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Abstract
Previously, transplantation of ovaries from young, cycling mice into old, postreproductive-

age mice increased life span and decreased cardiomyopathy at death. We anticipated that

the same factors that increased life span and decreased cardiomyopathy could also influ-

ence the progression of orthopedic disease. At 11 months of age, prepubertally ovariecto-

mized and ovary-intact mice (including reproductively cycling and acyclic mice) received

new 60-day-old ovaries. At death, epiphyseal bone in the proximal tibia and the distal femur

and mid-shaft tibial and femoral diaphyseal bone was analyzed with micro-computed

tomography. For qualitative analysis of osteophytosis, we also included mineralized con-

nective tissue within the stifle joint. Prepubertal ovariectomy had the greatest influence on

bone volume, ovarian transplantation had the greatest influence on bone architecture and

both treatments influenced bone density. Ovarian transplantation increased cortical, but not

trabecular bone density and tended to increase osteophytosis and heterotopic mineraliza-

tion, except in acyclic recipients. These effects may have been dictated by the timing of the

treatments, with ovariectomy appearing to influence early development and ovarian trans-

plantation limited to influencing only the postreproductive period. However, major differ-

ences observed between cycling, acyclic and ovariectomized recipients of new ovaries may

have been, in part due to differences in the levels of hormone receptors present and the

responsiveness of specific bone processes to hormone signaling. Changes that resulted

from these treatments may represent a compensatory response to normal age-associated,

negative, orthopedic changes. Alternatively, differences between treatments may simply be

the 'preservation' of unblemished orthopedic conditions, prior to the influence of negative,

age-associated effects. These findings may suggest that in women, tailoring hormone

replacement therapy to the patient's current reproductive status may improve therapy effec-

tiveness and that beginning therapy earlier may help preserve trabecular bone mineral den-

sity that would otherwise be lost during perimenopause.
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Introduction
Osteoarthritis is often considered a compensatory response to joint instability and is influenced
by the mechanisms controlling bone remodeling [1]. In the female, these remodeling mecha-
nisms are strongly influenced by ovarian function and are significantly altered by ovarian aging
and reproductive senescence [2]. Although rare in young women, orthopedic disease becomes
increasingly prevalent during and after the menopausal transition. Menopausal arthritis is
often considered a distinct form of arthritis, where the instigating cause is hormonal, not
genetic or mechanically related [3]. It is characterized by an early, perimenopausal loss of tra-
becular bone mineral density (BMD). Postmenopausally, loss of trabecular BMD subsides and
trabecular volume is maintained (albeit, at a lower level) in the absence of ovarian estrogen
(E2) and progesterone (P4) [4,5]. However, bone quality is not determined solely by BMD. The
microarchitecture of bone contributes significantly to bone strength and durability [6,7]. Bone
architecture and bone densitometry are both subject to the effects of ovarian senescence.

A common, but consistently controversial course of action at the menopausal transition is
to remedy disrupted ovarian signaling with exogenous hormones through hormone replace-
ment therapy (HRT). The 'critical period' hypothesis suggests that there is a 'critical window'
early, during perimenopause where HRT is effective, but that HRT loses its general effective-
ness and may be detrimental if initiated later in the postmenopausal years [8,9]. The existence
of the 'critical period' is hypothesized to result from long-term hormone deprivation, which
leads to a decreased capability for E2 signaling. In rats, long-term ovarian hormone deprivation
attenuated the ability of HRT to regulate levels of E2 receptors (ER), [10]. Both young and old
mice with senescent ovaries are less responsive to exogenous E2 treatment [11].

The destruction of periarticular soft tissue in diarthrodial joints over the course of a life time
is often so great that the condition of the joint cannot be assessed solely from the remaining
soft tissue. However, bone persists and leaves a valuable measure of joint history at the time of
death. In humans, collection of bone tissues for ex vivo analysis is often limited to samples
taken during joint replacement or those collected at death (analysis often involves levels of
radiation exposure incompatible with in vivo analysis). Additionally, there are few reports
describing the skeletal changes that occur in the latter half of the mouse lifespan, which in the
female would reflect age-associated changes in ovarian function.

Previously, we successfully modified ovarian hormone signaling in aged female mice by
transplanting ovaries from young mice to old, postreproductive-aged (11 months of age) mice
[12]. Half of the intact, postreproductive-aged transplant recipients were still showing some
signs of reproductive cycling and were under the influence of actively-cycling, albeit aged ova-
ries. The other half had completely ceased cycling prior to the time of transplantation and
therefore, experienced a lapse in cyclic ovarian influence prior to receiving new ovaries. Addi-
tional recipients had been prepubertally ovariectomized (OVX) and never experienced any
cyclic ovarian input prior to receiving new ovaries at 11 months of age. The transplantation of
young ovaries into postreproductive-age mice increased life span [12], decreased the rate of
unintentional weight loss at advanced ages [13] and decreased cardiomyopathy at death [14].
We predicted that the same factors in transplant recipients that increased life span and
decreased cardiomyopathy could also decrease orthopedic disease progression. In the current
paper, we report the results of the micro-computed tomography (μCT) analysis of bones in
mice with and without the influence of active ovaries at different stages of the life span. We
include quantitative analysis of the proximal and mid-shaft tibia and the distal and mid-shaft
femur. For qualitative analysis of osteophytosis, we also include mineralized connective tissue
within the stifle joint. Significant differences in bone volume, architecture and density were
detected due to prepubertal OVX and ovarian transplantation and between mice that were
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reproductively cycling and mice that had ceased cycling at the time of transplantation of new
ovaries.

