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Keywords: Recently, with the remarkable development of deep learning technology, achievements are being
Small object detection updated in various computer vision fields. In particular, the object recognition field is receiving
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the most attention. Nevertheless, recognition performance for small objects is still challenging.
Its performance is of utmost importance in realistic applications such as searching for missing
persons through aerial photography. The core structure of the object recognition neural network
is the feature pyramid network (FPN). You Only Look Once (YOLO) is the most widely used
representative model following this structure. In this study, we proposed an attention-based scale
sequence network (ASSN) that improves the scale sequence feature pyramid network (ssFPN),
enhancing the performance of the FPN-based detector for small objects. ASSN is a lightweight
attention module optimized for FPN-based detectors and has the versatility to be applied to
any model with a corresponding structure. The proposed ASSN demonstrated performance
improvements compared to the baselines (YOLOv7 and YOLOv8) in average precision (A P) of up
to 0.6%. Additionally, the AP for small objects (APg) showed also improvements of up to 1.9%.
Furthermore, ASSN exhibits higher performance than ssFPN while achieving lightweightness and
optimization, thereby improving computational complexity and processing speed. ASSN is open-
source based on YOLO version 7 and 8. This can be found in our public repository: https://
github.com/smu-ivpl/ASSN.git

1. Introduction

Thanks to recent remarkable developments in artificial neural network technology, notable achievements in many computer
vision fields are being updated daily. In particular, object recognition or detection is a core technology for numerous computer
vision applications, including object tracking, object segmentation, pose estimation, 3D object recognition, autonomous driving, and
unmanned aerial systems.

LeCun et al. published a gradient-based learning methodology for Convolutional Neural Networks (CNN), sparking a boom in
deep neural networks [1]. This also significantly changed the landscape of the object recognition field. Most early CNN-based object
recognition models consisted of two steps: a region proposal step and an inference step. This configuration was highly dependent on
the performance of the Region Proposal Network (RPN) and could not guarantee real-time performance due to its high computational
complexity. As model structures developed, one-stage models such as You Only Look Once (YOLO) were proposed. These one-stage
models were leading to improvements in inference speed and recognition rates at realistic levels [2].
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Fig. 1. Differences in distribution and recognition performance by size of the MS-COCO dataset.

The basic structure of recent object detection models is based on Feature Pyramid Networks (FPN), which construct pyramid-
shaped feature maps by gradually reducing the spatial scale of the input image [3]. FPN is an approach for handling objects of various
sizes in an image. However, FPN has structural problems in recognizing small objects. Specifically, compared to large objects, the
probability of information disappearing for small objects increases as the spatial scale decreases. The fundamental cause of the small
object problem is that as the network layer becomes deeper, features and location information about the bounding box are lost [4].

Microsoft Common Objects in Context (MS-COCO) is one of the public datasets for object detection and recognition [5]. Fig. 1
shows the ratio and the performance of data by object size in the MS-COCO. According to the definition of MS-COCO, the objects are
divided into three categories as follows:

+ small: segmentation mask size is 32x32 or less
+ medium: segmentation mask size is more than 32x32 and 96x96 or less
+ large: segmentation mask size is more than 96x96

As depicted in Fig. 1 (a), the proportion of small objects is the highest in the total data, but Fig. 1 (b) shows that the recognition rate
is the lowest compared to medium/large objects. Additionally, it can be observed that although the overall recognition performance
continues to increase as the model develops, the performance difference by object size exhibits a similar gap. It must be emphasized
that this fact can be critical in certain application scenarios. For instance, we can consider aerial drone image processing to search
for people in distress. This type of application is characterized by high resolution and small object size. Thus, making the recognition
rate for small objects is the most crucial factor.

