
Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2011, Article ID 241396, 7 pages
doi:10.1155/2011/241396

Research Article

Biomedical Imaging Modality Classification Using Combined
Visual Features and Textual Terms

Xian-Hua Han1 and Yen-Wei Chen1, 2

1 College of Information Science and Engineering, Ritsumeikan University, Kusatsu-Shi, 525-8577, Japan
2 College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA 16802, USA

Correspondence should be addressed to Xian-Hua Han, hanxhua@fc.ritsumei.ac.jp

Received 22 February 2011; Revised 12 May 2011; Accepted 6 July 2011

Academic Editor: Fei Wang

Copyright © 2011 X.-H. Han and Y.-W. Chen. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We describe an approach for the automatic modality classification in medical image retrieval task of the 2010 CLEF cross-language
image retrieval campaign (ImageCLEF). This paper is focused on the process of feature extraction from medical images and fuses
the different extracted visual features and textual feature for modality classification. To extract visual features from the images,
we used histogram descriptor of edge, gray, or color intensity and block-based variation as global features and SIFT histogram as
local feature. For textual feature of image representation, the binary histogram of some predefined vocabulary words from image
captions is used. Then, we combine the different features using normalized kernel functions for SVM classification. Furthermore,
for some easy misclassified modality pairs such as CT and MR or PET and NM modalities, a local classifier is used for distinguishing
samples in the pair modality to improve performance. The proposed strategy is evaluated with the provided modality dataset by
ImageCLEF 2010.

1. Introduction

Imaging modality is an important aspect of the image for
medical retrieval [1–6]. “In user studies, clinicians have
indicated that modality is one of the most important filters
that they would like to be able to limit their search by. Many
image retrieval websites (Goldminer, Yottalook) allow users
to limit the search results to a particular modality. However,
this modality is typically extracted from the caption and is
often not correct or present” [7]. Some works have shown
that image modality can be extracted from the image itself
using visual features [8–10]. Therefore, in this paper, we
propose to use both visual and textual features for medical
image representation, and combine the different features
using normalized kernel function in SVM.

In computer vision, studies have shown that the simple
global features such as histogram of edge, gray or color
intensity, can represent images, and give the acceptable
performance in image retrieval or recognition research fields.
Based on the success of the above-mentioned visual features
for general image recognition, we also use them as medical

image representation for modality classification. Recently,
using local visual feature for image representation has
become very popular, and been proved to be very effective
for image categorization or retrieval [11]. The most famous
approach for image representation using local visual feature
is bag of keypoints [12, 13]. The basic idea of bag of
keypoints is that a set of local image patches is sampled using
some method (e.g., densely, randomly, or using a keypoint
detector) and a vector of visual descriptors is evaluated on
each patch independently (e.g., SIFT descriptor, normalized
pixel values). The resulting distribution of descriptors in
descriptor space is then quantified in some way (e.g., by
using vector quantization against a prespecified codebook to
convert it to a histogram of votes for (i.e., patches assigned
to codebook centres) and the resulting global descriptor
vector is used as a characterization of the image (e.g., as
feature vector on which to learn an image classification
rule based on an SVM classifier). Furthermore, according
to the visual properties of medical images, we also calculate
a histogram of small-block variance as visual feature for
image representation. For textual feature, we predefine 90
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vocabulary words somewhat according to the statistical
properties of training samples’ captions and our knowledge
about medical modality, and calculate a binary histogram for
any medical image using their captions. After obtaining the
different features for image representation, we combine them
together using kernel function for SVM classifier. Because
different features maybe have deferent scale and dimension,
in order to allow each individual feature to contribute
equally for modality classification, we normalize the distance
between two samples using mean distance of all training
samples, and then, obtain the kernel function for each
individual feature. The final kernel for SVM classification
is the mean of individual kernel, which can be called Joint
Kernel Equal Contribution (JKEC). Furthermore, for some
easy misclassified modalities such as CT and MR or PET
and NM, a global classifier, which deals with all modalities
in the used database, may not be effective in distinguishing
the local modalities from each other. Therefore, after the
global classification, a local classifier is used in the easy
misclassified modality pairs to refine the classification results.
Finally, the proposed algorithm is evaluated on the modality
dataset of ImageCLEF 2010, and almost achieve the expected
accuracy rate expected by the modality classification task of
ImageCLEF 2010, which is about 97% classification rate.