Material and Methods

Mice
The CBA/J strain (used in the current study) and the DBA strain of mice are unique in that
they prematurely lose their ovarian follicles, becoming reproductively senescent by 10–12
months of age [15,16,17]. A reduction of ovarian follicles in the human is associated with the
onset of menopause. For this reason, CBA/J mice may serve as an appropriate experimental
model to study age-related changes in the human [18,19].

Adult breeders (40g) CBA/J strain female mice (Jackson Laboratory, Bar Harbor, ME) were
provided ad libitum access to feed (LabDiet 5008: LabDiet, St. Louis, MO 63144; http://www.
labdiet.com/cs/groups/lolweb/@labdiet/documents/web_content/mdrf/mdi4/~edisp/ducm04_
028444.pdf) and water (deionized) and were housed under conditions of constant temperature
(21°C ± 2°C), humidity (min. 50%), and lighting (14L: 10D, lights-on at 0700 h). Individual
pups were weaned and ear-notched at 21 days (day of birth = 0 days). All female weanlings
were housed individually, with added enrichment, in a 26 x 17 x 13 cm shoebox cage in a spe-
cific-pathogen-free colony where pathology on sentinel mice was done quarterly and patholog-
ical results showed no breach in this status. Mice were maintained in an American Association
for Accreditation of Laboratory Animal Care (AAALAC)-approved facility in accordance with
the National Institutes of Health animal-use guidelines. Animal care and use protocols were
developed under National Research Council guidelines found in the Guide for the Care and
Use of Laboratory Animals. This project was approved by the University of California, Davis
Institutional Animal Care and Use Committee.

Anesthetics were used during surgery and analgesia was provided for 48 hours post-surgery,
longer if deemed necessary. Mice were euthanized by asphyxiation with carbon dioxide, sup-
plied via compressed gas cylinder. Animals with acute, but not severe weight loss were treated
with subcutaneous fluids and moistened food. Animals with acute, but not severe urine stain-
ing or rectal/vaginal prolapse were manually cleaned and treated with Desitin. Mice were mon-
itored at least twice daily and weights/photographs were recorded monthly, more frequently
when concerns arose. Aged, moribund mice found with overt clinical signs were euthanized.
Criteria for euthanasia included, but were not limited to mice found in poor condition with
or without crusting around the anal area and diarrhea, urine staining, persistent vaginal pro-
lapse, chronic vulva/rectal swelling, hunched posture, labored/agonal breathing, significantly
decreased food intake, poor coat condition and lack of grooming, depression, hind-limb weak-
ness/paresis, wounds not healing, limited mobility, obvious neoplastic growth and unusual
weight loss (or gain). Average weight loss in aged mice, from peak weight to death in this
experiment was approximately 12% per month. An increased the rate of weight loss, but not
total weight loss was the most critical factor for determining a moribund state. Criteria for
euthanasia specific for aged mice were determined in coordination with the attending veteri-
narian. Unexpected deaths were uncommon, but included neoplastic growths (most commonly
mammary), unhealed wounds (extremely old animals) and uncontrolled seizures (normally
between 11–13 months of age).

Experimental design
Animals were randomly assigned to sham or ovarian-transplant groups as follows (Fig 1):

Shams consisted of: IT-S: Intact sham animals remained intact to 11 months, at which time
they underwent a sham surgery, which involved bilateral OVX and subsequent replacement of
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the endogenous ovaries back into their original bursae. OX-S: Ovariectomized sham animals
were prepubertally OVX at 21 days and subsequently, at 11 months, underwent a sham surgery
where we removed the 1-mm glass, place-holder beads, previously placed into the ovarian bur-
sae during the 21-day prepubertal OVX procedure (see Surgical Procedures).

Ovarian transplants consisted of: IT-TX: Intact transplant animals remained intact to 11
months, at which time their endogenous ovaries were removed and replaced with a pair of
donor ovaries from a 60-day-old mouse. For analysis, intact transplant mice were subdivided
into mice that were still cycling at the time of transplantation (IT-TX-c) and mice that had
ceased cycling or were acyclic at the time of transplantation (IT-TX-a). OX-TX: Ovariecto-
mized transplant animals were prepubertally OVX at 21 days and subsequently, at 11 months,
the 1-mm glass beads previously placed into the ovarian bursae during the 21-day OVX proce-
dure were removed and replaced with a pair of donor ovaries from a 60-day-old mouse.

