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Abstract 
Background: Whole exome sequencing (WES) is becoming part of 
routine clinical and diagnostic practice. In the investigation of 
inherited cystic kidney disease and renal ciliopathy syndromes, WES 
has been extensively applied in research studies as well as for 
diagnostic utility to detect various novel genes and variants. The yield 
of WES critically depends on the characteristics of the patient 
population. 
Methods: In this study, we selected 8 unrelated Omani children, 
presenting with renal ciliopathy syndromes with a positive family 
history and originating from consanguineous families. We performed 
WES in affected children to determine the genetic cause of disease 
and to test the yield of this approach, coupled with homozygosity 
mapping, in this highly selected population. 
DNA library construction and WES was carried out using SureSelect 
Human All Exon V6 Enrichment Kit and Illumina HiSeq platform. For 
variants filtering and annotation Qiagen Variant Ingenuity tool was 
used. Nexus copy number software from BioDiscovery was used for 
evaluation of copy number variants and whole gene deletions. Patient 
and parental DNA was used to confirm mutations and the segregation 
of alleles using Sanger sequencing. 
Results: Genetic analysis identified 4 potential causative homozygous 
variants each confirmed by Sanger sequencing in 4 clinically relevant 
ciliopathy syndrome genes, (TMEM231, TMEM138, WDR19 and BBS9), 
leading to an overall diagnostic yield of 50%. 
Conclusions: WES coupled with homozygosity mapping provided a 
diagnostic yield of 50% in this selected population. This genetic 
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approach needs to be embedded into clinical practise to allow 
confirmation of clinical diagnosis, to inform genetic screening as well 
as family planning decisions. Half of the patients remain without 
diagnosis highlighting the technical and interpretational hurdles that 
need to be overcome in the future.
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Introduction
There are over 750 million people worldwide affected with 
chronic kidney disease (CKD), a disease burden that is 
much higher than those living with diabetes, cancer or even  
AIDS/HIV1. Inherited kidney diseases and renal ciliopathy  
syndromes are one of the major contributors to CKD burden, 
where up to 10% of adults and over 70% of children reach-
ing end stage kidney disease (ESKD) are expected to harbour 
genetic causes2. Renal ciliopathy syndromes typically lead to 
cystic kidney disease and include autosomal dominant polycystic  
kidney disease, autosomal recessive polycystic kidney  
disease and nephronophthisis, with a growing number of 
genetic causes implicated. The most common genetic causes of  
autosomal recessive renal ciliopathies would include PKHD1, 
NPHP1, INVS, NPHP3, NPHP4, IQCB1, CEP290 and  
TMEM673. However, studying such rare diseases has con-
siderable challenges mainly due to the small size of patient 
cohorts negatively affecting progress of treatments and com-
mercial feasibility. Collaborative research and progress of new 
technologies and methodologies are strategic to overcoming  
these challenges.

WES is becoming part of routine clinical and diagnostic 
practice2. Focusing only on protein-coding regions through 
WES decreases the sequencing costs and produces manage-
able genetic data for interpretation, which enhances its exten-
sive usage in diagnosis leading to the discovery of previously 
unrecognized renal disease genes and disorders2,4. In the case 
of heterogeneous renal ciliopathies, WES has been extensively  
applied in research studies as well as for diagnostic utility  
to detect various novel genes and variants5,6. In this study, 
WES was used to determine the genetic causes of cystic  
kidney disease and renal ciliopathy syndromes in a group of  
8 unrelated Omani children from consanguineous families, 
carefully selected with regard to clinical phenotype and in 
whom no genetic testing had previously been performed. As  
this study shows, the focus of nephrogenetics in Oman 
is primarily to establish an accurate genetic diagnosis to 
explain clinical phenotypes using the significantly improved  
diagnostic power of genomic technologies.

Methods
Ethical approvals and patients’ inclusion and clinical 
evaluation
This study was approved by the North East-Newcastle &  
North Tyneside 1 Research Ethics Committee (18/NE/350).

