
REVIEW
published: 11 September 2018

doi: 10.3389/fimmu.2018.02063

Frontiers in Immunology | www.frontiersin.org 1 September 2018 | Volume 9 | Article 2063

Edited by:

Herman Waldmann,

University of Oxford, United Kingdom

Reviewed by:

Susan Mariola Schlenner,

KU Leuven, Belgium

Graham Anderson,

University of Birmingham,

United Kingdom

Xiaobin Liu,

University of North Texas Health

Science Center, United States

*Correspondence:

Liefeng Wang

469730795@qq.com

Specialty section:

This article was submitted to

Immunological Tolerance and

Regulation,

a section of the journal

Frontiers in Immunology

Received: 08 August 2017

Accepted: 21 August 2018

Published: 11 September 2018

Citation:

Xu M, Gan T, Ning H and Wang L

(2018) MicroRNA Functions in Thymic

Biology: Thymic Development and

Involution. Front. Immunol. 9:2063.

doi: 10.3389/fimmu.2018.02063

MicroRNA Functions in Thymic
Biology: Thymic Development and
Involution
Minwen Xu 1, Tao Gan 2, Huiting Ning 2 and Liefeng Wang 2*

1 First Affiliated Hospital of Gannan Medical University, Ganzhou, China, 2Department of Biotechnology, Gannan Medical

University, Ganzhou, China

During the entire processes of thymus organogenesis, maturation, and involution,

gene regulation occurs post-transcriptionally via recently discovered microRNA (miRNA)

transcripts. Numerous reports indicate that miRNAs may be involved in the construction

of a normal thymic microenvironment, which constitutes a critical component to support

T lymphocyte development. MiRNAs are also expressed in thymic stromal cells including

thymic epithelial cells (TECs) during maturation and senescence. This review focuses on

the function of miRNAs in thymic development and involution. A better understanding of

these processes will provide new insights into the regulatory network of TECs and further

comprehension of how genes control TECs to maintain the thymic microenvironment

during thymus development and aging, thus supporting a normal cellular immune

system.

Keywords: microRNA, thymic epithelial cells, thymic development, thymic involution, thymic microenvironment,

thymus aging, regulatory network

INTRODUCTION

The thymus plays a critical role in the cellular immune system by generating T lymphocytes, which
are involved in anti-tumor immunity, anti-viral, and anti-intracellular infections, as well as the
establishment of self-tolerance to avoid autoimmune disorders. During the entire process of thymus
organogenesis, maturation, and involution, gene regulation not only occurs at the transcriptional
level via transcription factors, but is also effected at the post-transcriptional level by microRNA
(miRNA) transcripts. The ubiquitous and abundant existence of such small, non-protein-coding
miRNAs in worms, plants, and animals plays an important role in the regulation of gene
expression primarily at the post-transcriptional level by cleavage and/or translational repression of
messenger RNAs. It has become evident that miRNAs control a wide range of developmental and
physiological pathways including cell proliferation, differentiation, and apoptosis. Additionally, the
deregulation of miRNAs can cause developmental blockage, dysregulation, or disease. Although
many phenomena during thymic development and aging are unable to be simply explained by
known protein-coding genes, many novel miRNAs have been identified within recent years that are
expressed in the thymus. As the systemic miRNA gene profile and their functional characterization
during thymic development and aging are gradually elucidated, we have adequate reason to
infer that miRNAs may be involved in the construction of the normal thymic microenvironment
that supports T lymphocyte development. In this review, we focus on the specific miRNAs that
are involved in the thymic stroma, and how these play a role in thymic epithelial cell (TEC)
development. Through understanding these roles, we can obtain new insights regarding the
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regulatory network in TEC maturation and senescence, and
further understand how genes control TECs to maintain the
thymic microenvironment during thymus development and
aging. Our review aims to reveal potential genetic targets and
identify possible therapeutic tools for patients with thymic
developmental diseases, which may lead to novel strategies to
rejuvenate the functions of an aged thymus or delay thymic aging.