Objects of various sizes naturally exist in images, the models that is able to learn multi-scale features are required [6]. Many
computer vision studies have attempted to design scale-invariant features to address this challenge. Scale-invariant features ensure
consistent recognition rates even when image size changes. Thus, it is enabling effective recognition of small objects if the model
can learn these features. Scale space, a multi-scale representation, is parameterized by the variance of the Gaussian kernel to extract
scale-invariant features [7]. This implies that a multi-scale representation can consist of features of various resolutions.

The latest deep learning-based object detection models, including YOLO, largely adopt a configuration of Backbone + Head. By
constructing a feature pyramid while gradually reducing the spatial scale at the Backbone, the Head detects the location of the object
and classifies it. Depending on the model’s structure, a separate Neck module may be introduced to enhance the performance of the
Head. Before detecting an object in the Head module, each object’s information is processed in different pyramid layers according
to its size. However, a structure that processes separately into pyramids of different scales may cause semantic gaps between each
feature [8]. This semantic gap ultimately results in differences in recognition performance by object size and tends to prioritize
detecting large objects. Therefore, a new structure is needed to prevent information about small objects from being lost within
multi-scale features and to resolve the semantic gap.

Attention-based methodologies have become a common focus in recent deep neural network research [9,10]. However, we
discovered that applying attention modules collectively to all or part of the network is not suitable for this task. Moreover, we have
previously proposed a Scale Sequence Feature Pyramid Network (ssFPN) to address small object problems [11]. Building upon this
prior research, we aim to introduce a novel Attention-based Scale Sequence Network (ASSN) capable of directing attention to small
objects and generating meaningful scale sequences. The contributions of this paper are three-fold:

« Scale sequence feature of ASSN can intensively improve small object recognition performance while also contributing to the
overall performance of FPN-based object detection model.
+ ASSN is a module with versatility that can be applied to all models using the FPN structure.
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+ ASSN is a very lightweight additional module that guarantees the real-time performance of the existing FPN-based detection
model.

2. Related works
2.1. Feature pyramid network-based object detection

The history of neural network-based object detection models can be traced back to the R-CNN [12]. The R-CNN utilized a selective
search algorithm for region proposals and applied bounding box regression. Also, it retained only boxes with high scores through
Non-Maximum Suppression (NMS) and employed an Support Vector Machine (SVM)-based classifier.

Since then, numerous follow-up studies have been reported one after another to improve the R-CNN. SPPNet [13] addressed
R-CNN’s limitations of fixed input image size and overlapping CNN structure. Fast R-CNN [14] introduced an end-to-end framework
that performs CNN fine-tuning, bounding box regression, and classification within a single network. Faster R-CNN [15] proposed
the RPN for replacing selective search. Additionally, the introduction of Mask R-CNN [16], which added a separate mask branch for
semantic segmentation, enabled more precise inference of object locations.

Despite the rapid development of object detection models, real-time performance was still not guaranteed. Redmon et al. ad-
dressed this issue by proposing a one-stage model that simultaneously performs region proposal and classification, named You Only
Look Once (YOLO) [2]. YOLO has revolutionized real-time object detection technology and is currently at version 8 (YOLOv8) due
to ongoing research efforts. The characteristics of each version of YOLO can be summarized as follows:

YOLOv1 [2]: It introduced a one-stage deep learning network for real-time object detection.

YOLOvV2 [17]: Performance improvements were achieved by replacing the Fully-Connected (FC) layer with 1 X 1 convolution,
and introducing global average pooling to reduce the number of parameters.

YOLOvV3 [18]: This version introduced numerous changes, including the removal of the pooling layer, introduction of ResNet’s
skip connections [19], adoption of SSD’s multi-scale feature layer [20], application of RetinaNet’s FPN technique [21], and
enabling multi-label classification.

YOLOv4 [22]: To address the small object detection issue, FPN and Path Aggregation Network (PAN) were introduced. Addi-
tionally, new network structures such as Cross-Stage Partial Connections (CSP)-based backbone connection and Spatial Pyramid
Pooling (SPP) were introduced to enhance performance.

