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Calcium signaling and the AMP-activated protein kinase (AMPK) signaling networks

broadly regulate numerous aspects of cell biology. Human Cytomegalovirus (HCMV)

infection has been found to actively manipulate the calcium-AMPK signaling axis to

support infection. Many HCMV genes have been linked to modulating calcium signaling,

and HCMV infection has been found to be reliant on calcium signaling and AMPK

activation. Here, we focus on the cell biology of calcium and AMPK signaling and what is

currently known about howHCMVmodulates these pathways to support HCMV infection

and potentially contribute to oncomodulation.
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INTRODUCTION

Human Cytomegalovirus (HCMV) infection is a prevalent opportunistic pathogen, infecting
∼60–90% of the global population (Pass, 2001). It remains latent in most individuals, but causes
significant morbidity in immunoimmature or immunocompromised hosts including neonates,
transplant recipients, AIDS patients, and cancer patients undergoing immunosuppressive therapies
(Pass, 2001; Kuo et al., 2008; El-Cheikh et al., 2013; Tay et al., 2013; Teh et al., 2013). Evidence of
HCMV infection and its contributions to mortality in cancer patient populations has increased
over time (Nguyen et al., 2001; Boeckh, 2011; Wang et al., 2011; Tay et al., 2013; Jaillette et al.,
2016; Rådestad et al., 2018), partially due to inadequate anti-HCMV therapeutics. Approximately
0.6% of babies in developing countries are HCMV seropositive, and 10% of infected infants suffer
from microcephaly, hearing and vision loss, mental impairments and even death, making HCMV
infection one of the leading causes of birth defects (Schottstedt et al., 2010; Swanson and Schleiss,
2013). Current therapies often have poor bioavailability, exhibit long-term toxicity in afflicted
patients and can often lead to the development of drug resistance due to the prolonged treatment
regimens required to eliminate lytic infection (Weisenthal et al., 1989; Flores-Aguilar et al., 1993;
Goodrich et al., 1993; Andrei et al., 2008).

HCMV can spread through mucosal membranes, via blood, through the placenta and breast
milk from mother to child, or through saliva and sexual secretions. Primary infection and viral
replication occur in a wide variety of cell types including fibroblasts, epithelial cells, endothelial
cells, mononuclear cells, and neural progenitor cells (Sison et al., 2019). Viral latency is established
in hematopoietic stem cells, as these cells differentiate into myeloid derived macrophages and
dendritic cells, they become more permissive to reactivation of the virus (Hahn et al., 1998;
O’Connor and Murphy, 2012; Forte et al., 2020).

HCMV is a betaherpes virus containing a large double-stranded DNA genome of about
230,000 base pairs (Schottstedt et al., 2010), encoding for a largely unknown proteomic potential
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(Stern-Ginossar et al., 2012). The regulation and function of
these gene products by both the virus and host cell shape the
viral environment and the potential to successfully produce viral
progeny. It is known that the upstream calcium-calmodulin
signaling cascade protein, CaMKK, and its downstream target,
AMP-activated protein kinase (AMPK), both play a critical role
in HCMV-mediated glycolytic activation and viral replication
(McArdle et al., 2011, 2012). These two overlapping pathways
were proven to be crucial for activation of glycolysis during
infection, but both impact cellular function beyond metabolic
regulation. In this review we will explore the contributions of
calcium signaling and AMPK signaling to HCMV infection and
how these pathways contribute to oncogenesis.

HCMV AND CANCER

HCMV infection commonly causes acute infection in cancer
patients undergoing immunosuppressive therapies for the
treatment of leukemia, lymphoma, and myeloma (Kuo et al.,
2008; El-Cheikh et al., 2013; Tay et al., 2013; Teh et al., 2013).
Although controversial, it has also been associated with certain
brain cancers including malignant glioma and medulloblastoma
(Cobbs et al., 2002, 2007; Baryawno et al., 2011; Soroceanu
et al., 2011; Ranganathan et al., 2012; Rahman et al., 2019).
Due to the immunosuppressive nature of the treatments used to
fight various cancers, these cancer patient populations are highly
susceptible to HCMV infection. Not only are they more likely to
be affected by acute infection or reactivation of latent infection,
but HCMV encodes for gene products with oncogenic potential
that could promote cancer formation and further contribute to
cancer progression.

HCMV is not considered to be a directly transforming
virus, yet many of its gene products are capable of driving
specific oncogenic phenotypes. This property, known as
oncomodulation, suggests that HCMV infection may play a
yet unknown role in oncogenesis by transforming the cellular
environment into one more conducive to tumor formation.
HCMV infection and its oncogenic potential has been reviewed
in detail by many [see Michaelis et al. (2009), Herbein (2018),
Nauclér et al. (2019)]. In brief, HCMV infection institutes many
host cell changes that mirror the hallmarks of cancer including:
manipulation of cellular energy metabolism, promoting the
cell cycle, and evading growth suppression, avoiding the
immune response while promoting inflammation, cellular
immortalization, activating invasion, motility, and angiogenesis,
genomic changes, and manipulation of the apoptotic response.
HCMV prevalence, indicated by the presence of its nucleic
acids or proteins, has been associated with multiple cancer
types, including breast, colon, prostate, liver, salivary, brain,
and soft tissue cancers (Hanahan and Weinberg, 2011; Nauclér
et al., 2019). A recent study has taken a deep look into the
transcriptome of 2,658 cancers from 38 tumor types. HCMV
was associated at low levels with most of the tumor types,
although further validation is needed to better understand
if HCMV infection is actually associated with all of the
presented tumor types or if it was a contaminate due to its

frequency across the samples tested (Zapatka et al., 2020).
Additionally, some groups have shown that normal colorectal
and breast tissues, adjacent to HCMV-infected tumors, often
remain uninfected, further suggesting a specific role for HCMV
in the tumor microenvironment (Taher et al., 2013, 2014; Bai
et al., 2016).