2. Feature Extraction for Image Representation

In this section we describe how we extract a feature
representation, which is somewhat robust to the high
variability inherent in medical images and includes enough
discriminative information for modality category. Some
previous studies showed that it is difficult to correctly classify
image categorization with only one type of image feature
[14, 15]. So in this paper, we represent images with different
images features including gray and color intensity histogram,
block-based edge and variance histogram, popular bag-of-
words model as visual feature, and a binary histogram of
the predefined vocabulary words from image captions as
textual feature. Then we merge them together for modality
classification. Next, we simply introduce the used features for
medical image representation.

2.1. Visual Features

2.1.1. Gray and Color Intensity Histogram. Intensity his-
tograms are widely used to capture the distribution informa-
tion in an image. They are easy to compute and tend to be
robust against small changes of camera viewpoints. For Gray
intensity histogram, we can calculate the number of each
intensity (0–255) for all image pixel, and normalize it using
pixel number. Given an image I in some color space (e.g.,
red, green, and blue), to calculate color histogram the color
channels are quantized into a coarser space with k bins for
red, m bins for green, and l bins for blue. Therefore the color
histogram is a vector h = (h1,h2, . . . ,hn)T , where n = kml,
and each element hi represents the number of pixels of the
discretized color in the image. We assume that all images

have been scaled to the same size. Otherwise, we normalize
histogram elements as

h′j =
yj

∑n
j=0 yj

. (1)

2.1.2. Block-Based Edge Histogram. We firstly segment the
image into several blocks, and calculate edge histogram
weighted by gradient intensity in each block [16]. In
experiment, we grid-segment an image into 4-by-4 block,
and calculate a 20-bin edge histogram in each block. So we
have 320-(20 ∗ 16-)dimensional edge histogram feature for
medical image representation.

2.1.3. Block-Based Variance Histogram. For each pixel in an
image, a small patch centered by the specific pixel are used
for calculating the local variation of the pixel. After obtaining
the local variation of all pixels in the image, a histogram of
variation intensity is calculated for the image representation.

2.1.4. Bag-of-Words Feature. In computer vision, local
descriptors (i.e., features computed over limited spatial sup-
port) have proved well-adapted to matching and recognition
tasks, as they are robust to partial visibility and clutter. In
this paper, we use grid-sampling patches, and then compute
appearance-based descriptors on the patches. In contrast to
the interest points from the detector, these points can also
fall onto very homogeneous areas of the image. After the
patches are extracted, the SIFT [11] descriptor is applied to
represent the local features. The SIFT descriptor computes
a gradient orientation histogram within the support region.
For each of 8 orientation planes, the gradient image is
sampled over a 4-by-4 grid of locations, thus resulting in a
128-dimensional feature vector for each region. A Gaussian
window function is used to assign a weight to the magnitude
of each sample point. This makes the descriptor less sensitive
to small changes in the position of the support region and
puts more emphasis on the gradients that are near the
center of the region. To obtain robustness to illumination
changes, the descriptors are made invariant to illumination
transformations of the form aI(x) + b by scaling the norm
of each descriptor to unity [11]. These SIFT features are
then clustered with a k-means algorithm using the Euclidean
distance. Then we discard all information for each patch
except its corresponding closest cluster center identifier. For
the test data, this identifier is determined by evaluating the
Euclidean distance to all cluster centers for each patch. Thus,
the clustering assigns a cluster c(x)(c = 1, . . . C) to each
image patch x and allows us to create histograms of cluster
frequencies by counting how many of the extracted patches
belong to each of the clusters. The histogram representation
h(X) with C bins is then determined by counting and
normalization such that

hc(X) = 1
LX

LX∑

l=1

δ(c, c(xl)), (2)

where δ denotes the Kronecker delta function. Figure 1
shows the procedure of bag-of-words (BoW) feature extrac-
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Figure 1: BOW feature extraction procedure.
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Figure 2: Textual feature extraction procedure.