Sham treatments served as surgery controls for transplant procedures. All animals in each
experimental group remained virgin until death.

Age at manipulation
Mice of the CBA/J strain become reproductively competent between 45 and 60 days of age.
Ovariectomy at 21 days of age was chosen to avoid major up-regulation of the reproductive
system at the onset of puberty and to eliminate other influences the female gonad might have

Fig 1. Experimental Design. IT (intact), OX (prepubertally OVX), S (sham surgery) and TX (ovarian transplantation). n = 10 for each μCT scanned group.

doi:10.1371/journal.pone.0145821.g001
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in addition to direct effects of gonadal hormones. These influences may include positive or
negative feedback mechanisms or system-wide 'imprinting' influences that the active ovary
may normally provide after 21 days of age. Rodents do not undergo menopause, but instead
have an estropause-like decrease in reproductive function. Reproductive decline in CBA/J mice
usually begins with irregular cycles at 8–10 months of age. At 11 months of age, many CBA/J
mice have become reproductively incompetent [20] with a complete loss of oocytes by 12
months of age. Ovarian transplantation and sham surgeries were conducted at 11 months of
age. Many females in this line of mice have reached a point of reproductive failure by this time
with approximately half of these mice displaying complete lack of reproductive cycling and
half of the mice continuing to cycle.

Surgical procedures
Bilateral prepubertal OVX at 21 days and ovarian transplantation and sham surgeries at 11
months were performed as previously described [21]. Briefly, the ovaries were exposed by para-
lumbar incision under sodium pentobarbital anesthesia and removed by incising the ovarian
bursa opposite the ovarian hilum. The ovary was gently removed from the ovarian bursa and
excised by clamping the ovarian hilum to prevent bleeding. Excised ovaries were placed in cold
saline prior to transfer/replacement. After transfer/replacement, the ovarian bursa was closed
with one to three sutures of 10–0 Ethilon monofilament (Ethicon, Inc.). The abdominal wall
was sutured with 5–0 chromic gut (Ethicon, Inc.), and the skin was closed with 9 mm wound
clips (MikRon Precision, Inc.). When we performed ovariectomies at 21 days of age, a sterile
1-mm diameter glass bead was inserted into each empty ovarian bursa to keep it open for
future ovarian transplantation or sham surgery.

At 11 months of age, bilateral ovarian transplantation and sham surgeries were performed
as previously described [21]. Briefly, OX-S animals were subjected to sham ovarian transplant
surgery in which the glass bead placed at 21 days of age was removed, but no ovary was trans-
planted. IT-S animals underwent sham ovarian transplant surgery in which their endogenous
ovaries were removed, placed in cold saline and then returned to the original bursae.

IT-TX animals at 11 months of age underwent a bilateral OVX and subsequent ovarian
transplantation and received a pair of 60-day-old ovaries from a donor mouse of the same
strain. The OX-TX cohort underwent ovarian transplantation in which the glass beads placed
at 21 days of age were removed and replaced with a pair of ovaries from a 60-day-old donor
mouse of the same strain. Data on vaginal cytology were collected for at least 10 consecutive
days pre- and post-surgery to ensure: 1) complete removal of the ovarian tissue, and 2) success
of the ovarian transplantation procedure. Daily vaginal cytology was re-initiated beginning 10–
14 days postoperatively. One estrous cycle was defined as the period from the day nucleated
epithelial cells first appeared (i.e., proestrus) to the day preceding the next appearance of nucle-
ated epithelial cells in the vaginal smear, provided there was a period of leukocytic presence
(i.e., diestrus) in between. Estrus was determined by the presence of large, squamous epithelial
cells, with or without nuclei. No immunosuppressive techniques were employed and no evi-
dence of graft-versus-host disease was detected post-transplantation or at death. After surgery,
each female was housed individually in a 26 x 17 x 13 cm shoebox cage. Additionally, all serum
samples submitted from mice at the time of necropsy were negative for parvovirus.

Exclusion criteria
Presumptive OVX mice that displayed cytological evidence of gonadal input prior to surgery at
11 months were excluded from analysis. Gonadal input was defined as cyclic changes on vagi-
nal cytology, presumably due to cyclic influence of ovarian hormones. No gonadal input was
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defined as the lack of cyclic changes on vaginal cytology. Ovarian transplant recipients that
failed to display evidence of gonadal input postoperatively based on vaginal cytology were
also excluded from analysis. Gonadal input was determined by vaginal cytology analysis, as
described in Surgical Procedures. Mice that displayed no cyclic activity on vaginal cytology for
a 10-day period before and/or after surgery were determined to have no gonadal input for said
period. Mice that displayed at least one full estrous cycle in a 10-day period before and/or after
surgery were determined to have gonadal input for said period. Mice that fit these criteria were
the only mice used for analysis throughout this study.