Patients were identified and recruited from paediatric referrals 
for investigation of inherited kidney disease to the nephrology 
services within the Ministry of Health Hospital, Muscat, Oman 
between 2015 and 2018. Whole blood (1.5-2.5 ml in EDTA) 
samples were collected specifically for this study and used for 
extraction of genomic DNA. DNA samples from affected and  
other family members were given an anonymised sample  
number. All patients had clinical features strongly suggestive  
of an inherited renal ciliopathy. Written and informed consent 
was obtained from the parents / guardians of each patient, and 
any family members (including parents and siblings) involved  
in this study.

Clinical information relating to patient presentation, phenotype  
and family pedigree structure, with an emphasis on familial  
kidney disease was obtained, following informed consent for  
access to the medical records. Family pedigrees were drawn  
using Invitae© online tool (https://familyhistory.invitae.com).

DNA isolation, library preparation and exome 
sequencing
gDNA was isolated from whole blood of patients and the  
available family members using Hamilton’s Microlab® STAR™, 
according to the manufacturer protocol. DNA extraction was 
performed in the National Genetic Centre in Oman. DNA  
library construction and WES were outsourced to EuroFins  
GATC Biotech (Germany) or Novogene Co., Ltd (China).  
SureSelect Human All Exon V6 Enrichment Kit (Agi-
lent Technologies, CA, USA) and Illumina HiSeq platform  
(Illumina, San Diego, CA, USA) were used. Analyses of raw 
data (FASTQ format) were performed including sequence reads  
mapping to the human reference genome hg19 using BWA (Li and  
Durbin, 2009), removal of PCR duplicates using Picard (http://
broadinstitute.github.io/picard/), alignment refinement using 
GATK, coverage analysis and SNP and indel calling using  
GATK’s Haplotype Caller (McKenna et al., 2010).

Variant and CNV detection and annotation
SNP and indel VCF files were investigated using Qiagen Vari-
ant Ingenuity tool for variants filtration and annotation. Nexus 
copy number software from BioDiscovery (9.0) was used  
for CNVs analysis and visualization. To detect regions of 
homozygosity, WES genotype data were used to create homozy-
gosity mapping using the online homozygosity mapper tool  
(http://www.homozygositymapper.org/).

Variant validation by Sanger sequencing
Sanger sequencing was utilized to confirm suspected disease-
causing variants and their segregation if DNA samples from 
parents and other family members were available. Primer3 

           Amendments from Version 1
In this new version we have added a new table (Table 3) which 
details variants that were observed in the 4 unsolved cases 
of renal ciliopathies in children from Oman. We present a 
list of variants in cystogenes that may be contributing to the 
phenotype but are not sufficient enough on their own to verify as 
solved. This addition data provides a useful discussion of the use 
of whole exome sequencing as a first line diagnostic approach. 
We have expanded the discussion to include the points 
regarding assess variants at  RNA level, validating whole exome 
sequence findings by Sanger sequencing and determining 
pathogenicity of genomic variants at the transcriptome level.

Any further responses from the reviewers can be found at 
the end of the article
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was utilized to design primer sequences (http://primer3.ut.ee/) 
(Extended Data Table 17). PCR amplification was performed 
using Taq PCR master mix (Qiagen) kit, as per the manu-
facturer instructions. Sanger sequencing was outsourced to  
EuroFins GATC Biotech (Germany). The obtained sequences 
were assembled and aligned compared to a reference sequence 
using the SequencePilot 4.2.2 software (JSI Medical Systems  
GmbH).

Results
Patient characteristics
WES was carried out for 8 unrelated paediatric patients with 
an age range of 3 months to 6 years of age (5 female, 3 male) 
with a clinical suspicion of a renal ciliopathy syndrome and 
known consanguinity as demonstrated by pedigree diagrams 
(Extended data Figure 17). This was a diagnostic-naïve popu-
lation without prior genetic analysis. Patients had a variety of 
clinical features, renal and extra-renal, with 5 probands reach-
ing ESKD within 5 years of life (Table 1). Seven out of 8  
had a positive family history of kidney disease and 6 had extra-
renal manifestations typical of ciliopathy syndromes which 
included Senior-Løken syndrome, Joubert syndrome, Meckel  
syndrome and Bardet-Biedl syndrome (Table 1). 