YOLOVS5 [23]: Performance was enhanced by introducing the BottleneckCSP module and an improved version of CSP.

YOLOV6 [24]: Various techniques were introduced to increase algorithm efficiency. These include dynamically adjusting the
knowledge of teachers and labels so that the student model can learn more efficiently across all learning stages during the
self-distillation process.

YOLOv7 [25]: It introduced model re-parameterization, label assignment, and extend and compound scaling methodologies.
Additionally, an Extended Efficient Layer Aggregation Network (E-ELAN) from a structural aspect was proposed.

YOLOV8 [26]: NMS speed was improved by proposing an anchor-free model that directly predicts the center of the object instead
of the anchor box offset. Additionally, many structural changes were implemented.

Scale-invariant features remain robust despite changes in object size [6]. The Scale Invariant Feature Transform (SIFT) is a
prominent algorithm for multi-scale object processing in traditional computer vision [27]. SIFT generates multi-scale features using
Gaussian filters with different scale factors. Extrema are extracted from the feature maps using the Difference of Gaussian (DoG)
function as key points for matching across different scale spaces.

In this manner, the image pyramid serves as the fundamental approach for most object recognition algorithms. Structural ap-
proaches to address the small object problem can be summarized as image pyramid structures such as FPN and feature map fusion
techniques such as PAN. In the following subsections, we will explore the trends in small object detection.

2.2. Small object detection

Wang et al. introduced the scale-transfer and scale-relationship modules to address changes in the scale of text images [28]. Wang
et al. considered the multi-scale feature pyramid as a scale space and utilized Deformable Convolution to equalize the scale features
[29]. Their approach to scale space formation was effectively adopted in our study.

Azimi et al. introduced image cascade networks for small object detection in remote sensing images [30]. They focused on
extracting semantic features at various scales by leveraging the hierarchical structure of FPN. Liu et al. proposed a high-resolution
detection network that adjusted the resolution of the input image [31]. They utilized backbone networks with different depths for
images of varying resolutions. Their approach demonstrated notable performance on the VisDrone2019 dataset [32] which specializes
in small objects.

Chen et al. also utilized a backbone network that was separated from inputs with different resolutions [33]. They introduced a
mechanism to extract attention features at different scales and enhanced the detection rate for small objects by assigning high weight
to low-resolution images. Tao et al. expanded upon this work and proposed a hierarchical attention structure [34]. They devised a
structure to infer the attention of adjacent scale pairs in a multi-scale network.
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Many studies have introduced excessive additional modules to existing models, such as distinguishing input resolutions or in-
troducing backbones with different structures to handle different scales. However, this approach may not guarantee real-time
performance due to an unnecessary increase in computation and can make precise detection of small objects challenging. Our
proposed ASSN does not alter the structure of existing object detection models that use only a single image input, thereby enhancing
detection performance while minimizing complexity.

2.3. Feature fusion strategy

FPN extracts scale features of various resolutions and integrates them in a top-down path. Typically, in this pyramid structure,
large objects can be detected at small resolutions while small objects can be detected at large resolutions, depending on the scale
space characteristics. However, information inconsistencies and semantic gaps between these scales can adversely affect performance.

Liu et al. attempted to mitigate the gap by introducing bottom-up paths to FPN in their proposed PAN [8]. This method of
path expansion between scale features has implications for more accurate bounding box inference. Tan et al. proposed a weighted
fusion technique for feature pyramids [35]. Liu et al. proposed Composite Backbone Network Architecture (CBNet) [36]. As its name
suggests, CBNet introduced multiple backbone networks for feature enhancement and fused features according to the Adjacent High-
Level Composition (AHLC) method. Dai et al. introduced three attention modules: scale-aware attention, spatial-aware attention, and
task-aware attention [37]. The features extracted from these are fused together to form a comprehensive view, from which the final
self-attention is calculated.