Sample collection
Mice in all groups were submitted for necropsy at death (natural death or euthanasia). Aged,
moribund mice found with overt clinical signs were euthanized by inhalation of carbon diox-
ide. At death, all mice had major body cavities opened and were placed in 10% neutral buffered
formalin for 24 hours. Subsequently, a gross necropsy was performed on each mouse and tissue
collection was performed. Samples from at least 20 organ tissue categories, including, but not
limited to, brain, liver, spleen, kidneys, pancreas, heart, lungs, thymus, lymph nodes, distal
reproductive tract region, urinary bladder, stomach, cecum, small intestine, colon, pituitary
gland, adrenal glands, ovaries, uterus, and mammary gland were examined in each mouse
microscopically. Supplementary histology was conducted on any additional tissues with signifi-
cant findings (in addition to those listed).

Micro-computed tomography
Micro-computed tomography-based morphometric traits in the proximal tibia and the distal
femur were measured separately for the four epiphyseal quadrants; medial femoral condyle, lat-
eral femoral condyle, medial tibial plateau and lateral tibial plateau. Measurements were also
taken for femoral and tibial mid-shaft diaphyseal cortical bone. Micro-computed tomography
analysis of the selected treatment groups was performed on an Inveon Trimodality PET/
SPECT/CT scanner (Siemens Preclinical Solutions, Knoxville, TN). Images consisting of 360°
and 900 projections were acquired. Exposure time was 3.2 seconds with detector settings at 80
kVp and 100 μA. Data was reconstructed onto a 1600×1600×2048 image matrix using the
COBRA software package (Exxim Computing Corporation, Pleasanton, CA). The effective
image voxel size was 9.76 μm isotropic. Reconstructed images were analyzed and visualized
using Inveon Research Workplace (4.0). A set of 3 hydroxyapatite (HA) phantoms (750 mg/
ccm, 250 mg/ccm, 50 mg/ccm) were scanned and used for calibration and to compute mean
density (MD).

Segmentation of the acquired images was done manually in all four epiphyseal bone quad-
rants. From the image slice with the largest cortical bone diameter in the subchondral bone
(exclusive of osteophytes), three slices above and below or until the subchondral bone or epiph-
yseal plate were encountered, were segmented. In the current experiments, the entire proximal
tibia and the distal femur were scanned en mass and, due to the extreme degree of mineraliza-
tion in these joints, all four epiphyseal quadrants could not be aligned to optimize the volume
of an ROI for each separate quadrant. In addition, severe remodeling in many joints further
reduced the potential ROI for each quadrant and limited the number of slices available for
analysis. The segmentation split each bone into three components: trabecular bone, cortical
bone and bone marrow. After segmentation, a trabecular bone analysis tool from the IRW 3D
Visualization and Analysis package was used to characterize and quantify bone morphometry.

The Inveon scanner's software utilizes a flood-fill algorithm for determining thresholds. A
point was selected in the region of interest (i.e., cortical bone) and an initial default threshold
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was determined, which was centered over the intensity of that point. The software looked for
all voxels within that threshold that were connected to it and others that were not connected
(but were very likely part of the region of interest). The range was then finely adjusted to
include or exclude voxels until a suitable region was selected.

The epiphyseal trabecular total volume (TV, mm3), trabecular bone volume (BV, mm3), tra-
becular bone volume fraction (BV/TV, %), mean trabecular thickness (Tb.Th, μm), trabecular
separation (Tb.Sp, mm), trabecular number (Tb.N, 1/mm) and trabecular bone pattern factor
(Tb.Pf, 1/mm) were determined. Trabecular bone pattern factor, an index of connectivity,
where higher values represent a more fragmented lattice, is significantly increased in postrepro-
ductive women and is normally increased with age in female mice [22]. Tissue mineral density
(TMD) was also determined. Tissue mineral density differs from BMD in that TMD is calcu-
lated from the average attenuation value of the bone tissue only and does not include attenua-
tion values from non-bone voxels, as is done for BMD (whether volumetric or areal). Tissue
mineral density measurements included MD of BV (mgHA/cm3) for trabecular (MD-Tb) and
cortical bone (MD-Cb) and diaphyseal TMD (BD).

In mice, measurements of individual trabeculae are occasionally subject to misapproxima-
tion, due to the partial volume effect, producing a potential overestimation of trabecular thick-
ness and a potential underestimation of trabecular TMD. Any potential overestimation of
trabecular thickness or underestimation of trabecular TMD would be conducted/applied
uniformly between images and groups and should not significantly influence comparisons
between treatment groups.

Morphological traits of the mid-diaphyseal cortical shell were performed at a site starting
approximately 9 mm distal to the proximal tibial plateau and 7 mm proximal to the distal
femoral condyles and extending distal and proximal, respectively from these positions.
Sequential slices were segmented and density measurements were taken. The diameter of
the mid-shaft cortical bone thickness was measured using the IRW distance tool. Measure-
ments included mid-shaft tibial bone density (BD), bone diameter (Dia) and mean thickness
(MTh) and mid-shaft femoral BD, Dia and MTh. Diaphyseal bone diameter values were
derived using the mean value of four, evenly spaced concentric measurements of the bone
diameter.