MIRNA IDENTIFICATION AND
CHARACTERIZATION

MiRNAs comprise a large group of conserved, single-stranded,
non-coding, abundant, short (∼21–25 nucleotide) RNAs (1, 2).
They differ from small interfering RNAs (siRNAs) as they have
molecular origins that derive from genomic loci whereas siRNAs
are generated from exogenous RNA, such as viral infection,
artificial RNA interference (RNAi), and endogenous transposon
activity. A miRNA binds to a target mRNA through imperfect
complementarity, generally at multiple sites, whereas a siRNA
binds to a target mRNA to form an almost perfect duplex at only
one site. However, the maturation of both miRNAs and siRNAs
utilizes the common RNase-III processing enzyme, Dicer (3),
prior to becoming single-stranded anti-sense RNA.

The first microRNA, lin-4 RNA, was identified in 1993 (4).
It encodes a 22-nucleotide non-coding RNA that is imperfectly
or partially complementary to seven conserved sites located in
the 3′-untranslated regions of lin-14, a nuclear protein gene in
Caenorhabditis elegans. Although this small RNA was overlooked
for seven years as these short non-coding RNAs were considered
to be non-existent beyond nematodes, this was completely
changed by the discovery of the let-7 gene in 2000. Notably,let-7
was present not only in C. elegans but also in human and fly
genomes. Currently, miRNAs are accepted as phylogenetically
conserved genes and have been found in all metazoan genomes,
with close to 1,000 miRNAs having been identified in C. elegans,
C. briggsae, Drosophila melanogaster, Arabidopsis thaliana, rice,
mouse, rat, and human to date (5–7).

MiRNAs are considered to represent novel biological
regulators, as they regulate gene expression in a sequence-specific
manner. Their primary role is to function as a negative genetic
switch, which is involved in post-transcriptional regulation
by targeting mRNAs for cleavage, translational repression,
or chromatin modification (1, 8, 9). Recently, additional
miRNA functions have been discovered including the control
of developmental stages (10–12), hematopoietic cell lineage
decisions (13–15), cellular proliferation, cell death/apoptosis
(16–19), fat metabolism (20–22), neuronal patterning in
nematodes (23–25), asymmetric expression in chemosensory
neurons, and involvement in oncogenesis (26–29).

To effect such functions, the expression of miRNA is temporal
and spatial in specific tissues. This implies the existence of
different miRNAs that are expressed in the various thymus

Abbreviations: Aire, autoimmune regulator; cTEC, cortical thymic epithelial

cell; DP, double positive; iNKT, invariant natural killer T cell; IR, ionizing

radiation; miRNA, microRNA; mTEC, medullary thymic epithelial cell; TEC,

thymic epithelial cell.

compartments, cell types, and developmental stages, and that
expression patterns may differ between fetal and adult thymi.

MIRNAS IN THYMOCYTE DEVELOPMENT

The thymus constitutes one of the most active organs in animal
life. It undergoes organogenesis (cell migration, proliferation,
and differentiation), development (proliferation, differentiation,
and cell apoptosis), and involution (cell senescence and
apoptosis). The thymus also generates T lymphocytes to support
the cellular immune system. Generally, there are two main
processes that interact and regulate each other during thymus
development: T lymphocyte development to generate functional
T cells, and stromal cell development to build up and maintain
the thymic microenvironment for supporting T cell maturation,
largely through TECs. Both of these processes represent stepwise
or sequential pathways in development (30, 31).

Thymic involution results in marked morphological and
functional changes; these mechanisms include TEC-driven
programmed thymic involution and thymocyte apoptosis.
Thymic involution results from multiple causes, which can easily
be grouped into those arising from normal physiology including
pregnancy and aging, and those from various pathophysiological
mechanisms, such as infection, malnutrition, disease, and
surgery. In particular, thymic aging involution comprises a
physically progressive process that can be sped up by infections,
autoimmune diseases, or cancer. In addition, a large category of
pathophysiological changes can also lead to thymic involution,
with infection representing a notable example (32–35).