This feature fusion approach has also been identified as a meaningful structure through neural Network Architecture Search
(NAS) using reinforcement learning. NAS-FPN [38] showed a highly complex form of feature fusion in models derived from learning.
There is a possibility that some meaningful fusion methodology exists between features extracted from these distinct pyramid paths.
However, as observed in previous studies, the introduction of batch attention modules, indiscriminate skip connections, or feature
fusion does not necessarily improve performance. From this perspective, we aimed to introduce an optimal scale sequence fusion
methodology focused on small objects.

3. Attention-based scale sequence network

The typical structure of a detector models comprises a Backbone followed by a Head. After the Backbone generates a feature
pyramid, the Head predicts the location and class of objects based on their scales. While the ASSN can be applied to any model with
this structure, for the sake of clarity, this paper limits the experimental subject to YOLOv7 and YOLOVS. In previous research [11],
we regarded the feature pyramid extracted from FPN as a scale space similar to the SEPC [29].

Fig. 2 illustrates the overall process of ASSN integrated into the detector model with a Backbone + Neck + Head structure. The
primary objective of ASSN is to establish a new P3 dynamic head capable of enhancing small object detection performance. Fig. 3
shows the structural variances between the existing ssFPN and the enhanced ASSN. As depicted in the structural diagram above
the dotted line, ssFPN heavily relies on the 3D convolution layer. In ssFPN, feature maps (P3 ~ P5) with different resolutions were
merged according to the scale space theory to construct a scale sequence. However, this was merely a straightforward upsampling
and concatenation process. This design seemed somewhat lacking in justification for the purpose of recognizing small objects.

The bottom section of the dotted line in Fig. 3 illustrates the overall structure of the proposed ASSN. ASSN is a module designed
in two stages to enhance small object detection. It generates a scale sequence from the feature pyramid involved in head calculation,
refines it, and connects it to the dynamic head of P3. We recognized the need for a more sophisticated process in forming the
scale sequence itself and thus introduced the attention method. Although the concept of applying attention to the image pyramid
is not new, we reinterpreted the existing attention module to focus on small object detection. The Convolutional Block Attention
Module (CBAM) [39] sequentially generates channel attention and spatial attention. Among the feature maps, P; retains the most
information about small objects. Therefore, to enhance features for small objects, it is effective to create an attention map specifically
in P3. Reflecting this, the scale sequence (S?) features can be defined as follows:

S = (My(P) @ PN}l,, N=2'3 ¢8)
Here, P’3 corresponds to the result of applying the channel attention map to P5, and MS(P’3) represents the resulting spatial attention
map. The symbol ® denotes element-wise matrix multiplication. P?I denotes the i — th pyramid feature generated from the Backbone,
and L denotes the total number of pyramids. N denotes the spatial resolution scale value of the feature map. For i > 3, the spatial
resolution of the feature map decreases by a factor of 2, so upsampling is performed to match the size of the P; feature map.
Specifically, P, undergoes upsampling by a factor of X2, and P5 undergoes upsampling by a factor of x4. The process of generating
a channel/spatial attention map from the P5 features is as follows:

P, =M(P) @Ps. N
/" _ ’ /
P} =M,(P) ®P,,
Here, M, and My denote the channel attention map and spatial attention map, respectively. First, the process of generating a channel
attention map from the P; feature map is as follows:
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Fig. 2. Overall architecture of ASSN merged into the FPN-based object detector.

M,.(P3) = o(M LP(AvgPool(P3))) + c(M LP(M axPool(P3)))
=c(W (SiLUWPE ) + (W (SiLUWy(PE ),

avg max

3

Here, Avg Pool and M ax Pool denote average pooling and max pooling operations, respectively, and M L P represents a linear multi-
layer perceptron. ¢ and SiLU represent the activation functions sigmoid and swish [40], respectively. The channel attention map
generated in this manner is applied to the input P5 to produce a spatial attention map as follows:

M,(P3) = c(BN (f ™7 ([ Avg Pool (P3); M ax Pool(P3)])))
=6(BN(f 7 ([P0 P 0 D))

avg’ " max

C)

Here, BN means batch normalization [41].