For grading osteophytosis, high-resolution three-dimensional reconstructions were created.
Cranial, caudal, lateral and medial images were saved and sent for analysis (Dr. Holly Mason).
Analysis of the severity of osteophytosis was inclusive of syndesmophytes, enthesophytes and
osteochondrophytes, with significant overlap between the diarthrodial joint pathologies. Mea-
surements taken from the reconstructed cranial image (Fig 2) were as follows: A = width at the
distal femur, B = width of medial collateral ligament (MC), C = width at the articulating sur-
faces, D = width at the proximal tibia/fibula, E = length of the MC. Isolated osteophytes were
rare, and therefore, scores are reported as degree of joint ossification, including completeness
of osteophytic joint bridging. An additional parameter; the overall width of mineralized tissue
at the articulating surface (C), normalized to mid-shaft femoral diameter was relatively con-
stant between treatments.

Statistical analysis
Statistical analysis was performed using JMP IN 5.1 (SAS Institute Inc., Cary, NC). A Shapiro-
Wilk test was used to determine normality. Data were analyzed with two-factor ANOVA and a
Tukey's post-hoc test was used to determine difference between groups. Individual treatments
were further analyzed by paired Student’s t-test, two-tailed, unequal distribution of variance
assumed. Test results were considered significant for P values P<0.05.
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Results
The quantitative data are presented as absolute values (Tables 1, 2 and 3, S1–S4 Tables), and as
percentage difference between treated groups and the IT-S mice (S1 and S2 Figs). The site of the
most severe osteoarthritic changes in the stifle joint in mouse models is often reported as being
in the medial tibial plateau. Due to the extreme age of many of the mice in the current study,
bone changes within the stifle joint were often exaggerated to the point where changes at the
medial tibial plateau appeared to have reached a 'threshold' level of severity, making it difficult to
distinguish any changes between treatment groups at this single site. Therefore, results for epiph-
yseal bone will be reported as an average of all four epiphyseal quadrants. Differences identified
between quadrants are as follows; TV, BV, BV/TV and Tb.N were slightly increased and Tb.Sp
was slightly decreased from lateral to medial and from femoral to tibial compartments (S1–S4
Tables). Exceptions or trends specific to a quadrant or region are noted where appropriate.

Changes in epiphyseal bone
Significant changes in the micro-structure of subchondral bone were observed. Changes were sim-
ilar in all four quadrants and are reported as an average value +/- SD for all quadrants (Table 1).

Changes in diaphyseal bone
In mid-shaft diaphyseal cortical bone, a greater number of significant changes occurred in the
tibia, compared to the femur. Trends for treatment effects on cortical bone were similar in the
tibia and femur for MTh, but not for BD or Dia (Table 2).

Fig 2. Joint grading. a) cranial view of a 3D reconstruction of uCT data from a joint with minimal
perturbations. b) cranial view of a 3D reconstruction of uCT data from a joint with maximal perturbations.
Measured parameters include A-distal femur width, B-medial collateral ligament thickness, C-joint width at
the articulating surface, D-proximal tibia/fibula width, E-medial collateral ligament length.

doi:10.1371/journal.pone.0145821.g002

Table 1. Effect on epiphyseal medial and lateral tibial plateaus and femoral condyles combined (mean values +/- SD).

Treatment group IT-S IT-TX-c IT-TX-a OX-S OX-TX

BV (mm3) 0.159 ± 0.061a 0.128 ± 0.032a 0.151 ± 0.055a 0.233 ± 0.083b 0.227 ± 0.079b

TV (mm3) 2.29 ± 0.919a 1.79 ± 0.399a 2.20 ± 0.776a 3.28 ± 0.843b 2.98 ± 0.936b

BV/TV (%) 0.072 ± 0.008a 0.072 ± 0.009 0.067 ± 0.009b 0.072 ± 0.012 0.076 ± 0.009a,c

TbTh (mm) 0.043 ± 0.008a 0.043 ± 0.006a,d 0.038 ± 0.007b 0.045 ± 0.009a,e 0.052 ± 0.010c

TbN (mm-1) 9.03 ± 2.97 9.77 ± 3.94 8.32 ± 2.82 8.07 ± 2.83 9.32 ± 3.40

TbSp (mm) 0.077 ± 0.048 0.072 ± 0.037 0.082 ± 0.039a 0.082 ± 0.051a,b 0.061 ± 0.028c

Tb.Pf (mm-1) 11.2 ± 3.61a 11.0 ± 5.10a 11.0 ± 5.83a,c 7.78 ± 5.88b,c 7.13 ± 4.63b

