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Early Diagnosis and Therapeutic Advances for Liver Cancer: 
 From Bench to Bedside
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Background
Hepatocellular carcinoma (HCC) is a heterogene-
ous tumor usually arising in an inflammatory 
environment. Indeed, in the vast majority of cases, 
HCC is diagnosed in patients with chronic liver 
disease, in whom it represents one of the leading 
causes of death despite surveillance programs for 
early diagnosis.1 Liver cirrhosis is the paradigm of 
inflammatory diseases, as it frequently develops in 
association with chronic viral or alcohol-related 
hepatitis, or in patients with nonalcoholic fatty liver 
disease (NAFLD); the hepatocellular damage pro-
duced by various etiologic agents eventually results 
in tissue repair up to the development of fibrosis. 
Persistent hepatocellular proliferation in this 
inflammatory microenvironment promotes genetic 
mutations that trigger hepatocarcinogenesis.2

The tumor microenvironment (TME), which 
includes stromal cells, such as angiogenic cells, 

immune cells, fibroblasts, and their products, is 
crucial in the pathogenesis of HCC. Particular 
importance has been given to the surrounding 
nontumor tissue. Indeed, oncogenic signals in the 
cirrhotic liver seem to have a prognostic relevance 
even more than HCC cells genomic profile, and 
this has been demonstrated also for early stage 
tumors.3–8

Interestingly, inflammation seems not to be extin-
guished by the elimination of the pathogenic noxa 
from the cirrhotic liver. Histological data after the 
cure of hepatitis C virus (HCV) infection have 
shown a significant improvement in fibrosis, 
periportal and lobular inflammation, but with the 
persistence of damage in the portal area.9 In addi-
tion, HCC can occur in subjects without liver cir-
rhosis and this is particularly common in patients 
with NAFLD.10,11 These findings suggest the 
existence of a pro-inflammatory mechanism that 
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acts regardless of the etiologic agent of liver injury 
and of the presence of cirrhosis, which may 
involved in the development of HCC.

The gut microbiota is a crucial element in the 
progression of liver disease. Although the overall 
community of our intestinal bacteria is generally 
well structured in physiological conditions, 
being in some way influenced by age, diet, and 
geography, and resilient to perturbations, it can 
be strongly affected by various pathological 
conditions.12,13 In cirrhotic patients, the gut 
microbiota fingerprint is characterized by the 
reduction of beneficial microbes and the increase 
of those potentially pathogenic, this being asso-
ciated with a marked systemic inflammation.14,15 
In addition, the gut barrier is deranged leading 
to the translocation of bacteria and their prod-
ucts to the liver concurring to the persistence of 
an inflammatory microenvironment.16 The gut 
microbiota therefore can act as primer, being 
involved in the origination or maintenance of the 
inflammatory background that promotes the 
development of HCC.

Features of the TME associated with early 
HCC
The complex network of interactions that can be 
found in the HCC microenvironment, even in the 
early stage, involves humoral factors and cellular 
components that together concur in fostering 
inflammation and neoangiogenesis.17

The necroinflammatory damage caused by sev-
eral external agents, such as hepatitis viruses, 
alcohol or fat accumulation, converges in the acti-
vation of molecular pathways and transcription 
factors leading to the production of cytokines and 
chemokines, growth factors, and proangiogenic 
signals, resulting in inflammation, cell regenera-
tion, and fibrosis.18 Several studies have shown 
that similar biological processes and genes are 
dysregulated in liver regenerating tissue and in 
early stage HCC.19,20 In particular, liver cirrhosis 
appears to be linked with the development of 
HCC due to (a) genetic aberrations triggered by 
the damage/proliferation mechanism associated 
with persistent inflammation and (b) abnormal 
secretion of pro-angiogenic factors such as vascu-
lar endothelial growth factor (VEGF), platelet-
derived growth factor (PDGF), fibroblast growth 
factor (FGF), from hepatic stromal cells and 
fibroblasts, promoted by the capillarization of 
hepatic sinusoids, which is a consequence of 

portal hypertension.17 The increased expression 
of VEGF, PDGF, and FGF has been reported 
even in dysplastic nodules, and is associated with 
HCC progression in advanced stages.21,22 
Nevertheless, the aberrant vascular structure of 
the cirrhotic liver is inefficient, causing hypoxia in 
the tumor tissue and the production of hypoxia-
inducible factor 1 (HIF-1), which amplifies angi-
ogenesis and further tumor progression.23,24

The most well-characterized molecular pathways 
that closely associate inflammation with HCC are 
the nuclear factor kB (NF-kB) and the interleukin 
(IL)-6/signal transducer activator of transcription 
3 (STAT-3), both involved in the transcription of 
cytokines and chemokines-related genes, cell sur-
vival and proliferation, angiogenesis, tumor inva-
sion, metastasis, and oxidative stress3,25–32 NF-kB 
can also exert antitumorigenic functions,33–37 and 
these two molecular systems are connected by a 
mutual crosstalk,35,38–40 making more complex 
the understanding of their involvement in liver 
cancer pathogenesis.