Because miRNAs are involved in many important
development events, it is not difficult to infer that numerous
miRNAs are likely involved in regulating the many activities of
TECs and thymocytes. Moreover, recent studies have shown that
some miRNAs are present in the total thymus and are involved
in T or B lymphocyte lineage determination (36–38), as well
thymocyte survival. Moreover, deletion of the Dicer processing
enzyme has an effect on thymocyte survival (39). Dicer promotes
the development of regulatory CD4+ T (T reg) cells in the
thymus and the efficient induction of Foxp3 by TGF-β, whereas
deletion of Dicer decreases T reg cell numbers and results in
immune pathology (40). Natural T reg cells share partial overlap
of miRNA expression with conventional CD4+ T cells. In turn,
conventional CD4+ T cells can express CD25, CTLA4, and
GITR, markers, which are also constitutively expressed by T
reg cells during activation (41). Dicer deletion can also result
in a distinct reduction of invariant natural killer T (iNKT)
cells in the thymus and other organs with immune functions,
which indicates that the Dicer-dependent miRNA pathway
plays a critical role in iNKT cell development, function, and
homeostasis (42–44).

Two prominent examples of miRNAs expressed in the thymus
are miR-181 and miR-150. MiR-181 is highly expressed in double
positive (DP) thymocytes and controls the development of early
thymocyte cells by targeting CD69 and TCR (45, 46). MiR-181a,
a member of the miR-181 family, controls the development of
early thymocyte cells by regulating and controlling the negative
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feedback loops that establish the NOTCH1 and TCR signaling
pathway thresholds (47, 48). In particular, these thresholds play
important roles in thymic T-cell positive and negative selection,
with deletion of miR-181a leading to a decrease of the early
thymic progenitor cells, DN3, DP, and single positive (SP) (47).
MiR-181a deletion also impairs the development of invariant αβ

NK-T cells, which are agonist-selected at the DP stage (49, 50);
however, miR-181a-1/b-1 is not critically required for the innate
development of γδ NKT cells or any other γδ T cell subtypes
(51, 52).

In comparison, miR-150 can target c-Myb and plays an
important role in lymphocyte development and physiology (53).
In human T lymphocytes, miR-150 is obviously up-regulated
during T cell maturation after the DP stage and targets Notch3,
which plays an important role in T cell development (54). Over-
expression of miR-150 can reduce the number of T cell lines
in vitro by impacting their proliferation and survival. MiR-150
is also expressed in iNKT cells and targets c-Myb (55). MiR-
150 over-expression increases iNKTmaturation whereas deletion
of the miRNA results in an interruption of iNKT cell final
maturation in both the thymus and the peripheral space (56).

In addition, some other miRNAs, such as miR-155 (57–59),
miR-19b (60), let-7 (61), and miR-17 (62), have been reported to
play important roles in lymphocyte maturation, differentiation,
development, and survival. The roles of certain miRNA
candidates in thymocyte biology are listed in Table 1.

MIRNAS IN TEC BIOLOGY

As described above, TECs have three maturation stages, which
can be segregated according to cell surface molecules (63).
In wild type thymus, TECs completely differentiate into the
three-dimensional cortical and medullar network TEC system.

TABLE 1 | The role of candidate miRNAs in thymocyte biology.

miRNAs Cell type Biologic role Targets References

miR-150 T cell Maturation of T cells NOTCH3 (54)

NKT/iNKT Development of NKT ↑

iNKT ↓

C-Myc (55, 56)

miR-155 iNKT Maturation and

differentiation of iNKT ↓

Ets1, ITK (57)

Treg Development of Tregs ↑ Foxp3 (58, 59)

miR-181a-

1/b-1

T cell

Leukemia

cell

Development NOTCH1 (47)

iNKT Development of iNKT ↑ Ptpn22,

Shp-2, Dusp6

(49)

miR-181 NKT Maturation of NKT PTEN

miR-181a T cell T cell sensitivity and

selection

(48)

miR-181d CD4+CD8+ Immature CD4+CD8+ ↓ Foxo4, Myc (52)

miR-19b Th17 Development of Th17 Tslp (60)

let-7 NKT Zbtb16 (61)

miR-17 T cell Survival Jak1 (62)

However, in the various stages of lymphocyte development
identified by mutating the thymus, TECs themselves are arrested
at different stages, indicating that TEC differentiation is tightly
dependent on T-cell development. For example, in the thymus
of mice with an Ikaros-null mutation (64) or the RAG2/common
chain compound gene knock-out mutant thymus (64–66), which
display distinct defects in the development of fetal and adult
lymphocytes, the TECs are arrested during the early two-
dimensional cortical TEC stage (67), whereas in the RAG null
thymus, TECs are arrested in themiddle three-dimensional stage.