CALCIUM SIGNALING: CAMKK

Calcium signaling plays a pivotal role during HCMV infection.
In this section we will describe calcium signaling orchestrated
by a family of serine/threonine kinases and the downstream
consequences of calcium signaling (Figure 1). We will also
explore the viral proteins and HCMV-induced cellular proteins
that contribute to aberrant calcium signaling.

Calcium-calmodulin (Ca2+-CaM) dependent protein kinase
kinase (CaMKK) is encoded by two genes, CAMKK1 and
CAMKK2 resulting in the expression of CaMKKα (or CaMKK1)
and CaMKKβ (or CaMKK2) proteins, originally studied in rat
brain (Edelman et al., 1996). CaMKK exists in an autoinhibited
state in the presence of basal cellular calcium levels. Calcium
flux through the plasma membrane or release of internal
stores into the cytoplasm activates the small messenger protein,
calmodulin, which in turn releases autoinhibition and activates
CaMKK kinase activity toward downstream Ca2+-CaM activated
proteins, CaMKI (Lee and Edelman, 1994), and CamKIV
(Tokumitsu et al., 1994). Regulation of CaMKK via other
kinases also plays a role in the Ca2+-CaM signaling cascade.
The phosphorylation status of CaMKK can determine the fate
of Ca2+-CaM binding. Specifically, serine-458 phosphorylation
facilitated by cAMP-dependent protein kinase (PKA), within
the CaM binding domain of CaMKK, will block CaM from
binding thus inhibiting CaMKK activity (Matsushita and Nairn,
1999; Davare et al., 2004). More recently, it was also shown
that multi-phosphorylation of CaMKKβ by cyclin-dependent
kinase 5 (CDK5) and glycogen synthase kinase 3 (GSK3) results
in decreased kinase activity and decreased CaMKKβ protein
stability (Green et al., 2011). Alternatively, autophosphorylation
at threonine-482 in the regulatory domain of CaMKKβ increases
its activity by decreasing its autoinhibition, independent of Ca2+-
CaM binding (Tokumitsu et al., 2001, 2011).

CaMKK activity plays a role in gene transcription through
regulation of its downstreamCaMKproteins, as well as its activity
toward AMPK (Woods et al., 2005) (discussed below). It also
interacts with protein kinase B (PKB/Akt) (Yano et al., 1998), via
phosphorylation of threonine-308 and serine-473 (Gocher et al.,
2017), resulting in an antiapoptotic effect through upregulation
of pro-survival pathways. CaMKK activity has also been
linked to apoptosis through phosphorylation of CaMKKβ by
death associated protein kinase (DAPK), whose activity toward
CaMKKβ reduces CaMKK autophosphorylation and elicits a
proapoptotic response. The authors suggest this mechanism
could occur through reduction of CaMKK phosphorylation of
the downstream effector, Akt (Schumacher et al., 2004). These
studies show that not only does CaMKK play a critical role
in direct Ca2+-CaM signaling through CaMKI and CaMKIV,
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FIGURE 1 | Overview of calcium signaling. Calcium release from the extracellular space or intracellular compartments into the cytosol activates calmodulin, which in

turn binds to CaMKK and CaMK proteins. Phosphorylation of CaM-binding proteins via autophosphorylation or upstream kinases further activates, or in some cases

inhibits their activity toward downstream signaling proteins and transcription factors. The CaMKK inhibitor, STO-609, can also stall these downstream processes.

but it is able to influence the apoptotic pathway in a more
direct manner.

Expression of CaMKK has been identified in an array of
rat tissues, most notably in the brain, and CaMKKβ is also
found at lower levels in the thymus, spleen, lung, and testis
(Tokumitsu et al., 1995; Anderson et al., 1998). In human tissue,
CaMKK is again predominantly found in the brain (Ohmstede
et al., 1989), but is widely detected across multiple tissues at
the RNA and protein levels, including enrichment of CaMKKα

in endocrine, digestive tissue, prostate, bone marrow, lymphoid
tissues, and enrichment of CaMKKβ in lung and heart muscle
(Uhlén et al., 2015). Additionally, CaMKKβ encodes for distinct
isoforms, most notably, CaMKKβ1 and CaMKKβ2, which exhibit
differential activities and expression patterns in normal vs.
human tumor tissue and cell lines. Most notably, normal human
brain tissues express transcripts for CaMKKβ1 and CaMKKβ2,
while brain tumors express smaller CaMKKβ1 transcript variants
at high levels. Preferential expression of these smaller transcripts
was also observed in established brain tumor cell lines (Hsu et al.,
2001). It was also shown that exon 14 of CaMKKβ is required for
its autophosphorylation, independent of Ca2+-CaM binding, but

that Ca2+-CaM binding is required for its downstream activity
toward CaMK proteins (Hsu et al., 2001). Due to the nature
of CaMKKβ expression in normal and cancerous brain tissues,
its activity could also play a role during HCMV infection. The
impact of HCMV infection on the structural development of the
brain is discussed in more detail below.