Although inflammation is the first hit that pro-
motes the development of HCC lesions and the 
perpetuation of an oncogenic stimulation, the 
suppression of the immune system seems to be 
crucial. The cytokine profile associated with HCC 
metastatic potential and aggressiveness is related 
to Th2 lymphocytes (IL-4, IL-8, IL-10, and IL-5) 
rather than to Th1 ones (IL-1-alpha and beta, 
IL-2, and tumor necrosis factor (TNF)-alpha).41–46 
T regulatory cells (Tregs),47 myeloid-derived the 
suppressor cells (MDSCs),48 tumor-associated 
macrophages (TAMs),49 invariant natural killer T 
cells (iNKT),50 and regulatory dendritic cells 
(DCs), which are involved in immune escape 
mechanisms, can be found not only in HCC tissue 
but also in the bloodstream and correlate with 
tumor progression. In particular, TAMs present 
in the tumor tissue are M2 macrophages, which 
have a weak antigen presentation potential and are 
rather involved in the promotion of angiogenesis, 
tissue remodeling, and activation of Th2 lympho-
cytes.49 The switch from M1 to M2 macrophages 
can be induced by tumor cells and by TME.

Co-inhibitory molecules are also part of the 
TME; in particular, the Cytotoxic T-Lymphocyte 
Antigen 4 (CTLA-4), Programmed death-ligand 
1 (PD-L1), and Programmed cell death protein 1 
(PD-1) checkpoint inhibitors are the most well-
characterized and are associated with immune-
system exhaustion and immune tolerance in 
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HCC.51–57 Their expression is enhanced in 
inflammatory conditions such as chronic liver 
disease, and this may promote oncogenic mecha-
nisms as shown in experimental models.58–63

The role of the gut microbiota in 
hepatocarcinogenesis
In addition to the consideration that HCC is 
usually a tumor arising in a diseased organ, it is 
now clear that it also develops in a diseased 
intestinal environment. Therefore, the gut 
microbiota-driven hepatic inflammatory stimu-
lation is additional to that derived from chronic 
liver disease and, together, they fuel the process 
of hepatocarcinogenesis.

Translocated bacterial products can trigger an 
inflammatory response by activating Toll-like 
receptors (TLRs). In particular, lipopolysaccha-
rides (LPS) from Gram-negative bacteria can 
bind TLR-4, whereas TLR-9 is a ligand for 
DNA containing unmethylated CpG motifs and 
TLR-2 and TLR-5 recognize peptidoglycan and 
lipoteichoic acid, which are elements of the 
Gram-positive bacteria cell wall or flagellin, 
respectively.64–67 The final downstream effect is 
the production of inflammatory cytokines, such 
as TNF-alpha, IL-1-beta, and IL-6, via the 
NF-kB pathway.27,68 This links the gut microbi-
ota with proliferation and immortalization of 
HCC cells, either directly or via the Janus kinase 
(JAK) or the STAT3 pathway, mainly activated 
by IL-6.25,69

Pathogen-associated molecular patterns (PAMPs) 
derived from the gut microbiota can activate the 
NADPH oxidase (NOX) 1–NOX4 complex in 
enterocytes, stimulating the generation of reactive 
oxygen species (ROS). This leads to the activa-
tion of inflammasomes, the release of cytokines 
such as IL-18 and IL-1-beta and the degranula-
tion of goblet cells. Furthermore, oxidative sign-
aling may up-regulate the activity of NF-κB 
interfering with the activation of IκB ubiquitin 
ligase through neddylation by Ubc12, a Nedd8 
ligase, with a covalent modification on the cul-
lin-1 (Cul-1) regulatory subunit.70–72

The interaction of gut bacteria with intestinal epi-
thelium leads to the blockage of this process.73

Overall, this mechanism is protective and neces-
sary for physiological functions, such as cell growth, 
differentiation, and regulation of ROS-sensitive 

enzymatic reactions and transcription of cytopro-
tective elements.74–76

However, an imbalance in the redox status, pos-
sibly related to microbial imbalance, can alter this 
machinery and enhance inflammation, causing 
DNA damage, lipid peroxidation, and protein 
oxidation, as well as disrupt the physiological pro-
cess of cell proliferation and differentiation.77,78

