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Purpose: To develop an easily applicable predictor of patients at low risk for diabetic retinopathy (DR).
Design: An experimental study on the development and validation of machine learning models (MLMs) and a

novel retinopathy risk score (RRS) to detect patients at low risk for DR.
Subjects: All individuals aged �18 years of age who participated in the telemedicine retinal screening

initiative through Temple University Health Systems from October 1, 2016 through December 31, 2020. The
subjects must have documented evidence of their diabetes mellitus (DM) diagnosis as well as a documented
glycosylated hemoglobin (HbA1c) recorded in their chart within 6 months of the retinal screening photograph.

Methods: The charts of 1930 subjects (1590 evaluable) undergoing telemedicine screening for DR were
reviewed, and 30 demographic and clinical parameters were collected. Diabetic retinopathy is a dichotomous
variable where low risk is defined as no or mild retinopathy using the International Clinical Diabetic Retinopathy
severity score. Five MLMs were trained to predict patients at low risk for DR using 1050 subjects and further
underwent 10-fold cross validation to maximize its performance indicated by the area under the receiver
operator characteristic curve (AUC). Additionally, a novel RRS is defined as the product of HbA1c closest to
screening and years with DM. Retinopathy risk score was also applied to generate a predictive model.

Main Outcome Measures: The performance of the trained MLMs and the RRS model was compared using
DeLong’s test. The models were further validated using a separate unseen test set of 540 subjects. The per-
formance of the validation models were compared using DeLong’s test and chi-square tests.

Results: Using the test set, the AUC for the RRS was not statistically different from 4 out of 5 MLM. The error
rate for predicting low-risk patients using the RRS was significantly lower than the naive rate (0.097 vs. 0.19;
P < 0.0001), and it was comparable to the error rates of the MLMs.

Conclusions: This novel RRS is a potentially useful and easily deployable predictor of patients at low risk for
DR.

Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclo-
sures at the end of this article. Ophthalmology Science 2025;5:100592 ª 2024 by the American Academy of
Ophthalmology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
Diabetes mellitus (DM) is a systemic disease that is prevalent
worldwide. As of 2019, 351.7 million individuals aged 20 to
64 years old worldwide were affected by DM; this number is
projected to increase to 417.3 million by 2030 and 486.1
million by 2045.1 Diabetic retinopathy (DR) has been
identified in a third of individuals with DM, and it is a
major vision-threatening complication that may lead to
blindness.2 Annual direct funduscopic examinations are
currently recommended for adult patients with DM.3 In
2020, only 58.3% of adults diagnosed with DM had an eye
examination within the past 12 months, decreasing from
64.8% in 2019.4 In a previous DR telemedicine project in
the Temple University Health System, the estimated annual
incidence of DR was 18% which suggests that the majority
of examinations will yield negative results.5 Given the
expanding aging population and the projected increase in
ª 2024 by the American Academy of Ophthalmology
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DM prevalence, it becomes increasingly challenging and
less cost-effective to conduct annual diabetic eye evalua-
tions for all affected individuals. Prior studies have recom-
mended that annual screeningsmay not be necessary for every
patient based on individual risk factors, and screenings may
be safely delayed for up to 2 years.6e8

A targeted approach to screening aims to allocate limited
clinical resources to individuals who are more likely to have
eye disease. Several studies have employed machine
learning techniques, utilizing moderate to large datasets and
a substantial number of variables to develop predictive
models of DR.9e12 The reported models exhibit varying
areas under the receiver operator characteristic curves
(AUCs). Deployment of these models would require either a
freestanding or web-based application for the input of pa-
tient variables.
1https://doi.org/10.1016/j.xops.2024.100592
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A report from an international committee of experts
identified elevated serum levels of glycosylated hemoglobin
(HbA1c) as a risk factor for DR.13 Additionally, the duration
of disease has also been associated with the development of
DR.14,15 The purpose of this study is to determine if a novel
retinopathy risk score (RRS) derived from the serum HbA1c
concentration closest to the screening and the duration of
disease can serve to be as effective of a predictor for
patients at low risk for DR as compared with optimized
machine learning algorithms.

