sensor that induces IFN expression, and

IFITs, effector molecules that execute anti-viral activi-

ties, can specifically recognize 5PPP RNAs. As such,

5PPP RNAs appear to be Achilles’ heel of many RNA

viruses in their interaction with the innate immune sys-

tem (Figure 3a). Why is this the case? Many RNA viruses

use primer-independent means of replication. 5PPP moi-

eties on viral RNA genomes, antigenomes and some viral

transcripts are an inevitable consequence of primer-inde-

pendent initiation of RNA synthesis by a single ribonu-

cleoside-triphosphate [51]. The fundamental importance

of RNA replication to the life cycle of RNA viruses may

explain why viruses that use primer-independent strat-

egies to initiate RNA synthesis have been forced to

maintain 5PPP groups during evolution — despite the

selective pressure exerted by the IFN system that detects

these moieties. It is noteworthy that other mechanisms to

initiate RNA synthesis and the removal of 5PPP groups

have evolved in some virus families. For example, EMCV

uses as primer for RNA replication a protein known as

VPg, which becomes covalently attached to the 50-end of

the viral genome [51]. Hantaan virus, Crimean-Congo

haemorrhagic fever virus and Borna disease virus post-

transcriptionally process the 50-end of their genomes to

leave a mono-phosphate [52]. Consistent with these facts,

none of these viruses trigger IFN induction via RIG-I and

EMCV is not restricted by IFIT1 [9��,38,52] (Table 1).

Notably, viruses that maintain 5PPP RNA and are recog-

nized by RIG-I often encode proteins that specifically

target and inhibit RLR signalling [53]. Studies of the

sensors that detect RNA viruses and the identification of

ISGs that restrict them remain challenges for the future.
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