tion and the extracted histogram feature of an example
image. Obviously, there exist alternatives to algorithmic
choices made in the proposed method. For example, different
interest point detectors can be used. However, it does not
manifest obvious merit for different background cluster of
images. Furthermore, the geometrical relation between the
extracted patches is completely neglected in the approach
presented here. While this relation could be used to improve
classification accuracy, it remains difficult to achieve an
effective reduction of the error rate in various situations by
doing so.

2.2. Textual Features. According to the statistical properties
of word occurrence in each training modality image’s
captions and our prior knowledge about the classifying
modalities, we select 90 key-words, such as CT, curve,
MR, urethrogram, and PET, as the vocabulary for forming
a binary histogram for each medical image. The binary
histogram for image representation is 90-dimension vector,
where each dimension is correspond to one selected keyword.

If one keyword appeared one or more than one time in an
image’s caption, the value of the corresponding dimension
in its represented binary histogram will be 1, otherwise it will
be 0. The textual feature extraction procedure is illustrated in
Figure 2.

3. Feature Fusion

Given a training set (xi, yi)i=1,2,...,N of N instances consisting
of an image xi ∈ χ and a class label yi ∈ 1, 2, . . . ,C, and
given a set of F image features fm : χ → Rdm , m =
1, 2, . . . ,F, where dm denotes the dimensionality of the mth
feature, the problem of learning a classification function
y : χ → 1, 2, . . . ,C from the features and training set
is called feature combination problem. In computer vision,
the problem of learning a multiclass classifier from training
data is often addressed by means of kernel methods. Kernel
methods make use of kernel functions defining a measure
of similarity between pairs of instances. In the context of
feature combination it is useful to associate a kernel to each
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image feature as the following equation (3), and combine the
kernels of different features together. For a kernel function K
of each feature between real vectors we define the short-hand
notation:

Km

(
Ii, I j ,

)
= K

(
fm(Ii), fm

(
I j
))
= K

(
S
(
fm(Ii), fm

(
I j
)))

,

(3)

where Ii and I j are two samples, fm(Ii) is the mth extracted
feature from the sample Ii, and S( fm(Ii), fm(I j)) is the
similarity measure between the mth features of the samples Ii
and I j . Then the image kernel Km: χ × χ ∈ R only considers
similarity with respect to image feature fm. If the image
feature is specific to a certain aspect, say, it only considers
color information, then the kernel measures similarity only
with regard to this aspect. The subscript m of the kernel
can then be understood as indexing into the set of features.
Because different features maybe have different scale and
dimension, in order to allow each individual feature to
contribute equally for modality classification, we normalize
the distance between two samples using mean distance of
all training samples, and then, obtain the kernel function
for each individual feature fm. The final kernel for SVM
classification is the mean of individual kernel, which can
be called Joint Kernel Equal Contribution (JKEC). For the
feature similarity calculation of two samples, we use several
distances: Euclidean distance (L2 distance), L1 distance, and
χ2 distance, for evaluating the classification performance.
The χ2 distance for two samples can be calculated as follows:

S
i, j
m = S

(
fm(Ii), fm

(
I j
))
=

L∑

1

(
xl − yl

)2

xl + yl
, (4)

where x and y represent the mth features fm(Ii), fm(I j) of
samples i and j, respectively, and xl is the lth element of

the vector x. S
i, j
m is the similarity measure of the mth feature

between the ith and jth training samples. Then, the RBF
function is used for calculating the kernel:

K
i, j
m = Km

(
Ii, I j ,

)
= exp

⎛

⎝
−S
(
fm(Ii), fm

(
I j
))

γm

⎞

⎠, (5)

where γm is the normalized item for kernel function of the
mth feature. Here, we use the distance mean of all training

samples as γm = 1/N2(
∑N

i

∑N
i S

i, j
m ) (N is the training sample

number), which will lead to similar contribution of each
feature to kernel. Then the final combined kernel function
can be obtained by

Ki, j = 1
M

M∑

i

K
i, j
m , (6)

where M is the feature number for image representation. The
proposed algorithm is evaluated on the modality training
dataset of ImageCLEF 2010, which expects about 97%
classification rate on the released evaluated and test datasets.
Because the ground-truths of the evaluated and test dataset
are not released, we cross-validate our proposed strategy with
the released training dataset firstly. The classification rate
with our experiment on training dataset almost approxi-
mated the required goal of the modality classification task.

4. Refinement Procedure for Easy
Misclassified Modalities

In the released medical database by ImageCLEF 2011, some
modalities have a lot of visual similarity such as PET and NM
modality. Therefore, it is difficult to distinguish them in the
global modality classification, which deals with all modalities
in the database. In this section, after the global conventional
classification, we design local classifiers to refine the classifi-
cation results in easy-misclassified modalities. Next, we firstly
explain the used dataset, and then, introduce how to design
the local classifier according to evaluation results.

4.1. Image Data. The database released for the ImageCLEF-
2010 Medical modality classification in medical retrieval task
includes 2390 annotated modality images (CT: 314; GX: 355;
MR: 299; NM: 204; PET: 285; PX: 330; US: 307; XR: 296)
for training and a separate evaluated set consisting of 2620
images. The aim is to automatically classify the evaluated set
using 8 different modality label sets including CT, MR, and
PET. Some example images are shown in Figure 3. A more
detailed explanation of the database and the tasks can be
found in [17].

4.2. Local Classifier Designing. For validating the discrimi-
nant properties of different modalities, we randomly select
180 samples from each medical modality in ImageCLEF
2010 training dataset, and the remainder for testing. We
combine all visual and textual features using the JKEC fusion
strategy introduced in Section 3, for modality classification.
The confusion matrix of one run is shown in Table 1. From
Table 1, it can be seen that 92.537% CT sample images
are correctly recognized as CT modality, and 3.9851% and
2.2388% are classified as MR and XR modalities, respectively.
On the other hand, about 2-3% MR or XR sample images
are also misrecognized as CT modality. At the same time,
it is obvious that NM and PET or GX and PX modalities
are also easily misclassified from each other. Therefore, we
design three local classifiers for the limited easy-misclassified
modalities, which are CT, MR, and XR group, NM and
PET group, GX and PX group, to refine the classification
results in local regions. The refinement procedure with
the local classifiers are shown in Figure 4. The compared
experimental results with or without refinement procedure
are shown in Figure 5. From Figure 5, it can be seen that the
recognition rates for CT, MR, PET, PX, and XR modalities
with local classifier refinement can be improved more than
1% compared to those without refinement.

5. Experiments

In this section, we validate the recognition rates of different
features with three types of similarity measures: Euclidean
distance (L2 distance), L1 distance and χ2 distance, and do the
cross-validation experiments using the combined visual and
textual features on ImageCLEF 2010 training dataset. Then,
the submitted runs to medical modality classification of
ImageCLEF 2010 and the released results will be introduced.
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Table 1: Confusion matrix of one run on medical evaluated dataset using combined visual and texture features.