Calcium Signaling: CaMKI, CaMKII,
CaMKKIV
CaMKI exists in four isoforms, CaMKIα, CaMKIβ/Pnck,
CaMKIγ/CLICK3, and CaMKIδ/CKLiK, each encoded by a
separate gene (CAMK1, PNCK, CAMK1G, and CAMKID). All
contain similar autoinhibitory domains, which require release
via phosphorylation by CaMKK and Ca2+-CaM binding for full
activation (Soderling and Stull, 2001; Senga et al., 2015). It is the
most ubiquitously expressed group of CaMK proteins, and the
isoforms can be found at various levels in all tissues (Picciotto
et al., 1995), but are most highly expressed in brain tissues
(Nairn and Greengard, 1987; Kamata et al., 2007). Substrates
of CaMKI are generally involved in gene transcription (Swulius
and Waxham, 2008). Two widely studied CaMKI targets are
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extracellular signal-regulated kinase (ERK) and cAMP response
element-binding protein (CREB). Predominantly CaMKIα and
CaMKIβ activities toward CREB activate neuronal transcription
and stimulates neurite outgrowth (Sheng et al., 1991; Yan
et al., 2016). CaMKI is responsible for the induction of ERK
transcriptional activity, which results in the stimulation of
cell growth, proliferation, and cell survival pathways (Schmitt
et al., 2004, 2005). There are several other reports of CaMKI
activity toward central transcriptional regulators, each having
similar outcomes on cell survival and growth with response to
calcium signaling.

CaMKII is activated by CaM-binding and
autophosphorylation activity. It is responsible for the regulation
of many downstream targets involved in ion channel regulation,
synaptic plasticity, and gene transcription (Swulius and
Waxham, 2008). CaMKII is unique in that it exists as a
multimeric dodecamer in the cell, as opposed to the other
CaM-binding proteins, which exist in monomeric forms.
There are four isoforms, CaMKIIα, CaMKIIβ, CaMKIIγ, and
CaMKIIδ (encoded by CAMK2A, CAMK2B, CAMK2G, and
CAMK2D). Each varies slightly in size and contains a variable
linker region which can produce splicing isoforms. The isoforms
are differentially expressed in multiple tissues throughout the
human body (Brzozowski and Skelding, 2019). CaMKIIα and
β are primarily expressed in brain tissue, while γ and δ are
more ubiquitous across tissue types. The multimeric structure
of CaMKII is thought to contribute to regulation of synaptic
transmission, as CaMKIIα, β, and γ are commonly associated
with synaptic vesicles (Ouimet et al., 1984; Takamori et al.,
2006; Wang, 2008). Autophosphorylation of threonine-286 is
essential for synaptic plasticity, learning, and memory in the
brain (Giese et al., 1998). CaMKII also plays an important role in
Ca2+ channel activity in heart muscles, where it phosphorylates
and tethers itself to channel component, α1c, thereby tightly
regulating Ca2+ spikes in the heart (Hudmon et al., 2005; Maier
and Bers, 2007). During osteoblast differentiation, CaMKII is
stimulated by Ca2+ influx, and phosphorylates downstream
proteins: cAMP-response element (CRE) and serum response
element (SRE). CaMKII further facilitates transcriptional
changes, often associated with osteoblast differentiation, thus
stimulating bone mineralization (Shin et al., 2008). More
recently, CaMKII has been shown to be important in the
regulation of cell death in both neurons during ischemia via
an unknown mechanism (Rostas et al., 2017) and osteoblasts
through activation of multiple upstream pathways including
ER stress, MAPK activation and mTOR signaling (Liu et al.,
2018). CaMKII is a physiologically versatile and extensively
studied CaMK protein, which is required for the regulation of
multiple cellular functions crucial for normal cellular function
and functions important for HCMV infection.

Both CaMKII and CaMKI have also been implicated as
important mediators of cell cycle progression. Expression of a
kinase-dead CaMKI mutant elicits a stall in the G1 cell cycle
phase, while inhibition with CaMKII inhibitors has a negative
impact on the G2/M and metaphase-anaphase transitions of
the cell cycle (Skelding et al., 2011). The role of CaMKII in
microtubule dynamics by regulation of centrosome duplication

(Matsumoto and Maller, 2002), may also impact AMPK-
mediated modulation of cytoskeletal and microtubule dynamics.
Additionally, CaMKII has been linked to mitotic instability
(Mones et al., 2014), often associated with cancers.

CaMKIV is activated via CaMKK phosphorylation,
but also exhibits autophosphorylation capabilities. These
phosphorylation events, in combination with CaM-binding,
result in full activation of downstream target proteins. It is
encoded by one gene, CAMK4, which produces two or more
splice variants (Brzozowski and Skelding, 2019). CaMKIV is
primarily responsible for an array of gene transcription events
and is expressed in the brain at high levels (Ohmstede et al.,
1989) but can be found in other cell types and tissues such as
immune cells and reproductive organs (Skelding et al., 2011).
Transcriptional activity of downstream CaMKIV targets has also
been implicated in neurite outgrowth, the immune response and
cell cycle control. CaMKIV can activate CREB activity, causing a
Ca2+ dependent regulation of transcription (Enslen et al., 1994),
but to a lesser extent than observed with CaMKI stimulation in
most studies (Enslen et al., 1995). CaMIV activation of CREB has
been linked to synaptic plasticity (Bleier and Toliver, 2017), has
been found to be required for fear memory (Wei et al., 2002), and
has been linked to hematopoietic stem cell homeostasis (Kitsos
et al., 2005). Cell cycle control through regulation of microtubule
dynamics has also been linked to CaMKIV activity (Melander
Gradin et al., 1997). Finally, as reviewed here (Racioppi and
Means, 2008), CaMIV plays a pivotal role in immune cells and
the inflammatory response, leading to the possibility that the
status of CaMIV in the cell could modify the permissiveness of
a cell to HCMV infection and tumor formation or invasion. In
general, CaMKI, CaMKKII, and CaMKIV activities are similar,
but their distinct differences could potentially impact the state of
a cell during HCMV infection and lead to oncomodulation of
the cellular environment.