MD-Tb (mgHA/cm3) 306 ± 71.7a 335 ± 67.6a 280 ± 93.3 258 ± 49.5b 259 ± 75.4b

MD-Cb (mgHA/cm3) 342 ± 65.4a 374 ±54.5a,b 330 ± 71.8a,c 342 ± 43.6c 371 ± 44.9b

a,b,c,d,eDifferent alphabetic superscripts signify values significantly different from one another.

doi:10.1371/journal.pone.0145821.t001
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Changes in osteophytosis
Osteophytosis changes are reported as quantitative measurements and as subjective scores
(1 = no pathology, 2 = mild pathology, 3 = extensive conjoined,>3 surfaces, 4 = complete loss of
joint architecture) from reconstructed uCT 3D images. Osteophytosis in the stifle joints of these
extreme-age mice appeared similar to ankylosis, rather than what is normally reported in osteo-
arthritis models. When considering the subjective osteophytosis scores, along with the quantita-
tive measures of joint mineralization, osteophytosis was greatest in the control, IT-S (Table 3).

In some parameters, large changes occurred between groups that did not reach statistical
significance. Supplemental figures (S1 and S2 Figs) are included to provide the magnitude and
direction of change for each treatment and were not subject to statistical analysis. This supple-
mental data is presented as % change between the means of the IT-S group and the means of
the OX-S sham mice and the IT-TX-c, IT-TX-a and OX-TX transplant mice for each parame-
ter measured.

Discussion
In addition to providing mechanical and protective function, bone also serves as a site for regula-
tion of mineral homeostasis. This function is of particular importance in young, reproductively

Table 2. Effect on diaphyseal mid-shaft tibia and femur bone parameters between treatments (mean values +/- SD).

Mid-shaft IT-S IT-TX-c IT-TX-a OX-S OX-TX

Tibia BD (mgHA/cm3) 457 ± 35.7 483 ± 45.7 529 ± 83.5 483 ± 52.5 503 ± 89.0

Dia (mm) 1.28 ± 0.058a 1.38 ± 0.021b 1.34 ± 0.061b 1.31 ± 0.056 1.26 ± 0.074a

MTh (mm) 0.229 ± 0.012a 0.217 ± 0.040 0.190 ± 0.022 0.208 ± 0.042 0.202 ± 0.033b

Femur BD (mgHA/cm3) 636 ± 59.3 670 ± 74.1 628 ± 110 676 ± 58.7 673 ± 54.3

Dia (mm) 1.90 ± 0.140a 1.88 ± 0.252 1.82 ± 0.143 1.75 ± 0.081b 1.77 ± 0.150

MTh (mm) 0.390 ± 0.174 0.362 ± 0.207 0.268 ± 0.049 0.288 ± 0.093 0.296 ± 0.127

a,b,c,d,eDifferent alphabetic superscripts signify values significantly different from one another.

doi:10.1371/journal.pone.0145821.t002

Table 3. Joint grading frommicro-computed tomography 3D reconstructed images (mean values +/- SD).

Treatment group IT-S IT-TX-c IT-TX-a OX-S OX-TX

Distal femur width (mm) 3.98 ± 0.448a 3.92 ± 0.289 3.64 ± 0.378 3.53 ± 0.343b 3.95 ± 0.537

Width at joint space (mm) 3.65 ± 0.626 3.50 ± 0.661 3.29 ± 0.393 3.45 ± 0.587 3.65 ± 0.784

Proximal tibia/fibula width (mm) 4.55 ± 0.537a 4.50 ± 0.250 4.07 ± 0.238b 4.25 ± 0.577 4.35 ± 0.543

MC ossification complete 0.900 ± 0.376a 0.833 ± 0.144a 0.857 ± 0.244a 0.350 ± 0.394b 0.600 ± 0.555

MC thickness (mm) 0.972 ± 0.341a 0.778 ± 0.331 0.679 ± 0.345 0.550 ± 0.284b 0.861 ± 0.626

MC length (mm) 4.93 ± 0.426 5.33 ± 0.289 4.61 ± 0.748a 5.20 ± 0.405 5.38 ± 0.626b

LC ossicfication complete 0.600 ± 0.516a 0.333 ± 0.577 0.143 ± 0.378 0.000 ± 0.000b 0.250 ± 0.425

Complete med-lat ossification 0.600 ± 0.516a 0.333 ± 0.577 0.000 ± 0.000b 0.100 ± 0.316b 0.300 ± 0.483

Joint width/mid-shaft femur dia 1.98 ± 0.346 1.90 ± 0.546 1.81 ± 0.185 2.03 ± 1.13 2.05 ± 0.351

Osteophytosis score 3.25 ± 0.565a 3.58 ± 0.520a 2.86 ± 0.690 2.01 ± 0.331b 2.35 ± 1.06b

MC = medial collateral ligament; LC = lateral collateral ligament.

For MC ossification complete, LC ossification complete and Complete med-lat ossification measurements; 0 = no/none and 1 = yes/complete.