Modality CT GX MR NM PET PX US XR

CT (%) 92.537 0 3.9851 0 0.4925 0.7463 0 2.2388

GX (%) 0 97.714 0 0 0 0.2857 0 0

MR (%) 3.3613 0 94.118 0 0 0.8403 0 1.6807

NM (%) 0 0 0 98.23 1.77 0 0 0

PET (%) 0 0 0.4224 2.53 97.048 0 0 0

PX (%) 0 1.333 0 0.6667 0 96.667 0 1.3333

PX (%) 0 0 0.7874 0 0.7874 98.425 0 0

XR (%) 1.7241 0 2.5862 0.8621 0 0.8621 0 93.966

(1) The recognition rates of different features with three
types of similarity measures: in order to validate what
kind of distance measure is adaptive to each extracted
feature for image representation, we apply three
types of similarity measures: Euclidean distance (L2

distance), L1 distance, and χ2 distance, for calculating
the kernel function as in (5) of SVM classifier. In
the experiments, with the ImageCLEF 2010 training
dataset, 180 images are randomly selected for training
from each modality, the remainder are for test. The
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compared recognition rates are shown in Figure 6,
where “Kai2” means χ2 distance. From Figure 6, it
can be seen that L1 and χ2 distance can obtain
much better performance than L2 distance for most
features, and χ2 distance can achieve a little better
than or similar results to L1 distance. Then, in
the next experiments, we utilize χ2 distance for a
similarity measure of all features to calculate SVM
kernel functions.

(2) Cross-validation experiments: in the experiments, we
firstly divide the training dataset of ImageCLEF 2010
into 5 groups, and use 4 groups as training and
1 group as test to cross-validate the performance
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Figure 7: The recognition rates of cross-validation strategy using
different features, where visual means the recognition rate using the
combined feature of all visual ones, visual + textual means those
using the combined textual and visual features, and visual + textual
+ refine means using refinement procedure after classification with
the combined textual and visual features.

of different features with χ2 distance as similarity
measure. The recognition rates are shown, Figure 7,
where visual means with the combined features of all
visual ones, Visual + Textual means with the com-
bined features of all visual and textual ones, visual
+ textual + refine means using refinement procedure
after classification with all combined features. From
Figure 7, it can be seen that the average recognition
rate can be improved about 1% after the refinement
procedure introduced in Section 4.

(3) Submitted runs: as Medical Image Processing Group
(MIPG) of our Intelligent Image Processing Lab-
oratory (IIPL) in Ritsumeikan University, we pre-
pared four runs for evaluation image set, which
used combine visual feature, textual feature, both
visual and textual features, and weighted visual and
textual features. The recognition results are shown
in Table 2. We submitted two runs using textual,
combined textual and visual features by on-line-
system, respectively. Our results are ranked second
among 6 participating teams, and the result of one
run is also ranked second among about 50 runs [18].
At the same time, the recognition rates (submitted
run: 93.36%, unsubmitted run: 93.89%) of our
methods using mixed feature (Visual plus textual)
are similar to the first ranking results 94% by Xerox
Research Centre Europe.

6. Conclusions

In this paper, we proposed to extract different visual and
textual features for medical image representation, and use
JKEC strategy to fusion them for modality classification. To
extract visual features from the images, we used histogram
descriptor of edge, gray, or color intensity and block-
based variation as global features and SIFT histogram as
local feature, and the binary histogram of some predefined
vocabulary words for image captions is used for textual
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Table 2: Overall classification rates on medical evaluated dataset using combination of different features.

Features Visual Textual Visual + texture Weighted visual + textual

Classification rate (%) 87.07 84.58 93.36 93.89

feature. Because different features maybe have different scale
and dimension, in order to allow each individual feature to
contribute equally for modality classification, we proposed
to use joint kernel equal contribution (JKEC) for kernel
fusion of different features. Furthermore, for some easy
misclassified modality pairs such as CT and MR or PET and
NM modalities, a local classifier is used for distinguishing
samples in the pair modality to improve performance. The
proposed algorithm is evaluated by the provided modality
dataset by ImageCLEF 2010.
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