CALCIUM SIGNALING:
SUBSTRATE-SPECIFIC CAM-BINDING
KINASES

There are three characterized Ca2+-CaM binding proteins that
phosphorylate only a single known substrate and are referred
to as substrate-specific calcium signaling molecules. CaMKIII,
also known as elongation factor 2 kinase (eEF2K), solely requires
CaM-binding for its activation (Swulius and Waxham, 2008).
It inhibits protein translation by phosphorylating elongation
factor 2 (eEF2), thus dissociating it from the ribosome in
skin, lung, gastrointestinal, pancreas, reproductive, bone, and
lymphoid tissues (Nairn and Palfrey, 1987; Uhlén et al., 2015).
Another Ca2+-CaM activated kinase, MLCK, acts in muscle
contraction (Kamm and Stull, 1985; Word et al., 1994), and
intracellular transport in muscle tissue (Mochida et al., 1994),
through myosin activation. Finally, Phosphorylase kinase is the
only non-monomeric substrate-specific CaM-binding protein,
consisting of a complex tetrameric structure, that is ubiquitously
expressed across numerous tissue types, but is most commonly
found in skeletal muscle and liver tissues (Swulius and Waxham,
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2008). It acts toward glycogen metabolism via phosphorylation
of glycogen phosphorylase, thereby regulating energy needed for
muscle contractions (Kishimoto et al., 1977; Cohen et al., 1980;
Picton et al., 1981) and maintenance of blood-glucose levels
(Conaglen et al., 1985). A role for the substrate-specific CaM-
binding proteins during HCMV infection or in cancer has yet to
be elucidated.

HCMV-MEDIATED MODULATION OF
CALCIUM SIGNALING

Several HCMV genes have been linked to regulation of calcium
signaling. Many of these are associated with apoptotic functions,
including US21, UL37, and US28. US21 is a viroporin which
encodes for a Ca2+-permeable channel responsible for decreasing
intracellular calcium stores and protects against the intrinsic
apoptotic response induced by various drugs (Luganini et al.,
2018). UL37 encodes for the viral mitochondria-localized
inhibitor of apoptosis (vMIA), which is an inhibitor of the pro-
apoptotic protein, Bax, thus promoting cell survival (Goldmacher
et al., 1999; Arnoult et al., 2004; Poncet et al., 2004). Additionally,
UL37 localizes to both the mitochondrial membrane and the
endoplasmic reticulum (ER), where it causes dysregulation in the
membrane structure of the mitochondria, and leads to release of
calcium stores into the cytosol from the ER (McCormick et al.,
2003; Sharon-Friling et al., 2006).

US28, on the other hand, promotes apoptosis through caspase
activation, presumably to promote HCMV-associated disease
progression in specific cell types (Pleskoff et al., 2005). It is a
viral G protein-coupled receptor responsible for internalizing
chemokines (Gao and Murphy, 1994). This internalization of
chemokines is accompanied by a release of intracellular calcium
(Gao and Murphy, 1994; Vieira et al., 1998). Another study
examined the effects of US28 expression in a variety of cell
types permissive to HCMV infection including smooth muscle,
endothelial, and glioblastomas cells. US28 was found to drive
phospholipase C-β (PLC-β) which in turn drives intracellular
calcium release in all cell types with the exception of glioblastoma
cells, in which the authors suggest this could play a role in
latent infection. PLC-β signaling was dependent on chemokine
response in most cells but could also occur in the absence of
chemokines in smooth muscle cells (Miller et al., 2012).

Another viral protein involved in chemokine response,
UL146, encodes for a viral chemokine (vCXCL1) which acts as an
agonist for human chemokines (CXCR1 and CXCR2) responsible
for intracellular calcium release. This chemokine response also
has implications in neutrophil recruitment, which then act as
passive carriers of the virus. These data suggest that calcium
signaling plays a role in viral dissemination through the host
(Penfold et al., 1999; Wang et al., 2003). Finally, it is suggested
that HCMV binds epidermal growth factor receptor (EGFR) as
part of the internalization of the virus, which also causes the
mobilization of intracellular calcium, a response that is known
to occur with native ligand binding of EGF to EGFR (Wang
et al., 2003). Additionally, EGF-mediated calcium release has
been linked to cell migration and angiogenesis in glial cells,

which again could contribute to HCMV infection in certain
brain cancer patients (Bryant et al., 2004). Collectively, these
data suggest that multiple HCMV gene products significantly
modulate calcium signaling to impact cell growth, apoptosis, and
inflammatory responses.