Methods

The Temple University Institutional Review Board/Ethics
Committee approval was obtained. The Institutional Review
Board waived the requirements for informed consent given
the nature of this study. The study methods adhered to the
Declaration of Helsinki. All data manipulations, model
building, and analyses were performed in the R environment
(R Foundation for Statistical Computing).

Subjects

The electronic medical record (EMR) database at Temple
University Health System, serving North Philadelphia, was
searched for patients who met the following criteria: (1) age
�18 years; (2) carried a diagnosis of either type I or type II
DM (International Classification of Diseases-10: E08.xxxx,
E10.xxxx, E11.xxxx, E13.xxxx) at the time of their primary
care visit; (3) did not have a dilated fundus exam for DR
recorded in the EMR in the past year; (4) participated in the
telemedicine retinal photographic screening initiative con-
ducted by the outpatient internal medicine department be-
tween October 1, 2016 through December 31, 2020. The
screening initiative consisted of trained medical assistants
capturing retinal images in a primary care setting. Quality
control was completed by reviewing the photos and
providing feedback to the medical assistants; and (5) had a
recorded measurement of serum HbA1c within 6 months of
the retinal photograph. All the patients who were photo-
graphed received primary care services from the Temple
University Health System and had supporting documenta-
tion in the EMR. Of note, specific provisions were not taken
to ensure that patients did not have duplicate visits in the
study period. If a patient previously had a positive screening
result, they were referred to the ophthalmology department
for further management rather than continuing to be
screened in the primary care setting. Positive patients thus
should have been removed from the screening pool. It is
highly likely that negative patients were screened more than
once. By doing so, it would help generate a more accurate
cutoff score from tracking patients over time.

Data Extraction

Features. Predictive features for model development were
extracted from each subject’s medical record. In cases where
multiple values were recorded over time, the measurement
taken nearest to the time of the retinal photograph, plus or
minus 6 months, was selected. The features extracted or
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engineered were: date of screening; age; gender; HbA1c;
HbA1c group; disease duration (collected manually through
chart review. Patients with more recent diagnoses were more
accurately dated through chart review and associated labs,
while the duration of others were based on documented
patient recollection as the EMR at the institution was
implemented in 2011); type of DM; body mass index; mean
arterial pressure, systolic and diastolic blood pressure; his-
tory of: gastric bypass surgery, hypertension, hyperlipid-
emia, coronary artery disease, transient ischemic attack,
cerebrovascular disease, peripheral artery disease, and/or
angioplasty; serum high-density lipoprotein; total serum
cholesterol; serum triglycerides; serum creatinine; serum
blood urea nitrogen; chronic kidney disease stage; glomer-
ular filtration rate; type of diabetes medication/management
(diet alone, oral hypoglycemics, insulin, or combination of
oral hypoglycemic and insulin); microalbuminuria and
macroalbuminuria; and cardiovascular risk assessment
score.

Response Variable. Retinal images for each subject were
interpreted by optometrists associated with the Temple
Department of Ophthalmology using the ETDRS Disease
Severity Scale and the International Clinical Diabetic Reti-
nopathy Severity Score. Grader reliability was not formally
completed, but a retina specialist (Y.Z.) reviewed some of
the optometrists’ interpretations. Accuracy of the retina
specialist was not formally reviewed. The final response
variable was dichotomous; any image with an identifiable
retinal abnormality consistent with more than mild DR was
classified as positive (International Clinical Diabetic Reti-
nopathy >1) and those without were classified as negative.