Osteophytosis score; 1 = no pathology, 2 = mild pathology, 3 = extensive conjoined, >3 surfaces, 4 = complete loss of joint architecture.
a,b,c,d,eDifferent alphabetic superscripts signify values significantly different from one another.

doi:10.1371/journal.pone.0145821.t003
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competent females who may need to mineralize a developing fetal skeleton or provide milk for
offspring. During lactation, up to 10% of bone mass is lost in response to milk production [23].
These needs are reflected in differential regulation of bone physiology between males and
females [24]. Premenopausal women have a higher cortical BMD, compared to their male coun-
terparts [25]. This excess bone is largely endocortical, a location consistent with it being a storage
site for bone that can be mobilized as required during gestation and lactation.

Bone characteristics change with age. In women, there is an increase in the rate of bone
remodeling at menopause. The volume of bone resorbed increases and the volume of bone
formed decreases [26]. The age-associated loss of trabecular bone in women is due to a decrease
in connectivity, whereas in men, the loss is predominantly due to thinning of the individual tra-
becular struts [27]. The importance of mobilizing minerals in females' declines with age and
bone physiology is significantly influenced by age-associated changes in ovarian function. We
used observations from a previous study in this report to provide context for age-associated
changes in μCT parameters in female mice. This previously-collected data was collected from
wild-type female C57/BL6 mice at 8 and 20 months of age (unpublished observations, Dr. Kurt
Hankenson). In the current study, we manipulated ovarian function to test four theories of
ovarian influence.

First, we prepubertally OVX mice to remove all ovarian input throughout the life span of
this cohort. This experiment revealed how removing all ovarian input throughout the life span
would influence age-associated joint pathologies in female mice. Surprisingly, this treatment
produced results vastly different from OVX in adult rodents and short-term OVX. Most exper-
iments involving OVX are relatively short-term, and use young adult animals. Ovariectomy
can have a dramatic influence on mammalian physiology immediately after gonad removal.
Ovariectomized animals go through a period of adjustment and, after that period of adjust-
ment, reach a new set-point level of physiological regulation. Ovariectomized adult rats loose
trabecular BMD for about 100 days post-OVX. After 100 days, the loss of trabecular BMD
stops and they maintain trabecular bone volume (albeit at a lower level) from that point for-
ward [28]. In contrast, rats that are OVX at weaning displayed decreased bone mineralization,
but greater responsiveness to exercise-induced bone remodeling [29]. This suggests that E2
participates in accumulation and maintenance of bone mineralization, but dampens the bone's
response to mechanical stress. The removal of estrogenic influence in OX-S mice may have
increased the responsiveness of bone to mechanical stress and may be related to the increased
TV of trabecular bone demonstrated by these mice. Prepubertal OVX also appeared to exacer-
bate some of the negative age-associated effects in trabecular architecture and mineralization,
but these mice displayed significantly better trabecular connectivity and much lower levels of
osteophytosis than any other group. These results suggest that life-long lack of ovarian function
significantly influences trabecular bone volume, architecture and mineralization and the level
of osteophytosis.

Secondly, in OX-TX mice, we transplanted young, active ovaries to old mice that were pre-
pubertally OVX. This experiment revealed the influence of active ovarian signaling in old mice
that had no ovarian influence during development or the first half of their life span, effectively
separating the influence of active ovarian signaling early in the life span from signaling late in
the life span. Trabecular architecture was significantly improved in OX-TX mice, compared
with all other groups. However, mineralization was not improved in trabecular bone, but was
significantly increased in cortical bone. This offers strong support for the positive influence of
ovarian signaling on trabecular architecture, but not mineralization late in life. These results
also reveal a significant difference between the influences on mineralization in cortical versus
trabecular bone.
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Thirdly, in IT-TX-c mice, we transplanted young, active ovaries to old mice that were still
reproductively cycling, so that reproductive function would be extended with no interruption
in ovarian signaling. This experiment tested if delaying reproductive senescence would delay
age-associated pathologies in female mice. This treatment appeared to delay the age-associated
loss of trabecular and cortical mineral density and mildly improved trabecular architecture.
Bone volume and TV were reduced in IT-TX-c mice, compared with all other groups. Both BV
and TV were also non-significantly decreased by new ovaries in OVX mice, suggesting that
active ovarian signaling late in the life span decreased (or prevented an increase) in BV and
TV. This influence appeared to be greater on TV than on BV. Trabecular bone MD was
improved in IT-TX-c mice, but not in OX-TXmice, compared with all other groups, suggesting
that ovarian influence early in the life span is critical for establishment of MD-Tb, but that
ovarian influence may also participate in the maintenance of MD later in life. Trabecular con-
nectivity (Tb.Pf) was deteriorated in IT-TX-c mice, compared with the OT-TX group, but was
no different from IT-S mice, suggesting that Tb.Pf is strongly influenced by ovarian signaling
early in life, but may not be responsive to ovarian signaling late in life.