Recent data have also shown that gut bacteria can 
regulate the bioavailability of glycine, which is 
essential for glutathione synthesis, reducing the 
antioxidant potential in the small intestine, liver, 
and colon.79 Glycine is also involved in DNA/his-
tone methylation and in the metabolism of pro-
teins and purines, playing a key role in the 
proliferation of cancer cells.80

Furthermore, the gut microbiota can modulate 
the farnesoid X receptor (FXR) activation81; mice 
knocked-out for the FXR gene in both the liver 
and the intestine spontaneously develop HCC82 
but, most importantly, this can be avoided if FXR 
expression in the enterocytes is restored, being 
this effect is dependent on the level of bile acids.83 
The increase in bile acids accumulation in the 
liver caused by FXR downregulation leads to 
damage of hepatocyte plasma membrane, trigger-
ing an inflammatory response through the protein 
kinase C (PKC)-p38 mitogen-activated protein 
kinase (MAPK) pathway and the increased pro-
duction of ROS, which both eventually activate 
NF-kB.84,85 The accumulation of bile acids is fur-
ther amplified by the inhibitory effect exerted by 
the heterodimer NF-kB p50/p65 on FXR.86

The gut microbiota may also be involved in the 
suppression of immune surveillance on HCC 
cells. Chronic inflammation derived from intesti-
nal bacteria, particularly in a dysbiotic condition 
such as liver cirrhosis, can actually lead to exhaus-
tion of the immune system.87,88 To confirm this, 
the chronic activation of TLRs, which can be 
driven by the gut microbiota, can lead mac-
rophages to M2 polarization with consequent 
immunosuppressive effects.89–92 Nevertheless, 
Th17 lymphocytes are rarely found in the liver 
and come mainly from the gut, where they are 
produced through interaction with the microbiota.93 
They have been found in serum and tumor tissue 
of HCC patients and are associated with poor 
prognosis, probably due to abnormal IL-17A 
IL17A secretion that enhances angiogenesis and 
the production of inflammatory cytokines.94–96
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The gut microbiota and HCC

Animal models
Several studies on animal models provided evi-
dence that the gut microbiota is involved in the 
pathogenesis of HCC.

In a pioneering study, Yu and colleagues97 
reported an increase in plasma LPS levels in 
diethylnitrosamine (DEN)-treated rats during 
tumor progression, which were reduced by anti-
biotic treatment. Furthermore, the number and 
size of tumors, as well as tumor cell proliferation 
and liver weight were reduced after antibiotic 
administration. To confirm the role of endotoxin 
in the development of HCC, rats knocked-out 
for TLR-4, the LPS receptor, showed a reduc-
tion in HCC incidence by 25%, smaller diame-
ters of nodules and more frequent evidence of 
cell apoptosis. This was associated with a reduced 
infiltration of macrophages and expression of 
TNF-alpha and IL-6, along with an attenuation 
in the detection of NF-kB in the liver tissue. 
Bone marrow transplantation from the TLR-4 
mutant to wild-type rats led the lowest produc-
tion of inflammatory mediators, whereas the 
opposite could be observed when wild-type bone 
marrow was transferred to knock-out animals.

Dapito and colleagues98 later demonstrated that 
the number and size of tumors was lower in mice 
knocked-out for TLR-4 than in wild-type con-
trols, although tumor incidence did not differ sig-
nificantly, and that this was associated with 
reduced inflammation. The same result was 
observed after antibiotic treatment or in germ-
free rats. Interestingly, the effects of gut steriliza-
tion on HCC development seem to be preemptive: 
indeed, antibiotic treatment showed the maxi-
mum benefit when administered in the late phase 
of hepatotoxic stimulation and had no efficacy 
when tumor lesions were already established. 
Subcutaneous administration of low-dose LPS 
was also able to induce the development of HCC 
by triggering the expression of inflammatory 
genes. TLR-4 mutation in resident liver cells was 
necessary to reduce the number and size of HCC 
lesions, regardless of the TLR-4 expression in 
bone marrow cells.