Feature Selection

Four approaches were taken to identify superfluous or
poorly predictive features. First, any feature with values
missing from >50% of the subjects was removed. Next,
univariate comparisons of rate distributions for categorical
variables and Gaussian distributions for continuous vari-
ables were performed; variables with P values > 0.1 based
on these tests were removed. Finally, categorical variables
with near zero variance, defined as >90% membership in a
single class, and highly correlated continuous variables,
defined as a correlation coefficient (r) >0.85, were also
removed. Excluded features include the following: Athero-
sclerotic Cardiovascular Disease score, history of bariatric
surgery, transient ischemic attack, body mass index, systolic
blood pressure, diastolic blood pressure, triglycerides, high-
density lipoprotein, low density lipoprotein, total choles-
terol, blood urea nitrogen, microalbumin creatinine ratio,
and type of DM (Figure 1).

Missing Values

Missing data in the aggregate dataset were imputed using
multivariate imputation by chain equations (mice pack-
age).16 For continuous variables, missing values were
estimated by predictive mean matching; for categorical
variables, class assignments were imputed by logistic
regression (LR). Imputation was performed prior to data



Figure 1. Dataset construction workflow. ASCVD ¼ Atherosclerotic Cardiovascular Disease.
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splitting to balance both sets. Subjects with missing
response variables were removed.

Data Segregation

To provide a subset of subjects for model validation, the
final dataset was split. Two-thirds of the subjects were
randomly assigned to the training set which was used for
tuning the predictive algorithms. The remaining one-third of
patients were sequestered for validation of the optimized
models using the createDataPartition function in the caret
package.17 This function creates training and test data sets
by maintaining the distribution of the outcome variable.
This is essential for predictive models since the utility of
3



Table 1. Subject Demographics and Features Utilized in Predictive Model Development

Demographic/Clinical Feature

Training Set Test Set

No Yes No Yes

Presence of diabetic retinopathy (N, %) 851 (81.0) 199 (19.0) 438 (81.1) 102 (19.0)
Age
Mean (SD) 58.7 (12.9) 59.2 (11.7) 59.3 (11.8) 56.9 (12.0)
Median [min, max] 59.0 [1.00, 118] 59.0 [25.0, 89.0] 61.0 [28.0, 91.0] 57.0 [29.0, 83.0]

Type of diabetes mellitus management
Insulin 431 (50.6%) 65 (32.7%) 218 (49.8%) 33 (32.4%)
Oral hypoglycemics 97 (11.4%) 50 (25.1%) 47 (10.7%) 26 (25.5%)
Insulin and oral medications 170 (20.0%) 70 (35.2%) 97 (22.1%) 36 (35.3%)
Diet alone/no medications 153 (18.0%) 14 (7.0%) 76 (17.4%) 7 (6.9%)

Diabetes mellitus duration (yrs)
Mean (SD) 7.48 (6.83) 12.4 (10.1) 7.78 (7.17) 13.2 (9.05)
Median [min, max] 6.00 [0, 58.0] 9.00 [0, 58.0] 6.00 [0, 41.0] 10.0 [0, 49.0]

Hemoglobin A1c
Mean (SD) 7.67 (2.13) 8.63 (2.08) 7.57 (1.93) 9.03 (2.42)
Median [min, max] 6.90 [4.50, 15.5] 8.20 [4.70, 15.0] 6.90 [4.70, 14.8] 8.80 [5.00, 14.9]

Hemoglobin A1c groups
<5.7 77 (9.0%) 6 (3.0%) 32 (7.3%) 7 (6.9%)
5.7-6.4 222 (26.1%) 17 (8.5%) 107 (24.4%) 12 (11.8%)
6.5-10 427 (50.2%) 130 (65.3%) 243 (55.5%) 48 (47.1%)
>10 125 (14.7%) 46 (23.1%) 56 (12.8%) 35 (34.3%)

Mean arterial pressure (mmHg)
Mean (SD) 87.5 (31.9) 97.6 (21.9) 87.4 (30.9) 95.6 (19.0)
Median [min, max] 95.3 [0, 144] 97.3 [0, 166] 95.0 [0, 130] 97.0 [0, 132]