Exome sequencing data
Quality control of WES revealed that >99% of the reads were 
properly mapped to the reference genome. The details of the 

depth, coverage and target sequences covered are summa-
rized in Extended data Table 27. The average coverage depth 
was 145.9. Comparable coverage of target coding regions 
was achieved among the 8 cases with an average of 96.4%  
of the exome being covered at least 20-fold (Extended data 
Table 27). Homozygosity mapping of all patients confirmed 
large regions of homozygosity, typical of known parental  
consanguinity (Extended data Figure 27).

Molecular genetic findings
A molecular genetic diagnosis was obtained in 4 out of the 8 
patients (Figure 1), leading to an overall diagnostic yield of 
50% (Table 2). Four different homozygous single nucleotide 
variants (SNVs) were detected in 4 known ciliopathy genes 
(TMEM231, TMEM138, WDR19 and BBS9) and were con-
firmed by Sanger sequencing (Figure 1). Three of the muta-
tions were missense mutations affecting highly conserved  
amino acids (Extended Data Figure 37) whilst the fourth was 
a splice-site mutation (Figure 2). All tested samples were  
examined for mutations in ACMG actionable genes but none  
were identified.

The identified causative variant in M46 was novel (c.710A>G; 
p.Y237C in TMEM231) and has not been previously reported in 
any databases. This homozygous missense change is found in 
a large region of homozygosity on Chromosome 16 (Extended 
data Figure 27) and is predicted by Sorting Intolerant from 

Table 1. Clinical characteristics of Omani patients.

Patient 
ID

Gender Age at 
referral

Clinical features Additional clinical 
features

CKD stage Family 
history 
of kidney 
disease

Parental 
consanguinity

M43 F 3 y Nephronophthisis DD, right hip 
dysplasia, failure to 
thrive.

5 (ESKD at 3 y) Yes Yes

M44 F 2 y Cystic kidney disease Hypertension, liver 
fibrosis

5 (ESKD at 2 y) Yes Yes

M46 F 3 m Meckel syndrome with 
cystic kidneys

Dysmorphic 
features, occipital 
encephalocele, 
polydactyly, 
diaphragmatic hernia

5 (ESRD at 1 y) Yes Yes

M47 F 5 y Cystic kidney disease Retinitis pigmentosa, 
conductive hearing 
loss

5 (ESKD at 5 y) Yes Yes

M48 M 3 y Joubert syndrome with 
cystic kidneys

DD, hypotonia, poor 
visual acuity, brain 
MRI showed molar 
tooth malformation

1 Yes Yes

P3 M 3 y Cystic kidney disease 1 No Yes

P18 M 6 y Nephronophthisis Hypertension, DD and 
retinal dystrophy.

5 (ESKD at 5 y) Yes Yes

N36 F 1 y Cystic kidney disease Post-axial polydactyly 1 Yes Yes
CKD, chronic kidney disease; DD, developmental delay; ESKD, end stage kidney disease; F, female; M, male; m, month; y, year.
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Tolerant (SIFT) to be damaging, PolyPhen-2 to be possibly  
damaging and MutationTaster to be disease causing. The 
Y237 amino acid in TMEM231 is conserved to Caenorhabdi-
tis elegans (Extended data Figure 37). Mutations in TMEM231 
are known to cause both Joubert syndrome and Meckel  
syndrome (Extended Data Table 37), and the clinical phenotype 
of patient M48, which included encephalocele, polydactyly and  
polycystic kidney disease and early onset ESKD, is consistent  
with a Meckel-like ciliopathy syndrome.

The identified causative variant in M48 was a known allele 
(c.389A>G; p.Y130C in TMEM138) and has been previ-
ously reported in a child with Joubert syndrome and a  
cerebello-retinal-renal phenotype8. This homozygous missense 
change is found in a narrow region of homozygosity on Chro-
mosome 11 (Extended data Figure 27) and is predicted by SIFT 
to be deleterious, PolyPhen-2 to be probably damaging and  
MutationTaster to be disease causing. The Y130 amino acid 
in TMEM138 is conserved to Danio rerio (Extended data  
Figure 37). Mutations in TMEM138 are known to cause  
Joubert syndrome (Extended data Table 47), and the clinical  
phenotype of patient M48, which included molar tooth sign, 
visual loss and cystic kidney disease, is consistent with a  
Joubert syndrome ciliopathy.