CONTRIBUTIONS OF CALCIUM
SIGNALING TO INFECTION

Activated calcium signaling could contribute to infection in
a variety of ways. CaMKK activity plays a crucial role in
transcriptional regulation of the cell, largely through downstream
activation of CaMKI, CaMKII, and CaMKIV. Activation of
these kinases also impacts cellular trafficking, protein translation,
apoptosis, metabolism, ion channel regulation, intracellular
transport, cell cycle control, and immune cell function, all of
which are crucial for HCMV infection. Although this group of
proteins is generally enriched in the brain, these proteins are
found ubiquitously throughout the human body. Naturally, since
the calcium signaling proteins are found at higher levels in the
brain, they have been best characterized predominantly in this
context. Although lower in other tissues, calcium signaling can
still be very important to normal cellular function, and there
is evidence to its activity being hijacked by HCMV infection
to create a more permissive environment for viral replication.
Many proteins are known to be induced by stressful events
such as infection, including CaMKKα (McArdle et al., 2011).
Induction of CaMKK upon HCMV infection contributes to
HCMV-mediated glycolytic activation. Treatment of cells with
STO-609, a potent inhibitor of CaMKK, attenuates viral infection
and inhibits HCMV-mediated glycolytic activation (McArdle
et al., 2011).

As discussed, calcium signaling plays a critical role in
the regulation of neuronal cell growth and development.
HCMV infection can impact this system in neonates, causing
microcephaly and developmental delays at birth. A recent study
has shown that HCMV infection impacts the ability of organoid
tissues to organize, develop, and differentiate properly. In this
study, the authors show that HCMV infected neural progenitor
cells lose calcium channel signaling and lose their ability to
respond to changes in calcium levels (Sison et al., 2019).
The altered state of infected cells overall disrupted structural
development of cortical organoids (Sison et al., 2019), which
could contribute to the formation of improperly functioning
synapses and overall brain mass loss during development leading
to HCMV-associated brain impairments in infants.

HCMV INDUCTION OF CALCIUM
SIGNALING COULD BE IMPLICATED IN
TUMORIGENESIS

Many of the same calcium signaling pathways crucial to HCMV
infection could also contribute to the oncogenic potential of
the cell. Calcium signaling has been the target of many anti-
cancer studies due to its importance in cellular processes involved
in cancer cell survival and progression. These studies included

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5 July 2020 | Volume 10 | Article 384

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Dunn and Munger Calcium, AMPK, and HCMV

the use of CaMKK inhibitor STO-609, CaMKII inhibitor KN-
62/KN-93, Berbamine, a CaMKIIγ inhibitor, and peptides
designed to target CaMKII, all of which are reviewed here
(Brzozowski and Skelding, 2019). In general, use of these
calcium pathway inhibitors decreased proliferation, migration
and invasion, induced apoptosis, or slowed cell cycle progression
in multiple cancer cell and tumor types including prostate,
medulloblastoma, glioma, lung, breast, and T cell lymphoma,
as well as others (Brzozowski and Skelding, 2019). Additionally,
multiple studies have suggested that US28 can also promote
proliferation and angiogenesis by modulation of inflammatory
factors, resulting in enhanced tumorigeneses upon infection of
intestinal epithelial cells (Bongers et al., 2010), glioblastoma cells
(Slinger et al., 2010), and tumorigenic NIH3T3 cells in mouse
models (Maussang et al., 2009; Slinger et al., 2010). Primary
glioblastoma tumors from patients were also examined for the
presence of US28, which correlated with STAT3 phosphorylation,
IL-6 production, higher levels of tumor proliferation, and poorer
patient outcomes (Slinger et al., 2010). Finally, CaMKKβ has
also been implicated in promoting prostate cancer progression
through the upregulation of lipogenesis, a phenotype also
associated with HCMV infection (Penfold et al., 2018).

AMPK SIGNALING

Similar to CaMKK, AMPK activity has been linked to high
HCMV viral titers and HCMV-mediated glycolytic activation. It
is also a known tumor suppressor but exhibits some oncogenic
phenotypes under specific conditions. In this section we will
describe the AMPK structure and function in normal cells
(Figure 2), then describe the role it plays in HCMV infection, and
how this could contribute to HCMV-associated oncomodulation.

AMPK is a serine/threonine kinase that plays a central
role in metabolic stress signaling by responding to low levels
of ATP in the cell. The AMPK protein is a heterotrimeric
complex consisting of a catalytic subunit, α, and two regulatory
subunits, β and γ. There are several protein isoforms of each
subunit, α1, α2, β1, β2, γ1, γ2, and γ3, each encoded by their
own gene, PRKAA1, PRKAA2, PRKAB1, PRKAB2, PRKAG1,
PRKAG2, and PRKAG3, resulting in 12 possible AMPK complex
formations (Ross et al., 2016b). Canonical AMPK activation
relies on two signals. The first is the binding of AMP to its
regulatory γ domain, which causes a conformational change
in the protein heterotrimeric complex to expose threonine-
172, thereby promoting its phosphorylation and inhibiting its
dephosphorylation by protein phosphatases (Hardie et al., 2016).
The secondary phosphorylation step is facilitated by upstream
kinases, Liver Kinase B1 (LKB1) (Woods et al., 2003) or calcium
signaling protein, CaMKK (Woods et al., 2005), to promote
full activation of AMPK. CaMKKβ is known to stimulate
AMPK more than CaMKKα (Fujiwara et al., 2016), and can
stimulate AMPK activity independently of the cellular AMP/ATP
ratios if intracellular calcium levels are elevated in adipocytes
(Gormand et al., 2011) and other cell types. It has also been
reported that ADP binding to the γ subunit can promote
conformational changes making the protein more susceptible to

Thr-172 phosphorylation, but to a much lesser extent than AMP
binding (Gowans et al., 2013).