History of hypertension
No 205 (24.1%) 21 (10.6%) 101 (23.1%) 18 (17.6%)
Yes 646 (75.9%) 178 (89.4%) 337 (76.9%) 84 (82.4%)

History of hyperlipidemia
No 347 (40.8%) 51 (25.6%) 169 (38.6%) 31 (30.4%)
Yes 504 (59.2%) 148 (74.4%) 269 (61.4%) 71 (69.6%)

History of coronary artery disease
No 737 (86.6%) 162 (81.4%) 373 (85.2%) 74 (72.5%)
Yes 114 (13.4%) 37 (18.6%) 65 (14.8%) 28 (27.5%)

History of cerebrovascular accident
No 794 (93.3%) 181 (91.0%) 404 (92.2%) 86 (84.3%)
Yes 57 (6.7%) 18 (9.0%) 34 (7.8%) 16 (15.7%)

History of periphery artery disease
No 814 (95.7%) 188 (94.5%) 417 (95.2%) 91 (89.2%)
Yes 37 (4.3%) 11 (5.5%) 21 (4.8%) 11 (10.8%)

History of angioplasty
No 780 (91.7%) 175 (87.9%) 402 (91.8%) 84 (82.4%)
Yes 71 (8.3%) 24 (12.1%) 36 (8.2%) 18 (17.6%)

Creatinine (mg/dL)
Mean (SD) 1.10 (0.787) 1.57 (1.66) 1.10 (0.796) 1.62 (1.92)
Median [min, max] 0.960 [0.290, 11.9] 1.07 [0.370, 12.2] 0.940 [0.0800, 9.60] 1.04 [0.590, 11.0]

Glomerular filtration rate (mL/min)
Mean (SD) 75.6 (47.9) 71.3 (46.2) 79.0 (45.9) 75.9 (45.5)
Median [min, max] 92.0 [1.00, 138] 79.0 [1.00, 138] 96.0 [1.00, 138] 80.5 [1.00, 137]

Chronic kidney disease stage
1 285 (33.5%) 51 (25.6%) 137 (31.3%) 31 (30.4%)
2 387 (45.5%) 80 (40.2%) 212 (48.4%) 33 (32.4%)
3a 103 (12.1%) 24 (12.1%) 49 (11.2%) 15 (14.7%)
3b 46 (5.4%) 19 (9.5%) 27 (6.2%) 10 (9.8%)
4 21 (2.5%) 14 (7.0%) 7 (1.6%) 7 (6.9%)
5 9 (1.1%) 11 (5.5%) 6 (1.4%) 6 (5.9%)

Microalbuminuria (g/mmol)
Mean (SD) 0.250 (0.544) 0.482 (0.744) 0.251 (0.546) 0.588 (0.788)
Median [min, max] 0 [0, 2.00] 0 [0, 2.00] 0 [0, 2.00] 0 [0, 2.00]

HbA1c x diabetes duration (yrs)
Mean (SD) 57.6 (55.3) 107 (92.2) 59.6 (56.7) 121 (97.0)
Median [min, max] 44.8 [0, 435] 79.2 [0, 583] 45.3 [0, 299] 91.5 [0, 573]

AUC ¼ area under the receiver operator characteristic curve; DUR ¼ duration of disease in years; HbA1c ¼ glycosylated hemoglobin.
SD ¼ standard deviation.
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Table 2. Comparison of the Receiver Operator Characteristics of
6 Combinations of Serum HbA1c and Disease Duration

Model AUC P Value*

HbA1c � DUR 0.703 -
HbA1c þ 0.25 (DUR) 0.711 0.57
HbA1c þ 0.5 (DUR) 0.712 0.31
HbA1c þ DUR 0.707 0.39
HbA1c þ 2.5 (DUR) 0.700 0.07
HbA1c þ 5 (DUR) 0.690 0.005