The identified causative variant in P18 was a known allele 
(c.3553G>A; p.R1178Q) in WDR19 and has been previously 
reported in cases of nephronophthisis (NPHP)-related cili-
opathies with retinal and liver involvement9–11, Senior-Løken  
syndrome12 and more complex ciliopathies13. This homozygous 
missense change is found in a large region of homozygosity 
on Chromosome 4 (Extended data Figure 27) and segregation 
of the pathogenic causative allele in WDR19 with P18’s family  
members was confirmed. The missense allele is predicted by  
SIFT to be tolerated, PolyPhen-2 to be probably damaging 
and MutationTaster to be disease causing. The R1178 amino 
acid in WDR19 is conserved to C.elegans (Extended data  
Figure 37). Mutations in WDR19 are associated with a wide 
spectrum of ciliopathies (Extended data Table 57), and the 
clinical phenotype of patient P18, which included NPHP and 
early onset ESKD and retinal dystrophy is consistent with a  
Senior-Løken syndrome.

The identified causative variant in N36 was a known splice-
site allele (c.1789+1G>A in BBS9) and has been previously 
reported in patients with Bardet-Biedl syndrome (BBS)14,15. 
This homozygous missense change is found in a region of 
homozygosity on Chromosome 7 (Extended data Figure 27) and 
is predicted to cause loss of splice donor site. Mutations in  

Figure  1.  Family  structures  and  Sanger  sequencing  in  solved  renal  ciliopathy  cases. Pedigrees of solved families with Sanger 
sequecing chromatograms confirming the disease causative variants that were identified by WES in four families. A. M46 with homozygous 
missense variant in TMEM231. B. M48 with homozygous missense variant in TMEM138. C. P18 with homozygous missense variant in WDR19 
D. N36 with homozygous splice site variant in BBS9.
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BBS9 are known to cause BBS (Extended data Table 67), and 
the clinical phenotype of patient N36, which included fea-
tures of BBS including post-axial polydactyly affecting all  
limbs and cystic kidney disease is consistent with a BBS  
ciliopathy.

Four of the families (M43, M44, M47 and P3) remained geneti-
cally ‘unsolved’ following WES and careful analysis and filter-
ing of potential pathogenic alleles within regions of homozygos-
ity, given their known consanguinity. The disease inheritance  
in all these four families was consistent with an autosomal 
recessive pattern given parents were unaffected. Indeed, more 
than one sibling was affected for families M43, M44 and M47  
(Extended data Figure 17). For the single affected sibling  
in P3 de novo heterozygous alleles need to be considered in 
addition to biallelic variants. We re-examined WES data for 
homozygous, compound heterozygous and de novo hetero-
zygous alleles. Table 3 shows some alleles of interest in these  
families relating to ciliopathy phenotypes. In family M43 
we identified biallelic (compound heterozygous) changes in  
PKHD1 which were predicted to be benign. In family 
M44 we observed a single heterozygous allele in COL4A1 
of uncertain significance as well as a very rare synony-
mous allele in NPHP3 that might be implicated in a splicing  
defect and a heterozygous PKD1 missense allele of uncer-
tain significance. Family M47 had a homozygous mis-
sense allele in C2CD3 which was predicted to be benign 
whilst family P3 had a homozygous loss of function allele in  
IFT140. This allele however was not confirmed follow-
ing Sanger sequencing and is likely to be a WES artefact. 

Finally, P3 has a single heterozygous allele in ALG9, which  
was predicted to be benign.

Discussion
In paediatric populations, CKD is a major contributor to health-
care burden leading to severe morbidity and mortality. At least 
17% of those with ESKD are considered as CKD with unknown 
aetiology, where the primary kidney disease is not clear16. In 
addition, the primary clinical diagnosis of CKD patients is often 
inaccurate16. Thus, in the developing era of precision medi-
cine, WES is used as an essential tool that provides novel diag-
nostic perspectives for the detection of the causes of CKD.  
Knowledge of genetic causes has valuable clinical impli-
cations in therapeutic intervention, improving prognosis, 
guide family counselling or managing settings of kidney  
transplantation17. Despite being rare, inherited kidney diseases 
represent one of the most common causes of CKD and ESKD, 
accounting for up to 10% of adults and almost all children  
commencing renal replacement therapy18. The possibility of  
monogenic causes in those with unknown aetiology of CKD 
or with atypical clinical presentation is assumed to be high16. 
At least 500 different genetic causes have been associated with  
childhood CKD19.