Fig. 4 provides an example illustrating the process of generating a P3 attention map as described above and creating a scale
sequence containing emphasized information about small objects. It’s important to understand the sequence of applying the channel
attention and spatial attention maps. We introduced a method of generating an attention map solely from the P3 feature map and
then applying it to all P; feature maps involved in the Head operation. This approach significantly enhances detection performance
for small objects compared to applying the attention mechanism to all network layers. Not only does it improve precision, but it also
contributes to lightweighting by reducing unnecessary calculations, thereby ensuring the module’s versatility. It’s worth emphasizing
that the attention map generation in ASSN exclusively targets the P; feature map because spatial information about small objects
is more likely to be present in P3, which has a relatively higher resolution. The spatial attention map M is applied not only to
P; but also to the upsampled counterparts. Consequently, the S? feature map ultimately constitutes the MS(P?J ) set. This approach
directs focused attention toward small objects, unlike the general method using CBAM. By applying the P; attention map to all P?J
participating in the Head, not only can the semantic gap between feature maps be bridged, but also the inference performance in the
Head can be enhanced by preserving spatial information about small objects that may be lost in low resolution.

The scale sequence generated in this manner contains valuable information about small objects. But, it requires refinement before
being linked to the Head, where location and class inference take place. In the case of existing ssFPN, a 3D convolution module was
introduced to extract information from scale sequences. This is similar to extracting features from a video sequence by considering
the correlation between adjacent frames. However, even the ssFPN exhibited significant performance in YOLOv4 and YOLOR, it is
demonstrated lower performance in later YOLO versions. Consequently, we concluded that the scale sequence itself must already
contain meaningful information and the subsequent refinement step should be needed.

The subsequent step for refining the scale sequence adopted the E-ELAN structure introduced in YOLOv7 [25]. Fig. 5 illustrates
the module structure for refining the scale sequence from a feature map perspective. E-ELAN employs expand, shuffle, and merge
cardinality to minimize computational overhead and enhance learning capability by configuring a deep network. Generally, it’s
known that increasing cardinality is more beneficial for performance than simply increasing the number of layers when constructing
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Fig. 4. P; attention map creation process from a feature map perspective.

a deep network. The refinement stage structurally forms a deeper layer compared to the 3D convolution module of ssFPN, but it
incurs lower computational cost.

In Fig. 3, it’s notable that the operations for connecting the P; feature maps generated by ssFPN and ASSN as the dynamic head
differ. While ssFPN combined the feature maps of P3g and P3, generated in the module through concatenation, ASSN employed
an add-based fusion method. This implies that ASSN itself functions as a residual block to compensate for information loss in the
existing P3 pyramid feature. Through experimentation, we confirmed that the add-based fusion method outperforms the concate-
nation method. Add-based fusion also provided significant advantages in terms of computational complexity and contributed to the
lightweight nature of ASSN.

3.1. Dataset and evaluation metrics

All experiments were conducted using the MS-COCO 2017 dataset [5] and the Pascal VOC 2007/2012 dataset [42,43]. The MS-
COCO dataset comprises 80 object categories, with 118k images in the training set, 5k images in the validation set and 20k images
in the test set. The Pascal VOC dataset consists of 20 object categories, with 17k images in the training set and 5k images in the
validation set. Evaluation of all results was performed using the average precision (A P) metrics on both the MS-COCO and Pascal
VOC datasets.
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P3p

Fig. 5. Scale sequence refinement process from a feature map perspective.