AUC ¼ area under the receiver operator characteristic curve;
DUR ¼ duration of disease in years; HbA1c ¼ glycosylated hemoglobin.
SD ¼ standard deviation.
*DeLong’s test using the product of serum HbA1c and duration of disease
as the reference.
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the models will vary based on the prior outcome rates.
Alternative methods of data splitting, such as random
splitting, run the risk of changing the outcome rates.
Derivation of a Novel RRS

A previous study found a strong correlation between serum
HbA1c concentration, duration of disease, and risk of DR.10

With the intention of being easily applicable and convenient
for users, 6 combinations of HbA1c and duration of disease
in years (DUR) were trialed as candidates for a RRS: (1)
HbA1c � DUR, (2) HbA1c þ 0.25 � DUR, (3)
HbA1c þ 0.5 � DUR, (4) HbA1c þ DUR, (5)
HbA1c þ 2.5 � DUR, and (6) HbA1c þ 5 � DUR. The
values were calculated from the training dataset and
receiver operator characteristic curves (ROCs) were
generated and compared using the value from the product
score (HbA1c � DUR) as the reference. The final RRS
was either the product score or the score that produced a
statistically significantly higher AUC than the product
score. Using the ROC of the final RRS generated from the
training data set, the threshold value for separating low
risk (no retinopathy predicted) and high risk (retinopathy
predicted) patients was determined by identifying the
point on the ROC that maximized Cohen’s kappa statistic.
Table 3. Mean Values of Area Under the Receiver Operator Character
5 Optimized Predict

Statistical Value GBM

Area under the receiver operator characteristic curve 0.772
P value Reference
Sensitivity (predicting NORMAL retinas) 0.985
P value Reference
Specificity (predicting ABNORMAL retinas) 0.121
P value Reference

GBM ¼ gradient boosted machine; LR ¼ logistic regression; RF ¼ random for
Mean values of each parameter determined by 10-fold cross validation.
P values by t test vs. GBM value.
Derivation of Machine Learning Models

Five algorithms were chosen: 2 parametric algorithms (LR
and support vector machine [SVM] using the radial kernel),
1 nonparametric algorithm (recursive partitioning
[RPART]), and 2 ensemble algorithms (random forest and
gradient boosted machine). Each algorithm was tuned to
maximize the AUC using 10-fold cross-validation and the
train function from the caret package. From the collection of
tuned models produced for each algorithm, resampled data
were analyzed and the parameter or hyperparameter values
for the model with the greatest ROC were selected as the
final model for the given algorithm.

Validation of the Machine Learning Models and
Comparison with the RRS

Using the fine-tuned models of each algorithm, the test
subset of data and the predict function from the caret
package, a vector of probabilities of no retinopathy was
determined using each subject and an ROC was constructed
using the known outcomes of the test subject. The threshold
value for separating low-risk and high-risk patients was
determined in an identical manner as for the RRS except that
the ROCs developed from the test data set were used.
Finally, an ROC was constructed for the RRS using the
values from subjects in the test dataset.

Confusion matrices were constructed for each model and
the RRS using the previous determined threshold values.
The rows corresponding to the low-risk predictions were
assembled into a matrix and compared.

Statistical Analyses

For feature selections, differences in rate distributions were
determined by the chi-square test while differences in
Gaussian distributions of continuous variables were deter-
mined by t tests; features were eliminated if the P value
exceeded 0.1.

Differences in ROCs were determined in a pairwise
fashion using DeLong’s test for correlated ROC. Compari-
sons of risk assignment were determined by chi-square tests
of the pertinent portions of confusion matrices generated by
istic Curves, Sensitivity, and Specificity Using Resampled Data for
ive Algorithms

LR RF SVM RPART

0.759 0.763 0.693 0.677
1 1 0.425 0.072

0.961 0.975 0.978 0.947
0.412 1 1 0.628
0.247 0.167 0.106 0.212
0.059 1 1 1

est; RPART ¼ recursive partitioning; SVM ¼ support vector machine.
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each model and the RRS. In all cases, P values <0.05 were
considered significant.