The AMPK subunit isoforms exhibit some tissue specificity
that can translate into functional differences. In general, the
AMPKα1 catalytic subunit is ubiquitously expressed, while the
AMPKα2 catalytic subunit is preferentially expressed at higher
levels in the liver, skeletal, and cardiac muscles. Additionally,
the α2 subunit is not expressed in hematopoietic cells (Stapleton
et al., 1996; Foretz et al., 2010a; Wang et al., 2016). This tissue
specificity plays a functional role in the skeletal system, where
α2 promotes osteogenesis at a higher level than α1 (Wang et al.,
2016). Whole mouse knockout of either AMPK catalytic subunit
is viable with minor defects at the molecular level (Viollet et al.,
2003; Fu et al., 2013a,b). Most notably, α1 knockout mice present
with severe anemia due to lack of any AMPK activity in blood
cells (Foretz et al., 2010a). Simultaneous knockout of both the
AMPKα1 and AMPKα2 subunits, results in embryonic lethality
around day 10 in mice (Viollet et al., 2009). Double knockout
of the AMPKα subunits, has been successfully preformed in
cultured mouse embryonic fibroblast (MEF) cells (Lee et al.,
2020). This is not surprising, since AMPK plays an important
role in development (Carey et al., 2014; Kaufman and Brown,
2016), but in mature cells it is possible that both catalytic
subunits play similar roles, or can at least compensate for one
another when they are both present in that cell type. The
AMPKβ regulatory subunits are ubiquitously expressed, with a
preference for β2 expression in skeletal muscle (Mobbs et al.,
2015). Differential roles for the β subunits have not been explored
in detail. Finally, it is not well-defined whether the AMPKγ

regulatory subunits exhibit tissue specificity, but γ1 is found at
higher abundances than γ2 or γ3 in skeletal and cardiac muscles
(Pinter et al., 2013). The γ subunit isoforms have also been shown
to differentially impact the rate of AMPK activity, where γ2
containing AMPK complexes activate more rapidly than γ1 or
γ3 containing AMPK complexes. Additionally, the γ subunits
exhibit differential affinities for AMP and ADP which mediate
their ability to activate the protein (Ross et al., 2016a; Willows
et al., 2017). Again, many of the studies involving AMPK subunit
tissue localization have focused on cardiac and skeletal tissues,
but this does not preclude AMPK activity from being important
for other tissue specific functions in the body, such as the brain
where calcium signaling is best characterized.

As mentioned above, AMPK is a stress regulated kinase,
which responds to low levels of ATP in the cell, with the overall
goal of producing more ATP and rebalancing cellular energy.
AMPK inhibits cell growth through inactivation of mTOR
signaling (Gwinn et al., 2008; Kalender et al., 2010), and controls
autophagy through manipulation of ULK1 (Kim et al., 2011).
Its activity is both directly associated with metabolic enzyme
modification as well as through more long-term transcriptional
regulation of metabolic processes, cell growth, differentiation,
immune response, and apoptosis (McGee et al., 2008). Direct
glycolytic substrates of AMPK include acetyl-CoA carboxylase
(ACC), whose phosphorylation by AMPK inhibits a key step
in fatty acid biosynthesis (Park et al., 2002). AMPK also
phosphorylates the high capacity glucose transporter, GLUT4,
which signals for its translocation to the plasma membrane
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FIGURE 2 | Overview of AMPK signaling. AMPK responds to low levels of ATP in the cell. First, AMP binds to the AMPKγ regulatory subunit causing a conformational

change exposing threonine-172 in the AMPKα catalytic subunit. Then, Thr-172 is phosphorylated by upstream kinases, CaMKK, or LKB1, fully activating AMPK

kinase activity toward substrates responsible for preserving cellular energy. AMPK can be activated by AICAR or metformin treatment, and inhibited by Compound C.

(Kurth-Kraczek et al., 1999) thus increasing glucose uptake
into the cell. Glycolytic flux is also regulated through AMPK
phosphorylation of 6-phosphofructo-2-kinase (PFK-2) which
controls the levels of 2,6-bisphopsphate, which in turn regulates
the activity of the key glycolytic enzyme, 6-phosphofructo-1-
kinase (PFK-1) (Marsin et al., 2000). Another role of AMPK is
its regulation of cytoskeleton dynamics. As mentioned before,
AMPK can be regulated by calcium signaling, which is also
a major contributor to microtubule and centrosome structure.
AMPK directly phosphorylates CLIP-170, causing dissociation of
the growing end of microtubules (Nakano et al., 2010). AMPK
has also been implicated in neuronal polarization (Williams et al.,
2011). Though not an exhaustive list, it is clear that many of
the verified AMPK phospho-targets are generally involved in the
preservation and production of cellular energy.