Table 1
Environment for model training.
CPU Intel® Core™ i9-10900X CPU @ 3.70GHz X 20
RAM 256 GB
GPU NVIDIA GeForce RTX 3090 24GB X 4
oS Ubuntu 20.04.6 LTS

Python 3.9.18
PyTorch  2.1.0
CUDA 12.1
CUDNN 8.9.2

We measured the average of the Intersection over Union (IoU) metrics for three types as follows. In addition to the average AP
across the IoU range of 0.50 to 0.95, APs, and AP;5 were specifically calculated at IoU thresholds of 0.50 and 0.75, respectively.
Furthermore, APg, AP),;, and AP; were reported for small, medium, and large objects, respectively, based on their size categories.

3.2. Implementation details

We selected YOLOv7 and YOLOVS8 as the baseline models to evaluate the performance of the proposed ASSN. Table 1 provides a
summary of the experimental environment. PyTorch [44] was utilized as the deep learning framework for implementation. Trans-
fer learning was applied using the pre-trained weights of YOLOv7 and YOLOv8. The hyper-parameter settings for training were
configured to match the default settings of YOLOv7 and YOLOVS.

4. Experimental results
4.1. Performance analysis

Tables 2, 3, 4 and 5 show the performance comparison among the baseline models, ssFPN and the proposed ASSN. The experiment
encompassed four P5 models (YOLOv7, YOLOv7-X, YOLOv8n, YOLOVS8s) and one P6 model (YOLOv7-W6). Additionally, to verify the
performance improvement of ASSN compared to ssFPN, we included the experimental results of ssFPN for certain baselines. Tables 3
and 4 provide a summary of the AP performance for MS-COCO’s validation set (5k images) and test set (20k images), respectively.