Results

Dataset Construction

The raw dataset had 1930 subjects, 30 predictive features,
and 1 response variable. The 340 subjects with missing
response values were eliminated from the dataset. In the
culling process, 1 variable with 75% of values missing was
dropped; 9 variables with P values >0.1 by univariate
comparison, 1 categorical variable with near zero variance,
and 2 variables with correlation coefficients >0.85 were
dropped. The remaining 16 variables were: age (in years),
type of diabetic medications, disease duration (years),
HbA1c, HbA1c group, mean arterial blood pressure, diag-
nosis of hypertension and/or hyperlipidemia, history of (1)
coronary artery disease; (2) cerebrovascular accident; (3)
peripheral artery disease and/or; (4) angioplasty, serum
creatinine, glomerular filtration rate, stage of chronic renal
disease, and microalbuminuria. Since none of the remaining
predictors had missing values >25%, all of them were
retained for analysis. The rate of DR in the final data set of
1590 subjects and 16 predictive variables was 19%.

The final dataset was divided into training (n ¼ 1050)
and test (n ¼ 540) subsets. The training and test data sets
were comparable on the basis of demographics and features
as shown in Table 1.

Derivation of a Novel RRS

The iterations of the RRS combining the serum HbA1c
concentration closest to the screening with illness duration
were used to develop an individual ROC. Using the product
of HbA1c and disease duration as the reference, none of the
other formulations were statistically superior by comparison
of ROC (Table 2); the combination of serum HbA1c and 5�
the duration of disease produced a statistically poorer model
than the RRS (P ¼ 0.005). Based on these observations, the
Figure 2. Receiver operator characteristic curves for 5 machine learning
models and the retinopathy risk score using 540 test subjects.
GBM ¼ gradient boosted machine; LR ¼ logistic regression; RF ¼ random
forest; RPART ¼ recursive partitioning; RRS ¼ retinopathy risk score;
SVM ¼ support vector machine.

6

product of HbA1c and disease duration was selected as the
RRS. A cut off value of 53.9 was determined by maximizing
the Cohen kappa statistic.

Derivation of Machine Learning Predictive
Models of DR

Using 5 algorithms (LR, SVM, RPART, random forest, and
gradient boosted machine) and the training dataset, 5 pre-
dictive models were optimized using 10-fold cross valida-
tion. The performance of these models, using resampled
data from the training set, is shown in Table 3. The AUCs
ranged from 0.677 to 0.772 and were not statistically
significantly different. The sensitivity, defined as the
correctly predicted rate of patients with normal retinas,
ranged from 0.947 to 0.985 and showed no statistical
difference among the 5 models; however, specificity was
poor, ranging from 0.106 to 0.247.

Validation and Comparison of Machine Learning
Models and the RRS

Each subject in the test set of 540 patients was classified as
low risk (normal retina examination) or high risk (abnormal
retina examination) by the 5 machine learning models
(MLMs). Using the predictions and known responses, ROC
curves were generated; the AUC was calculated for each
ROC. A similar curve was constructed for the RRS using the
same dataset. Following the identification of the cutoff value
on the ROC curve that maximized Cohen’s kappa statistic,
confusion matrices were created for the predictions from
each model. A confusion matrix was constructed for the
RRS using the cut off value determined with the training
data.

The ROC curves for the 5 MLMs and the RRS are shown
in Figure 2; AUCs are shown in Table 4. The AUC for the
gradient boosted machine was significantly larger than the
AUC for RRS (0.789 vs. 0.733; P ¼ 0.011); the AUCs
for the remaining models were not statistically different
from the AUC for the RRS.