AMPK ASSOCIATIONS WITH HCMV
INFECTION

Many AMPK targets play a critical role in HCMV infection,
includingmTOR (Rodríguez-Sánchez et al., 2019), ACC (Spencer

et al., 2011), and GLUT4 (Yu et al., 2011). AMPK activity
has also been directly linked to HCMV infection. One study
preformed an siRNA screen of the cellular kinome, assessing
HCMV replication as a readout. In this study, several AMPK
subunits, the AMPK activator CaMKK, and several downstream
AMPK targets were identified as modulators of HCMV infection.
Furthermore, inhibition of AMPK by its inhibitor, Compound
C (CC), dramatically changed HCMV-mediated induction of
metabolite pools (Terry et al., 2012). Data from in vitro AMPK
activity assays revealed that HCMV infection activates AMPK.
Further, during HCMV infection, AMPKα accumulates and
its phosphorylation increases. AMPK activity is necessary for
HCMV-mediated activation of glycolysis and production of high
viral titers, a process that can be halted by the addition of CC
(McArdle et al., 2012). While these studies revealed that AMPK
activity is necessary for productive HCMV infection, excessive
AMPK activity can also have a detrimental impact on viral
production. Use of AMPK activators, AICAR or metformin, also
contributes to a loss of viral replication (Kudchodkar et al., 2007;
Terry et al., 2012; Li et al., 2017). It has been suggested that
timing of AMPK activation plays a critical role in successful
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HCMV replication. It is possible that AMPK activity is important
at a specific time during infection, and less important, or even
detrimental at alternate times post infection. It is also possible
that the studies utilizing AMPK inhibitors or activators, are
observing off-target effects of the drugs themselves. Initially CC
was reported as a specific ATP competitive inhibitor through an
in vitro assay (Hsich et al., 2001). Since then it has been reported
that CC can target many more kinases including CaMKK (Bain
et al., 2007; Jester et al., 2010). Although metformin is associated
with AMPK activation, it does not directly interact with the
AMPK protein. Instead it inhibits mitochondrial respiratory
chain complex 1, which in turn increases the ratio of AMP
to ATP, thus indirectly activating AMPK (Owen et al., 2000).
Work has also shown that AMPK does not always play a role
in metformin associated phenotypes, as metformin-associated
genes remain unchanged between normal, AMPKα knockout,
and LKB1 knockout hepatocytes (Foretz et al., 2010b). This
suggests a role for metformin that is independent of AMPK
activity, which could potentially affect HCMV infection by an
unknown mechanism. Excessive AMPK activation could also
have a negative impact on its inhibition of certain AMPK
targets, such as ACC. AMPK activity toward ACC results in
the inhibition of fatty acid biosynthesis, which is detrimental to
HCMV infection (Spencer et al., 2011). A similar phenomenon
could be occurring when AMPK phosphorylates 3-hydroxy-3-
methylglutaryl CoA reductase (HMGCR), which is responsible
for cholesterol synthesis, another important cellular process that
is key to HCMV growth (Potena et al., 2004; Shenk and Alwine,
2014). It is possible that the virus is able to manipulate ACC and
HMGCR activity irrespective of its phosphorylation by AMPK
during normal infection but cannot compensate for activated
AMPK during AICAR or metformin treatment. Finally, specific
combinations of AMPK subunit isoforms may also play a role
in AMPK’s substrate specificity and ultimately impact HCMV
infection but have yet to be fully interrogated.

AMPK IMPLICATIONS IN CANCER

There are reports indicating mutational changes of the AMPK
subunits in cancer. First, some evidence suggests that AMPKα1
acts as an oncogene, while α2 may act as a tumor suppressor.
The AMPK activator, LKB1, is encoded by the gene STK11,
which is mutated or deleted in many cancers. Most commonly,
in lung carcinomas carrying STK11 alterations, the AMPKα1
gene (PRKAA1) is often amplified, while mutations in the
PRKAA2 gene occur less frequently (Monteverde et al., 2015).
In support of this, double knockout of AMPKα1 and α2 in
MEF cells transformed with H-RasV12 fail to grow tumors in
immunodeficient mice (Laderoute et al., 2006) while transformed
MEFS with α2 knockout exhibit a growth advantage in tumors.
In contrast, α1 knockouts do not develop tumors and even
exhibit compensation with total levels of α2 (Phoenix et al.,
2012). These data suggest distinct and separate roles for the
AMPK catalytic subunits in cancer, which cannot be rescued with
compensation of the alternate isoform. The AMPKβ1 subunit
is mutated in <4% of cancers, in contrast to the β2 subunit,

which is aberrantly expressed in upwards of 10% of cancers, with
its expression commonly amplified (Monteverde et al., 2015).
It has also been reported that the α1 subunit requires β2 for
its stability during overexpression, which could implicate the
correlation between the amplification of these two subunits in
cancer (Ross et al., 2016b). There are few reported mutations
of the AMPKγ subunit isoforms in cancer. It is possible that
their roles change upon mutation or amplification of the α and
β subunits.

Many canonical AMPK activities lend themselves to AMPK
acting as a tumor suppressor, and therefore loss of expression
would promote tumorigenesis (Shackelford and Shaw, 2009).
Recent work has shown that treatment of colorectal cancer cells
and breast cancer cells and tissues with a novel AMPK activator
(FNDs) induces apoptosis and cancer cell death (Kenlan et al.,
2017; Johnson et al., 2019). But there is also evidence that
AMPK is critical for the maintenance of established tumors and
could therefore be targeted for anti-cancer therapies in certain
contexts. As mentioned, reports suggest that the AMPKα1 gene
acts as an oncogene and the α2 gene acts as a tumor suppressor.
AMPKα1 activation via CaMKKβ is reported to promote cancer
cell survival and protection against genotoxic stress induced
by etoposide treatment, while AMPKα2 did not exhibit this
protective effect (Vara-Ciruelos et al., 2018). These data suggest
that inhibition of AMPK in AMPKα1 rich tumors may be a
more effective treatment. Additionally, tumors requiring a higher
metabolic rate may also be disadvantaged by AMPK inhibition
and supported by AMPK activation. Studies have shown that
tumors require AMPK’s metabolic functions to maintain tumor
cell viability in the face of energetic stressors (Jeon and Hay,
2012). The same oncogenically-associated characteristics of
AMPK activity may also apply to cells infected by HCMV. These
data also highlight a prominent role for the AMPK subunits
during stressful cellular events requiring functional cell survival
and metabolic processes (Jeon and Hay, 2015).