In this pilot study, we examined the utility of WES in the diag-
nosis of 8 different Omani children with childhood onset CKD 
related to cystic kidney disease and a suspected inherited 
renal ciliopathy. A conclusive genetic diagnosis was achieved 
in half of the cases. Positive WES findings allow a precise  
molecular diagnosis and targeted clinical management as well 

Figure 2. Distribution of mutations  in  TMEM231, TMEM138, WDR19 and BBS9. Positions and the predicted protein alterations are 
shown for A. TMEM231 B. TMEM138 C. WDR19 D. BBS9. Exon structure is marked by a dashed line. Protein domains are shown in colored 
bars. Known mutations are shown above the gene/protein structure with the number showing frequency (if >1) of probands reported for 
each mutation. Mutations identified in this study are shown below the gene/protein structure.
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as informing family planning and facilitating proper genetic 
counselling. In four of the children (M46, M48, P18 and 
N36) the molecular genetic findings confirmed the suspected  
clinical diagnosis. The identification of a molecular genetic 
diagnosis in all these families can provide accurate genetic 
advice about the parent’s reproductive choices and the  
possibility of preimplantation genetic diagnosis (PGD) or early  
genetic testing of a foetus in future pregnancies.

A wide range of genetic studies have been performed in child-
hood CKD populations and different diagnostic yields were 
achieved due to differences in the inclusion criteria or patients 
and the study design. In a study of families with inherited  
kidney disease, Mallett, et al.20 reported a diagnostic yield of 
46%, reflecting the significant ability of WES in underlying  
the potential genetic causes of most renal phenotypes. In 
another recent study2, Groopman et al. reported higher diag-
nostic yield in patients with congenital and cystic kidney  
disease (23.9%). Furthermore, regardless of the primary 
kidney diagnosis, higher diagnostic yield was associated 
with a positive family history of CKD, history of parental  
consanguinity and presentations of extra-renal features2,6. Thus 
using a combination of homozygosity mapping along with 
WES genotype data is always recommended as a powerful 
approach for consanguineous families to identify rare genetic  
causes21.

Although WES provides massive amounts of genetic data, 4 
patients remained unsolved in this study. Despite an analysis  
of both homozygous alleles, compound heterozygous alle-
les and heterozygous de novo alleles, families M43, M44,  
M47 and P3 remained unsolved. A very rare homozygous 
allele in NPHP3 was noted in family M44. Mutations in 
NPHP3 have been associated with very early and severe cili-
opathy syndromes including Meckel syndrome22, which  
matches the phenotype of this family. Proving the patho-
genicity of this synonymous change now requires RNA anal-
ysis as well as searching for this allele in patients with a  
similar phenotype. Transcript aware annotation of genomic 
variants will be the next major step in utilising the data from 
WES effectively23,24. The identification of a novel loss of func-
tion allele in IFT140 in family P3 that failed to be confirmed  
following Sanger sequencing acts as a cautionary reminder 
to validate all WES findings before genetic reporting. The 
WES read depth of this allele was <10 and therefore sequenc-
ing coverage remains an important consideration when  
choosing diagnostic sequencing modalities.

Interpretation of many novel and extremely rare variants is 
still limited by the incomplete knowledge of the total human  
protein-coding genes as well as the incorrect annotation of 
variants pathogenicity and incorrect association of genes 
with the disease in the literature. At present, up to 70% of  
protein-coding genes have no recognized human disease  
phenotype25. False gene-disease associations are present in  
the literature26,27 and clinically valuable databases of vari-
ants pathogenicity, such as Human Gene Mutation Database  
(HGMD®), comprise various errors causing benign variants 

being falsely selected out of the data and allocated as plau-
sible diagnosis28. This situation is predicted to improve as  
further genomes are sequenced, including large data collec-
tions containing populations of both healthy individuals and 
patients with rare diseases. In addition, studying more fami-
lies with similar clinical phenotypes from the same popula-
tion may facilitate linking novel undiscovered genes to the  
disease phenotype in those unsolved patients.