The performances of the 5 MLMs and the RRS to
identify diabetic patients without retinopathy are shown in
Table 4. Comparison of the Areas Under the Receiver Operator
Characteristic Curves for 5 Machine Learning Models and the

Novel Retinopathy Risk Score Using 540 Test Subjects

Model AUC P Value*

RRS 0.73347 REF
RPART 0.705133 0.35
SVM 0.732832 0.993
LR 0.750179 0.526
RF 0.773693 0.052
GBM 0.785769 0.011

AUC ¼ area under the receiver operator characteristic curve;
GBM ¼ gradient boosted machine; LR ¼ logistic regression; RF ¼ random
forest; RPART ¼ recursive partitioning; RRS ¼ retinopathy risk score;
SVM ¼ support vector machine.
*By DeLong’s test.
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Table 5. With the exception of RPART, the remaining 4
MLMs and the RRS had significantly lower error rates
than the baseline rate of DR (naive or no information rate)
in the test set. When the no information rate and the
RPART predictions were removed, the remaining 4
MLMs and the RRS were not significantly different
(P ¼ 0.106).

The performance of the RRS is shown in Figure 3. The
plot demonstrates the increasing rate of abnormal retina
examinations (error rate) with increasing values of the
RRS. The functional portion of the curve appears to lie
between 0 and 100. The red line demonstrates the cutoff
value for the score determined by maximizing Cohen’s
kappa statistic. As the error rate falls, the proportion of
patients identified as low risk decreases.
Discussion

Since DR is a leading cause of vision impairment and
blindness,18 an annual dilated fundus examination is
recommended for patients with type II DM.3 In 2020, the
estimated prevalence of DM in Philadelphia County,
Pennsylvania was estimated to be 13.1%. Compared with
the county rate, 3 economically disadvantaged
communities in North Philadelphia served by the Temple
University Health System had higher estimated DM
prevalences of 16.1%, 17.9%, and 18.2%.19 Given the
higher prevalence of DM within this population, following
the current annual screening guidelines results in a large
expenditure of scarce resources. Therefore, an effective
screening method to identify patients at low risk for DR
would optimize primary care physicians to identify
patients who require less frequent screening. By reducing
the frequency of screening low-risk patients, this will
allow primary care physicians and ophthalmologists to
redirect resources to those patients at higher risk of disease.

A number of studies have employed machine learning
and large datasets to create predictive models. Li et al used
the machine learning algorithms XGBoost, LR, SVM, and
random forest along with 17 predictive features to predict
Table 5. Predictions of Patients at Low Risk for Diabetic Retinopathy b
Subjec

Algorithm

Normal Abnormal Nu

Retina Retina Cla

Naive/no informationy 438 102

RPART 438 102
SVM 352 41
RRS 251 27
LR 322 34
GBM 293 22
RF 243 13

GBM ¼ gradient boosted machine; LR ¼ logistic regression; RF ¼ random fores
support vector machine.
*By chi-square test.
yBaseline rate of diabetic retinopathy in 540 subjects with diabetes.
the risk of DR among a cohort of diabetic patients in China.9

Dividing the dataset into training (4875 subjects) and
validation (27 577 subjects) subsets, this study found that
XGBoost achieved the highest AUC of 0.90, while the
other models had AUCs of 0.83, 0.79, and 0.87
respectively. Predictive features such as HbA1c, serum
creatinine levels, presence of nephropathy, insulin
treatment, and diabetic lower extremity arterial disease
were associated with an increased risk of DR based on the
Shapley Additive exPlanation in the models.8 Unlike the
present study, Li et al had an extremely low DR rate
(6.3% vs. 19%), severely limiting the comparison of
predictive results. In a study reported in 2015, Ogunyemi
et al developed predictive DR MLM using clinical data
from 6 federally qualified primary care clinics in south
Los Angeles, California (Federally Qualified Health
Centers) (513 subjects, DR rate ¼ 25%) and public health
data from the National Health and Nutrition Examination
Survey conducted by the National Center for Health
Statistics (1239 subjects, DR rate ¼ 13%); 80% of each
dataset was used to train the models and the remainder
was used for validation.10 With validation data, RUSBoost
and AdaBoost.M1 models using the Federally Qualified
Health Centers dataset had AUCs of 0.72 and 0.60,
respectively; with the National Health and Nutrition
Examination Survey dataset the AUCs were uninformative
(0.48 and 0.51, respectively).9 In another study by the
same group reported in 2019, a dataset of 27 116 diabetic
subjects from the Los Angeles County Department of
Health Services’ Teleretinal Diabetic Retinopathy
Screening Program and Reading Center was used (18 077
in the training set and 9039 subjects in the validation
set).11 The rate of DR in the combined dataset was
34.1%.11 The rate of DR was adjusted in the training set
using synthetic minority oversampling. Eight predictive
features were used to identify patients at high risk for DR.
Three algorithms (penalized LR, SVM, and artificial
neural networks) were trained; the validation dataset
produced ROCs with AUCs of 0.752, 0.745, and 0.754,
respectively.10 Van der Heijden et al conducted a
systematic review that encompassed 12 studies developing
y 5 Machine Learning Models and an RRS Using a Test Set of 540
ts