When ssFPN was applied, the performance was decreased by -0.2% and -0.1% in YOLOvV7, respectively. But, the performance
was improved by +0.1% and +0.2% in the case of YOLOv7-X, respectively. Although these results are specific to the P5 model, it
is verified that the ssFPN based on 3D convolution caused a performance degradation in YOLOv7. Conversely, higher performance
improvements were verified of +0.3% in YOLOvV7, +0.6% in YOLOv7-X and +0.4% in YOLOv7-W6 in validation set of MS-COCO,
respectively. Also, better performances than baseline were shown of +0.5% in YOLOv7, +0.4% in YOLOv7-X and +0.3% in YOLOv7-
W6 in test set of MS-COCO, respectively. Based on the test set of MS-COCO, the detection performance for small objects (APyg)
was enhanced by +0.6% in YOLOv7, +0.5% in YOLOv7-X, and 4+0.6% in YOLOv7-W6. Regarding YOLOv8, Table 3 demonstrates
the performance integration with ASSN. AP performance was improved by 0.1% in YOLOvS8s, while APg performance showed
an enhancement of 1.9% in YOLOv8n and 1.3% in YOLOVSs, respectively. The experimental results clearly indicate that ASSN
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Table 2
Complexity and processing speed comparison between the baselines (YOLOv7 and YOLOV8), the ssFPN, and
proposed ASSN.
Model Size #Params (M) FLOPs (G) Batch32 (ms) Batchl (fps)
YOLOv7 640 36.9 104.7 7.1 77
YOLOv7-X 640  71.3 189.9 8.9 63
YOLOV7-W6 1280  70.4 89.9 13.7 47
YOLOvV8n 640 3.2 8.7 1.6 83
YOLOVS8s 640 11.2 28.6 2.8 87
ssFPN + YOLOv7 640  39.9 (+ 3.0) 175.9 (+ 71.2) 8.7 (+ 1.6) 65 (-12)
ssFPN + YOLOv7-X 640 74.8 (+ 3.5) 297.9 (+108.0) 11.3 (+ 2.4) 55(- 8)
ssFPN + YOLOv7-W6 1280 86.1 (+15.7) 249.2 (+159.3) 29.1 (+16.6) 31 (-16)
ASSN + YOLOv7 640  39.5 (+ 2.6) 125.9 (+ 21.2) 7.7 (+ 0.6) 69 (- 8)
ASSN + YOLOv7-X 640 74.2 (+ 2.9) 219.5 (+ 29.6) 9.9 (+ 1.0) 58 (- 5)
ASSN + YOLOvV7-W6 1280 84.4 (+14.0) 123.4 (+ 33.5) 19.6 (+ 5.9) 35(-12)
ASSN + YOLOv8n 640 3.3 (+ 0.1) 99(+ 1.4 1.9 (+ 0.3) 68 (-15)
ASSN + YOLOv8s 640 11.6 (+ 0.4) 33.3(+ 4.7) 3.3(+ 0.5 66 (-21)
Table 3
Performance comparison on MS-COCO validation set (5K images) between the baseline (YOLOv7, v8), the ssFPN, and pro-
posed ASSN.
Model AP APy, APy APg APy, AP,
YOLOvV7 51.2 69.7 55.5 35.2 56.0 66.7
YOLOvV7-X 52.9 71.1 57.5 36.9 57.7 68.6
YOLOvV7-W6 54.6 72.3 59.5 40.1 59.0 68.6
YOLOv8n 37.4 52.9 40.3 18.6 41.0 53.5
YOLOV8s 44.9 62.1 48.3 25.9 49.9 61.0
ssFPN + YOLOv7 51.0 (—0.2) 69.5 (—0.2) 55.3 (-0.2) 35.1 (-0.1) 55.8 (—0.2) 65.8 (—0.9)
ssFPN + YOLOv7-X 53.0 ( ) 71.1 () 57.7 ( ) 36.2 (-0.7) 57.7 (1) 68.6 (-)
ASSN + YOLOv7 51.5 ( ) 70.0 ( ) 56.1 ( ) 35.7 ( ) 56.3 ( ) 65.8 (-0.9)
ASSN + YOLOv7-X 53.5( ) 71.6 ( ) 58.2 ( ) 36.7 (-0.2) 58.3 ( ) 69.7 ( )
ASSN + YOLOv7-W6 55.0 ( ) 72.7 ( ) 60.1 ( ) 40.0 (-0.1) 59.5 ( ) 68.2 (-0.4)
ASSN + YOLOv8n 37.4 () 53.2 ( ) 40.5 ( ) 20.5 ( ) 41.6 ( ) 51.6 (-1.9)
ASSN + YOLOv8s 45.0 ( ) 62.3 ( ) 49.1 ( ) 27.2 ( ) 50.3 ( ) 59.7 (-1.3)
Table 4
Performance comparison on MS-COCO test set (20K images) between the baseline (YOLOv?), the ssFPN, and proposed ASSN.
Model AP APy, APy APg APy, AP,
YOLOv7 51.4 69.7 55.9 31.8 55.5 65.0
YOLOvV7-X 53.1 71.2 57.8 33.8 57.1 67.4
YOLOV7-W6 54.9 72.6 60.1 37.3 58.7 67.1
ssFPN + YOLOv7 51.3 (-0.1) 69.7 (-) 55.8 (-0.1) 32.0 ( ) 55.2 (-0.3) 64.5 (-0.5)
ssFPN + YOLOv7-X 53.3 ( ) 71.4 ( ) 58.0 ( ) 33.9 ( ) 57.2 ( ) 67.5 ( )
ASSN + YOLOv7 51.9 ( ) 70.3 ( ) 56.5 ( ) 32.6 ( ) 55.7 ( ) 65.4 ( )
ASSN + YOLOv7-X 53.5¢( ) 71.5 ( ) 58.2 ( ) 34.3 ( ) 57.5( ) 67.4 (-)

ASSN + YOLOv7-W6 55.2 ( ) 72.9 ( ) 60.5 ( ) 37.9( ) 58.8 ( ) 67.5 ( )

significantly enhances the detection performance, demonstrating its effectiveness not only for small objects but also for objects of all
sizes.