In this study, WES confirmed the clinical diagnosis in 4 chil-
dren. In a similar study of large consanguineous or familial 
cohort (n = 79) of children clinically diagnosed with NPHP, 
genetic diagnostic yield of 63% was reported, of which the  
clinical diagnosis was confirmed in 64% and changed to  
different molecular diagnosis in the remaining 36%11.

This study has some limitations, including small sample 
size that does not give a generalized image of broader child-
hood renal ciliopathy in the population from Oman. However, 
an enhanced assessment of the utility of WES in the clinical  
diagnostic practice of these disorders may be given through  
systematic WES analysis of a larger, unselected cohort.  
Moreover, the diagnostic gap in this study may be caused by 
the common technical limitation of WES, including the missed  
detection of structural variant breakpoints, sequencing difficul-
ties for regions with repetitive elements or guanine-cytosine 
(GC)-rich regions, and limited discrimination between highly 
homologous genomic regions with pseudogenes. These limita-
tions are attributed to the short-read lengths that are utilized  
to generate high genomic coverage and depth29. These limi-
tations are assumed to be resolved through using long-read 
sequencing platforms that compromise these technical chal-
lenges and improve the detection of genetic variants29. Thus, 
the emerging future of long-read sequencing based whole 
genome sequencing (WGS) could enhance the diagnostic yield  
of patients with inherited renal ciliopathies and provide  
more conclusive primary kidney disease diagnosis. This can 
be supported by recent reports of WGS obtaining higher  
molecular diagnostic yield compared with WES, where  
20–40% of those unsolved by WES were genetically conclu-
sive by WGS30. In particular, WGS has recently been used  
to successfully identify a deep intronic allele in NPHP3 lead-
ing to nephronophthisis31 and with such approaches, defin-
ing deleterious intronic alleles will allow an increase in the  
diagnostic yield of WGS.

Recent advancements in medical genetics through the use of 
massively parallel sequencing have not only advanced the  
discovery of novel causative variants, genes and phenotypes, 
but also contributed to the re-classification of diseases and  
phenotypes into novel gene-based ontologies32. However, all 
types of next generation sequencing (NGS)-based testing (Target  
panel, WES and WGS) have some shared limitations, includ-
ing the inability to obtain enough coverage of genomic regions 
with highly repetitive GC-content sequence, such as that 
in MUC1 gene. In his study of six unrelated families with  
medullary cystic kidney disease type 1 (MCKD1)33, Kirby et al. 
highlighted the challenges of these technologies in detecting 
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the causative monogenic causes of some Mendelian disorders, 
such as MCKD1, where only long-range polymerase chain  
reaction and molecular cloning successfully performed the 
task. Moreover, in many patients with acquired diseases, 
NGS testing is of limited importance and transformation 
of genetic results into clinical setup may be challenging32. 
In the field of kidney disease, the majority of genetic testing 
studies are narrowed to a research setting, thus until now the  
knowledge of its diagnostic efficacy in clinical practice is still 
limited16. In addition, managing the medical ethics raised by 
these technologies, including uncertain variants and incidental  
findings, and balancing the social concerns is still challenging34.

Conclusion
WES of patients with different inherited cystic kidney diseases  
and renal ciliopathies shows promise as a diagnostic tool, 
especially in well selected patients with a high coefficient of 
inbreeding and/or with a syndromic presentation. It has the 
potential to resolve those cases with clear suspicion of renal 
ciliopathies, as well as those with uncertain aetiology causing  
CKD. The fact that ~50% of patients remain without genetic 
diagnosis after WES highlights the need for improved  
sequencing techniques and interpretation tools, driven by con-
stantly evolving knowledge regarding the genetic architecture  
of diseases. The clinical impacts of positive WES results on 
therapeutic choice, genetic counselling and guidance of kidney 
transplant are critical. Indeed, professional genetic counselling  
on the prospective effects of a positive test result is crucial, 
bearing also in mind the possibility of incidental findings.  
Although further studies from the Omani population are 
required, we predict an expanding impact of NGS-based diag-
nosis, both gene panels and WES in clinical practice in the  
very near future.
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