As the expression of miRNAs is tightly regulated during
tissue differentiation (68) and miRNAs can function to prevent
cell division and drive terminal differentiation (69), miRNAs
are therefore likely to be involved in thymic differentiation.
Consistent with this supposition, a role of miRNAs in TEC
biology has been demonstrated. In particular, miRNAmicroarray
analysis of cortical thymic epithelial cells (cTECs) along with
immature medullary thymic epithelial cell (mTEC)low and
mature mTEChigh cells indicated that miRNA expression differs
among thymic cell subsets and fluctuates during TECmaturation
(70). When Dicer was conditionally deleted in all TECs, thymus
cellularity was decreased and the thymus failed to maintain
a regular microenvironment (71). Moreover, mTEC apoptosis
was enhanced in these mice, in which cTEC failed to impose
efficient positive selection, T cell phenotypes were changed, and T
lymphopoietic activity was decreased (71, 72). To further clarify
the function of canonical miRNAs in TECs, DGCR8, encoding
a component of the miRNA-specific microprocessor complex,
was deleted (73). DGCR8 is critical for maintaining the proper
expression of Aire, the gene for which is specifically expressed in
the TEC compartment and affects TEC function, along with the
overall architecture of the thymic medulla. Furthermore, miRNA
deficiency in TECs causes a breakdown in central tolerance
(73).

MIRNAS IN THYMIC INVOLUTION

Although the mechanism of thymic involution remains unclear,
certain miRNAs have been reported to be involved in thymic
aging involution. Microarray data analysis shows that some
microRNAs are significantly changed in aged thymuses, with
quantitative polymerase chain reaction (qPCR) data confirming
these changes (74). In particular, miR-181a-5p has been
hypothesized to be associated with thymic aging involution as its
expression is obviously decreased in TECs from aged mice. To
test this hypothesis, a miR-181a-5p mimic was used in a mouse
mTEC cell line (MTEC1). The miR-181a-5p mimic could induce
cell proliferation of MTEC1 whereas its inhibitor reversed this
effect. MiR-181a-5p was shown to target transforming growth
factor beta receptor (Tgfbr1) gene using a luciferase reporter
assay (75). Furthermore, the miR-181a-5p mimic could decrease
Tgfbr1 protein expression as well as that of p-Smad3, is a key
node of the TGF-β signaling pathway, in vitro. Tgfbr1 expression
increases with age in mice, which is consistent with the decreased
level of miR-181a-5p in addition to the ability of TGF-β to
decrease the proliferation of mTECs.
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In comparison, FoxN1 constitutes a pivotal transcription
factor for TEC survival and differentiation, which decreases with
age. WNT signaling in thymic epithelia is essential for normal
thymus development and function (76) but is suppressed in the
senescent human thymus (77). WNT4 can directly up-regulate
FoxN1, indicating that miRNAs that target FoxN1 or the WNT
signaling pathway may be involved in thymic aging involution
(78). Consistent with this, a study comparing the difference in
miRNA expression between old and young thymi (from 70-year-
old men vs. <10-month-old newborns, respectively) found that
some miRNAs that act as modulators of the WNT pathway, such
as miR-25, miR-7f, and miR-134, were among those altered (79).

Moreover, in a previous study from our laboratory, we
compared changes in miRNA expression profiles between young
and aged TECs using miRBase-V20 arrays (containing 1,892
unique probes), which clearly identified and validated that at least
one miRNA, miR-125a-5p, was increased in aged thymi (80). In
addition, the application of a miR-125a-5p mimic was able to
inhibit FoxN1 expression (as indicated using 3′UTR luciferase
activity) in a 293T cell line and suppress FoxN1 expression in TEC
Z210 cells (80).

The thymus represents an organ that is hyper-responsive to
stress in the form of infections, radiation exposure, trauma,
and drugs. Infection can induce a rapid yet transient atrophy,
which is distinct from thymic aging involution. Such atrophy can
recur after exposure to pathogen-associated molecular patterns
(PAMPs) (81).