In the case of YOLOV7-W6, which is a P6 model, the feature pyramid generated from the Neck module consists of 2 stages. Please
note that ASSN was applied to only one stage instead of both stages to maintain the lightweight nature of ASSN. Hence, it can be
inferred that the performance of the P6 model has potential for further enhancement, leaving it as a topic for future research.

Table 5 shows the performance of YOLOv8 on the MS-COCO and Pascal VOC datasets. Since Pascal VOC does not define metrics
for object sizes, only the performance for AP and APs, was compared. From the result, it is verified that ASSN exhibits better
performance regardless of the dataset type.

In terms of lightweighting, ASSN demonstrated a much lighter model structure and faster processing speed compared to ssFPN.
The #Params column in Table 2 compares the number of learning parameters of ssFPN and ASSN relative to the baseline, expressed
in millions (M). While ssFPN exhibited an increase in the number of parameters by +3.0M, +3.5M and +15.7M for each model, ASSN
only increased the parameter count by +2.6M, +2.9M and +14.0M, respectively. Moreover, the computational complexity (FLOPs)
shows a much larger decrease due to differences in operations. ssFPN displayed a significant increase in computational complexity
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Table 5
Performance comparison by dataset.
Model MS-COCO Pascal-VOC
(validation set, 5K images) (validation set, 5K images)
AP AP, AP AP,
YOLOvV8n 37.4 529 54.6 76.1
YOLOVS8s 44.9 62.1 60.2 81.3
ASSN + YOLOv8n 37.4 () 53.2 ( ) 54.9 ( ) 76.3 ( )

ASSN + YOLOvS8s

45.1 ( ) 62.3 ( )

60.5 ( ) 81.5 ( )

Fig. 6. Visual performance comparison. Left: YOLOV7-W6. Right: ASSN + YOLOv7-W6. Only detection results for small objects smaller than 32x32 were visualized.
It can be seen that ASSN is detecting more small objects in the area of green rectangles in each figure.
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of +71.2G, +108.0G and +159.3G, respectively. But, ASSN showed only a relatively small increase in complexity of +21.2G, +29.6G
and +33.5G, respectively. Notable disparities were also showed in the number of Frames Per Second (FPS) and processing speed for
32 batches. Using the YOLOv7-W6 model as a reference, which is the heaviest model, ssFPN exhibited a processing speed of 31 FPS
and 29.1 ms. But, ASSN demonstrated a fast processing speed of 42 FPS and 13.5 ms.

Fig. 6 illustrates the small object recognition performance of the proposed ASSN. For visualization, images were sampled from
MS-COCO’s test-dev2017 dataset. The detection performance of the P6 model, YOLOv7-W6, and the ASSN-integrated model were
compared. The detection confidence value was set to 0.25 and the internal image size was 1280x1280.

The bounding box was displayed only for inferred small objects (size 32x32 or less). The green rectangles highlighted in the
figures at the same locations indicate that more small objects are being detected by the ASSN. Through this visual comparison, it is
obvious that the proposed ASSN effectively enhanced the detection performance for small objects compared to the baseline detector.

5. Conclusions

We have proposed the Attention-based Scale Sequence Network (ASSN) to improve small object detection performance and
evaluated its performance. Small object detection is a crucial task in real-world applications but it is still challenging. The process of
training scale-invariant features constitutes the basic foundation of an FPN-based detection model. We reinterpreted attention module
to focus on small objects. Consequently, a lightweight structure was applied to ASSN. But, the performance was more effective than
baselines. ASSN has the versatility to be applied to all FPN-based models.

Through experimental results, we have verified that the ASSN was able to improve not only the detection performance of small
objects but also the overall performance. In addition, through a lightweight model design, performance was improved without
compromising the real-time nature of the model. We plan to continue experiments to further develop the technology and derive
more generalized performance across various FPN-based models.
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