Lastly, in IT-TX-a mice, we transplanted young, active ovaries to old mice that had ceased
reproductively cycling, so that reproductive function would be extended, but ovarian signaling
would be interrupted, in direct contrast with the IT-TX-c cohort. This experiment tested if an
interruption in ovarian signaling would change the influence of the newly transplanted ovaries.
The basis for the existence of the 'critical period' is hypothesized to result from the loss of ERs,
resulting from long-term hormone deprivation [30]. In the brain, long-term E2 deprivation
leads to loss of ERs [31]. In the current experiment, our IT-TX-a mice displayed a significantly
different response to the new ovaries than cycling and OVX recipients and were very different
from OX-S mice as well. Acyclic recipients appeared to exacerbate the negative age-associated
effects in trabecular bone seen in IT-S mice and displayed the thinnest diaphyseal bone of all
cohorts. They were also the only mice to display a decrease in BV/TV, compared with IT-S
mice. However, this group displayed improved osteophytosis scores, again suggesting an
inverse relationship between maintenance of bone architecture and degree of osteophytosis. In
a previous report, female ER-/- mice (ERα and ERβ double knockout) displayed a profound
decrease in trabecular BV/TV [32], supporting the presumptive decrease in ERs in our acyclic
recipients. Increased circulating levels of follicle stimulating hormone (FSH) have been linked
to increased bone loss in perimenopausal women [33]. Cessation of reproductive cycling nor-
mally leads to a large increase in circulating FSH levels. In our acyclic recipients, presumptive
decreases in ERs could also have decreased the negative feedback effects of E2 on FSH produc-
tion, which may have led to increased FSH and the decrease in MD-Tb in these mice. A reduc-
tion in ER expression after E2 withdrawal results in a decreased response to loading in bone
[34,35], which may have been the case in our acyclic recipients. The age-related loss of cortical
bone, but not loss of trabecular bone can be prevented by maintaining constant E2 levels over
life [36]. In rats, the relative levels of ERs are lower in cortical than cancellous bone [37,38].
This fact may have played a role in the differences seen between trabecular and cortical bone in
our experiments, particularly in acyclic recipients.

Conclusions
In summary, prepubertal OVX had the greatest influence on bone volume, whereas ovarian
transplantation had the greatest effect on bone architecture. These effects may have been dic-
tated by the timing of the treatments, with OVX appearing to influence early development and
ovarian transplantation limited to influencing only the postreproductive period. However, we
must also consider the physiological status or 'environment' of the mice that received new
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ovaries and how these different environments affected/limited the subsequent influence of the
new ovaries. Responses between IT-TX-c mice and OX-TX mice that were interpreted as dif-
ferences between early and late life span responses, may also be attributable to changes between
the influence of the new ovary in different recipients, as was evidenced by the large differences
between IT-TX-c mice and IT-TX-a mice. Major differences observed between IT-TX-c and
IT-TX-a recipients may have been, in part due to differences in the levels of hormone receptors
present and the responsiveness of specific bone processes to hormone signaling. Cycling recipi-
ents may have maintained ERs that were down-regulated in acyclic mice due to the gap in E2
exposure prior to ovarian transplantation. If the IT-TX-a mice were, in fact less responsive to
the new ovaries than cycling mice and displayed improved osteophytosis scores, then this sup-
ports the view that osteophytosis is a compensatory response to changes within or acting upon
the joint.

Transplantation of new ovaries had little influence on diaphyseal bone compared with tra-
becular bone. Trabecular bone has more surface per unit bone volume than cortical bone, so
that trabecular bone is more likely to be remodeled than cortical bone [39]. In the current
experiments, transplantation-induced changes necessarily took place after 11 months of age,
suggesting that these parameters are more amenable to changes later in life. This suggestion is
supported by a similar pattern of changes occurring in IT-TX mice that received new ovaries at
11 months of age. Overall, cortical mineralization and osteophytosis were increased by ovarian
transplantation in cycling and OVX mice, but decreased by new ovaries in acyclic mice and by
prepubertal OVX. In OVX adult female macaques, long-term HRT had no significant effect on
cross-sectional area of osteophytes [40]. In our experiments, the presence of a senescent ovary
was consistent with a high level of osteophytosis, which was reduced in OVX mice and not sig-
nificantly increased in mice with new ovaries. These observations suggest a potentially causa-
tive role for signaling from the senescent ovary in the development of osteophytosis in normal,
aged IT-S mice.

Our perceived treatment changes, reported as increases or decreases compared with IT-S
mice may alternatively may have been just the maintenance of a level bone regulation previ-
ously present at a younger age. Future work will include dissecting the role of hormone recep-
tors and the role of the senescent ovary in orthopedic disease progression. These findings may
suggest that tailoring HRT therapy to the patient's current reproductive status may improve
therapy effectiveness.
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S2 Fig. Percent difference (treatment/IT-S) between intact sham mice and all other treat-
ments for T-BD, T-Dia, T-MTh, F-BD, F-Dia, F-MTh, Osteophytosis Score, Joint width/
femur diameter.
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