There is mounting evidence that miRNA expression is
associated with stress. Some miRNAs might serve as potential
biomarkers of stress specifically in the thymus: for example,
the expression of miR-21 is increased during radiation-induced
thymic lymphoma and its expression could be induced by
the TGF-β (82) and by the TLR4 pathway (83). MiR-23a/b is
also up-regulated in radiation-induced thymic lymphoma (84).
MiRNAsmay also play significant roles in protective mechanisms
for counteracting stress. In particular, miR-34a and miR-7
may counteract radiation cytotoxicity by respectively targeting
NOTCH1,MYC, E2F3, cyclin D1, and lymphoid-specific helicase
(LSH) (85).

Alternatively, some miRNAs may play a reverse role. For
example, miR-467a directly targets Fas and/or Bax and may have
oncogenic functions in radiation-induced thymic lymphoma
(86). Together, the evidence suggests that some miRNAs might
serve as new biomarkers of stress-induced thymic injury or
as novel therapeutic targets of stress-induced thymic injury.
Moreover, some miRNAs might be suitable for use as drugs
to treat stress-induced thymic injury. The potential roles of
candidate miRNAs in thymic biology are listed in Table 2.

MIRNAS DIRECTLY TARGET SIGNAL
PATHWAY GENES OR VICE VERSA

The adult thymic microenvironment consists of epithelial
cells, fibroblastoid cells, dendritic cells, and macrophages.
Epithelial cells represent the resident cell type of the thymic
microenvironment. Their development and differentiation

TABLE 2 | The role of candidate miRNAs in thymic biology.

miRNAs Organism

status/biologic role

Targets References

miR-181a-5p Aging involution smad3 (75)

miR-125a-5p Aging involution FoxN1 (80)

miR-25 Aging involution WNT (79)

miR-7f

miR-134

miR-29a Infection Ifnar1 (73)

miR-205 Inflammatory FoxN1

miR-182 Toxicity AhR, CYP1A1,

Fas, FasL

miR-31

miR-23a

miR-18b

mmu-let-7e

miR-34a IR-inducible involution NOTCH1, MYC,

E2F3, Cyclin D1

(85)

miR-7 LSH

miR-21 IR-inducible involution Big-h3 (82, 83)

miR-27b IR-inducible involution Cyclin A2

miR-23a/b IR-inducible thymic lymphoma Fas (84)

miR-23a/b IR-inducible thymic lymphoma Fas/Bax (86)

depend on a variety of signaling pathways, such as WNT (87),
tumor necrosis factor receptor (TNFR) and the downstream
NF-κB (88), BMP (89), IFNAR1 pathway (72), and TGF-beta
(90) signaling. Interferon (IFN)-α, a critical molecular mediator
of pathogen-induced thymic involution, mediates rapid and
transient involution by binding IFNAR1, which is expressed on
the thymic stroma (81). The Dicer-dependent miRNA network,
and specifically miR-29a, is critical for reducing the sensitivity of
the thymic epithelium to simulated infection signals, protecting
the thymus against infection-associated thymic involution. Loss
of Dicer or the miR-29a cluster in the thymic epithelium results
in IFNAR1-dependent hypersensitivity to pathogen-related
signals, thereby allowing suboptimal signals to trigger the rapid
loss of thymic cellularity (91).

TGF-β signaling might also play an important role in
controlling thymus development and maintenance (92),
especially by increasing the size of the mTEC compartment
and enhancing negative selection and functional maturation of
medullary thymocytes (93). The TGF-β pathway components,
such as receptors or transcription factors, might thus serve
as targets of miRNAs. Consistent with this, TGF-β receptor 1
was confirmed as a direct target of miR-181a-5p by luciferase
assay (75). Over expression of miR-181a-5p down-regulated the
phosphorylation of Smad3 and blocked the activation of TGF-β
signaling. In turn, Smad7, which functions as a regulator of the
TGF-β signaling pathway by preventing the phosphorylation
of Smad2/3, was confirmed as a direct target of miR-195a-5p.
Notably, miR-195a-5p is up-regulated in mouse TECs and
over-expression of miR-195a-5p inhibits the expression of TEC
cell cycle-related genes including those encoding cyclin D1,
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cyclin E1, Cdk4, and C-myc by down-regulating the expression
of Smad7 (94).