INTERSECTION OF CALCIUM AND AMPK
SIGNALING DURING HCMV INFECTION

As evidenced above, both calcium and AMPK play central roles
in the cellular stress response and intersect with each other in the
cytosol (Figure 3). Calcium signaling is heavily regulated by viral
genes involved in apoptosis and the chemokine response. Upon
calcium mobilization from the extracellular space or from within
organelles such as the mitochondria or endoplasmic reticulum,
CaMKK starts the calcium signaling cascade. This is when AMPK
can be activated, in addition to other cellular signals coming
from LKB1. Together, CaMKK and AMPK are responsible for
immediate phosphorylation signals of target proteins and long-
term activation of transcription factors involved in countless
cellular processes involved in the promotion of viral replication.
Inhibition of either CaMKK by STO-609 or AMPK by CC, as
well as activation of AMPK by metformin or AICAR, results
in diminished viral replication. These processes are delicately
balanced by HCMV infection in order to promote successful
release of viral progeny.
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FIGURE 3 | Calcium and AMPK signaling during HCMV infection. Calcium signaling contributes to increased intracellular calcium release through HCMV encoded

genes, UL146, US28, UL37, and US21, and through viral entry via epidermal growth factor receptor (EGFR). HCMV infection also induces the expression of CaMKK

and AMPK, both of which are crucial for viral replication through multiple cellular signals. HCMV infection also impacts neural cell development which is associated

with loss of proper calcium response. Inhibition of CaMKK by STO-609 inhibits HMCV viral replication. AMPK inhibition by Compound C, or activation by metformin or

AICAR, also results in a decrease in HCMV viral replication.

CONCLUSIONS AND PERSPECTIVES

Cellular stress often affects cell proliferation, apoptosis, cell cycle,
and the immune response, so it is not unreasonable to think
that, in some way, each pathway contributes to modulating host
cell homeostasis and HCMV infection. HCMV has adapted to
carefully control calcium signaling through many of its gene
products, US28, US21, UL37, and UL146, as well as through the
manipulation of calcium signaling protein, CaMKK. HCMV also
acts downstream of CaMKK, on AMPK, to further manipulate
host cell transcription andmore specifically, host cell metabolism
for the benefit of the virus. There is significant overlap in the
downstream consequences of calcium and AMPK signaling,
yet the downstream functional targets of these pathways that
control HCMV infection are largely unknown. Identifying
them and elucidating their contributions to infection will
greatly increase our understanding of how these host pathways
contribute to infection and could potentially identify targets for
therapeutic intervention.

Studies focusing strictly on calcium signaling in the
brain and AMPK activity in cardiac or skeletal tissues
have opened the door to many unanswered questions

about how these signaling pathways contribute to cellular
function and various pathologies in other tissues. Many of
the proteins discussed above are ubiquitously expressed in
all cell types and perform basal functions in normal cells.
HCMV infection occurs in a broad range of host cells, and
both calcium and AMPK signaling play a significant role
during infection. One major question that remains largely
unanswered, is how do these signaling pathways contribute
to latent HCMV infection? It has been suggested that a
lack of calcium signaling, for instance, in the brain may
contribute to low lytic infection and inadvertently promote
latency in these cells (Miller et al., 2012). Calcium signaling
has also been implicated in neutrophil recruitment (Penfold
et al., 1999; Wang et al., 2003), which could play a role
in the lytic to latent transition. Additionally, AMPKα1 is
expressed in hematopoietic cells while AMPKα2 is not
(Stapleton et al., 1996; Foretz et al., 2010a; Wang et al.,
2016). As major reservoirs for latent virus, studies with
hematopoietic and myeloid progenitor cells (Schottstedt et al.,
2010; Murray et al., 2018), may highlight an isoform specific
role of the AMPK catalytic subunits in HCMV infection
or latency.
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Lastly, HCMV infection has been associated with numerous
types of cancers as discussed above. Many cancers rely on
AMPK and calcium signals to promote tumor formation and
survival. Although many of these associations are not fully
understood, there is evidence that HCMV infection promotes
oncomodulation, and this could be mediated by viral modulation
of calcium and AMPK signaling. For example, the prevalence
of the HCMV gene US28, which is responsible for intracellular
calcium mobility (Gao and Murphy, 1994; Vieira et al., 1998), is
associated with patient glioblastomas and poor cancer prognosis
(Slinger et al., 2010). It remains unknown whether calcium
or AMPK signaling are viable targets for anti-HCMV or anti-
cancer therapeutics. Based on our current knowledge, and the
known overlap between the pathway signaling molecules, there
is a possibility that specific CaM-binding proteins, or specific
AMPK subunits could be successfully targeted. Future research
will further our understanding of the functional interactions
between HCMV and these important cellular pathways and will
shed light on the potential for targeting these pathways to limit
HCMV-associated pathogenesis.
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