mber Abnormal Retina

P Value*ssified Rate

540 0.189 REF -

540 0.189 1.00 -
393 0.104 1.61E-12 REF
278 0.097 1.61E-12 0.106
356 0.096 1.61E-12 0.106
315 0.070 1.61E-12 0.106
256 0.051 1.61E-12 0.106

t; RPART ¼ recursive partitioning; RRS ¼ retinopathy risk score; SVM ¼
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Figure 3. Retinopathy risk score performance as a low-risk predictor of
diabetic retinopathy. The x-axis is the product of A1c and years with
diabetes mellitus. Vertical line cutoff ¼ 53.9.
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prognostic prediction models for DR in individuals with
type II DM.20 Seven studies reported validation results
with AUCs ranging from 0.55 to 0.84.20

The present study utilized a dataset of patients with DM
who live in an underserved, economically disadvantaged
community in North Philadelphia with a DR rate of 19%,
comparable to most of the other reported studies. Our vali-
dated MLMs produced AUCs similar to those reported from
previous studies with comparable rates of DR in the target
population. In addition, the RRS, defined as the product of
disease duration and HbA1c closest to the screening, pro-
duced an AUC that was statistically indistinguishable from
the AUCs of most of the MLM. Finally, the error rate of the
RRS was not statistically different from the error rates of the
best MLM used to predict patients at low risk for DR.

There are several limitations of this study. First, the
dataset primarily included patients from an economically
disadvantaged, historically underserved, low-income popu-
lation, which may limit the generalizability of these results.
8

Second, the sample size was relatively small, consisting of
1930 subjects, which may have impacted the effectiveness
of the machine learning algorithms. Finally, the duration of
DM in years was missing for 33% of the subjects in the total
dataset of 1590 subjects to account for missing data. Dia-
betic mellitus duration was imputed for these patients using
predictive mean matching, a standard technique for esti-
mating missing continuous data using multiple variables.21

Another potential limitation in regard to DM duration is
that these data were manually collected through chart
review. Some patients had more recent diagnoses
indicated by previous encounters and corresponding
laboratory values, while the time of diagnosis for others
was estimated based on anecdotal patient recollection
documented in the EMR. These limitations should be
considered when interpreting the results of this study.

The novel RRS we propose, easily calculated as the
product of the HbA1c closest to the screening and the
duration of disease in years, appears to be as effective as
MLM that utilize a large number of predictive features in
identifying patients with DM at low risk for DR. Previous
studies have suggested the cost effectiveness and safety of
decreasing the frequency of recommended diabetic eye
examinations.20 This RRS has the potential to act as a
bridge between primary care, where patients with DM are
routinely managed, and ophthalmology, ensuring that
individuals at low risk for DR are not over-screened
while optimizing resources for those at higher risk for
developing vision-threatening DR. This study suggests
that the RRS has potential as a unique metric for predicting
the risk of DR. Before this model could be safely used
clinically, a retrospective study using prospectively
collected data on patients that have undergone screenings
over several years would need to show a low risk of
developing DR before considering a large prospective study
to determine the rate of patients without DR and a low RRS
of developing DR.
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