The TNFR and NF-κB pathway constitutes another
important pathway for mTEC development, which is required
to successfully establish the medullary microenvironment (88).
Specifically, mice deficient for receptor activator of NF-κB
(RANK) exhibit variable defects in mTECs (95). MiRNAs
also participate in this signaling pathway and regulate mTEC
differentiation. For example, RANK ligand and downstream
canonical or non-canonical NF-κB can induce the expression
of miR-449a. In turn, overexpression of miR-449a as well as
miR-34a, which shares similar seed sequence with miR-449a,
may induce TEC differentiation in vitro by targeting SATB2
(an epigenetic regulator identified as an miRN-449a target in
colorectal tumor cells (96), as SATB2 was significantly decreased
in a thymic epithelial progenitor cell line following miR-449a
overexpression (91).

MIRNAS DIRECTLY TARGET
TRANSCRIPTION FACTOR GENES OF
THYMIC STROMAL CELL HOMEOSTASIS

Transcription factors Foxn1 and p63 also play crucial roles in
thymic biology. Foxn1 has an important function in TEC survival
and differentiation by promoting thymic epithelial progenitor
cells to differentiate into functional mTECs and cTECs during
organogenesis (97, 98) and for postnatal TEC homeostasis (99,
100). p63 is important for the development of the thymus (101)
and is essential for the proliferative potential of thymic epithelial
progenitor cells (101, 102). Several reports have shown that
miRNAs participate in TEC development and differentiation
by directly targeting the Foxn1 gene. For example, Kushwaha
et al., screened out two miRNAs, miR-18b and miR-518b, that
directly targeted Foxn1 (103). Their results demonstrate that
miR-18b and miR-518b act as upstream controllers of Foxn1
in epithelial cell development. Moreover, interfering with these
miRNAs individually or together can up-regulate Foxn1 gene
expression whereas their individual or combined over-expression
can decrease Foxn1 protein levels. In turn, miR-22 also regulates
epithelial cell development via direct inhibition of Foxn1 (104).

p63 also serves as a target of numerous miRNAs. 29MiR-
203 has immediate and long-term impact on epidermal cell
proliferation by directly regulating p63 (105–107). The regulation
of p63 by IASPP, an inhibitory member of the apoptosis
stimulating protein of p53 (ASPP) family, via miR-574-3p and
miR-720 is required for epithelial homeostasis (108). Notably,
p63-mediated cell cycle progression in epidermal cells occurs
through the direct repression of miR-34a and miR-34c (109).

Furthermore, several miRNAs, such as miR-192/215, miR-107,
miR-96,132, and miR-145, are known transcriptional targets of
p63. In particular, the role of the p63-FoxN1 regulatory axis in
the regulation of postnatal TEC homeostasis has been revealed by
Burnley et al. (110), Overall, miRNA function can be defined as
having a fine-tuning effect by targeting the p63-FoxN1 regulatory
axis.

Aire constitutes another transcription factor that controls
peripheral tissue-restricted antigens in mTECs. miR-29a deletion
resulted in a progressive decrease in expression of Aire and Aire-
dependent genes in miR-29a null mutant mice (70). In addition,
miR-220b may act as a possible regulatory factor for Aire gene
translation as it could significantly reduce the expression of Aire
protein (111).

PERSPECTIVES

MiRNAs play important roles in the processes of thymus
organogenesis, maturation, and involution at a post-
transcriptional level by targeting relevant mRNAs. Herein,
we reviewed some of the miRNAs involved in thymocyte
development, thymic architecture, thymic aging involution,
and thymic involution during stress. We hope this review will
help to deepen the appreciation of miRNA impact on thymic
biology and facilitate the identification of potential candidates
for therapeutic targeting. In addition, we checked miRNA
profiles of serum-derived exosomes from young and aged
mice with microarray of Mus musculus miRBase version-21
array chips and we found that young and old showed different
miRNA expression profiles (112). These different spectrums of
microRNAs in the young and old exosomes may generate a base
for a potential epigenetic regulation and may play important
roles in the processes of thymus organogenesis, maturation, and
involution.
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