A subsequent study also sought to elucidate the 
compositional difference in intestinal bacteria 
possibly associated with the presence of HCC.99 
The authors started by observing a small group of 
patients with hepatitis B virus (HBV)-related liver 

cirrhosis with or without HCC compared with 16 
healthy subjects. Plasma levels of LPS and IL-6 
were higher in cirrhotic patients, regardless of the 
presence of HCC, whereas the anti-inflammatory 
IL-10 was reduced. Thus, a mice model of DEN-
induced hepatocarcinogenesis was reproduced; 
circulating levels of LPS were high because the 
intestinal mucosa was damaged, and there was an 
increased abundance of Gram-negative bacteria 
(Escherichia coli, Atopobium, Collinsella, Eggerthella, 
and Coriobacterium) after DEN treatment. In con-
trast, beneficial bacteria such as Lactobacillus, 
Bifidobacterium, and Enterococcus were deficient. 
Both antibiotic treatment and dextran sulfate 
sodium (DSS) administration increased LPS lev-
els, the number and size of HCC lesions, and cell 
proliferation; this was mediated by an increased 
inflammation, as evidenced by the enhanced 
expression of NF-kB and phosphorylation of 
STAT3. Furthermore, in this model the adminis-
tration of high doses of the probiotic #VSL3 
reduced the number and size of tumors, as well as 
the incidence of lesions, compared with lower 
doses of probiotic or no treatment. This was asso-
ciated with the reduction in intestinal permeabil-
ity, circulating levels of LPS and IL-6, NF-kB 
translocation, phosphorylation of STAT3, and 
the abundance of Gram-negative bacteria in the 
gut. Further data have confirmed that probiotics 
can reduce the growth, size, and weight of HCC 
lesions, producing a shift towards bacteria with 
anti-inflammatory activity (Prevotella, Oscillibacter), 
which decreases Th17 polarization and produc-
tion of IL-17 in the intestine promoting the dif-
ferentiation of anti-inflammatory Treg/type 1 
regulatory T (Tr1) cells.100

Yoshimoto and colleagues101 have further focused 
on the relationship between the gut microbiota and 
HCC in the context of obesity. They found that 
obese mice fed with a high-fat diet (HFD) devel-
oped HCC after treatment with dimethylbenz(a)
anthracene (DMBA), a chemical carcinogen. In 
addition, hepatic stellate cells (HSCs) in the prox-
imity of cancerous hepatocytes expressed a senes-
cence associated secretory phenotype (SASP), 
which was induced by the caspase1/IL-1-beta 
pathway following the activation of the inflamma-
some.102 Antibiotic treatment reduced the devel-
opment of HCC and SASP HSCs. Interestingly, 
vancomycin but not TLR-4 gene deletion was able 
to block the development of HCC, suggesting that 
in this model the contribution of Gram-positive 
intestinal bacteria, which are devoid of LPS, the 
ligand for TLR-4, was the most relevant for the 
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pathogenesis of HCC. Antibiotic treatment 
reduced the production of deoxycholic acid (DCA) 
by intestinal bacteria, which was caused by HFD; 
DCA is known to induce DNA damage through 
the production of ROS and this mechanism is a 
key factor in the development of SASP. Thus, 
DCA produced by an altered gut microbiota as a 
consequence of HFD leads to SASP in HSCs, 
leading to the secretion of inflammatory cytokines 
and oncogenic factors promoting the development 
of HCC after the exposure to a chemical 
carcinogen.

A further study confirmed an altered profile of 
serum and hepatic bile acids in a mice model of 
HCC related to nonalcoholic steatohepatitis 
(NASH).103 The authors observed an increase of 
LPS in plasma, liver, and stools as well as a signifi-
cant alteration in the main bacterial genera involved 
in bile acid synthesis (Clostridium, Bacteroides, 
Atopobium, Desulfovibrio, Parasutterella, Akker-
mansia). Administration of cholestyramine reduced 
inflammation and incidence and size of HCC 
tumors. To confirm the link between HFD, gut 
microbiota derangement, and bile acids toxicity in 
the liver, the incubation of bile acids with HepG2 
cells inhibited the tumor suppressor gene CCAAT 
Enhancer Binding Protein (CEBP) alpha, thus 
promoting the development of HCC.

Yamada et al.104 have recently reported on the gut 
microbiota composition of mice fed with steato-
hepatitis-inducing HFD (STHD)-01, an experi-
mental model of HCC associated with NASH. In 
particular, after 41 weeks, they observed an 
increase in liver weight and the development of 
HCC in the STHD-01 group, whereas in the 
STHD-01 mice receiving antibiotic treatment the 
whole body weight was increased and the occur-
rence of HCC was reduced. Increased abundance 
of Bacteroides and Clostridium cluster XVIII and a 
reduction in Bifidobacterium, Prevotella, and 
Streptococcus was observed in STHD-01 mice. 
Since the STHD-01 diet was enriched with cho-
lesterol, which accumulated in the liver, bile acids 
synthesis was enhanced with subsequent accumu-
lation in liver, plasma, and feces. Antibiotics did 
not reduce the accumulation of bile acids, but 
produced a compositional shift, decreasing the 
conversion from primary to secondary. In particu-
lar, DCA, tauro-DCA (TDCA), and hyo- 
DCA (HDCA) accumulated in the liver of the 
STHD-01 group and were reduced in the STHD-
01 mice treated with antibiotics; instead the con-
centration of urso-DCA (UDCA), tauro-UDCA 

(TUDCA), and 12-keto lithocholic acid (KLCA) 
was not affected by antibiotic treatment. When 
tested on HepG2 cell lines, primary or secondary 
bile acids showed no toxic effect, although DCA 
was able to activate the mammalian target of rapa-
mycin (mTOR) pathway, which is known to be 
activated in HCC cells.105 Increased phosphoryla-
tion of mTOR was also detected in the liver of 
mice fed with STHD-01 diet, and was attenuated 
by antibiotic administration.

Interestingly, a role of fermented fibers in the 
pathogenesis of bile acid-mediated hepatocarcino-
genesis has been recently proposed.106 The authors 
used the T5KO mouse model that presents the 
deletion of TLR-5, the flagellin receptor, and 
develops a dysregulated innate immune response 
promoting dysbiosis (increased intestinal bacterial 
load and increased abundance of Proteobacteria), 
intestinal/systemic inflammation and metabolic 
syndrome. Feeding the T5KO mice an inulin con-
taining diet (ICD) reduced the incidence of obe-
sity by 40%, but these animals surprisingly 
developed cholestasis. Mice with hyperbilirubine-
mia showed higher liver enzymes and fibrosis 
markers, and reduced synthetic and detoxifying 
ability of the liver compared with mice fed with 
ICD, and all of them developed HCC. Histological 
analyses revealed that mice with high bilirubin 
developed a chronic liver disorder, characterized 
by steatosis, inflammation and fibrosis, increased 
hepatocyte proliferation and cell death. Pattern 
recognition receptors (PRR) such as Nucleotide-
binding and oligomerization domain (NOD)-like 
receptor family card-containing-4 (NLRC4) and 
TLR-2 were upregulated as well as TLR-4 and 
NOD-like receptor pyrin domain-containing-3 
(NLRP3) but to a lesser extent. The administra-
tion of a diet enriched in other soluble fibers such 
as pectin and fructo-oligosaccharide recapitulated 
the occurrence of hyperbilirubinemia, liver injury, 
and HCC, although at a lower rate (about 13%), 
whereas this was not observed when cellulose, a 
nonfermentable fiber, was administered. Feeding 
HFD enriched with inulin (HFD-I) attenuated the 
incidence of metabolic syndrome but increased the 
incidence of HCC from 40 to 65% in T5KO mice, 
and the same diet induced metabolic syndrome in 
all except 10% of wild-type animals, which also 
developed HCC. However, the first tumors were 
characterized by multinodular diffusion, the latter 
were small well-differentiated lesions. Mice that 
developed hyperbilirubinemia upon ICD diet dis-
played loss in gut bacteria richness and diversity, 
reduced Tenericutes, and increased abundance of 
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Proteobacteria and Clostridia, which are capable 
of producing butyrate and secondary bile acids. 
Notably, butyrate is involved in the promotion or 
inhibition of cell proliferation based on the amount 
and duration of exposure and the type of target 
cell107 and excessive doses may exert oncogenic 
effects, promote liver steatosis and intestinal 
inflammation,108–112 whereas secondary bile acids 
have known hepatotoxic activity.113 The metabo-
lomic analysis showed that an increase in butyrate 
cecal content characterized mice with hyperbiliru-
binemia and HCC. Butyrate administration to 
T5KO mice induced hyperbilirubinemia, liver 
inflammation, fibrosis, and upregulation of HCC 
markers without the development of evident tumor 
lesions; the depletion of butyrate-producing bacte-
ria by metronidazole was able to reduce the inci-
dence of HCC in T5KO mice fed with ICD and 
inhibition of bacterial fermentation by beta-acids 
abolished the development of tumors. Early 
switching of T5KO mice from inulin to cellulose 
containing diet when hyperbilirubinemia was ini-
tial protected from the development of HCC. 
Finally, the authors observed that ICD mice with 
hyperbilirubinemia presented atypical elevation of 
serum primary and secondary bile acids and 
reduced fecal excretion; treatment with cholesty-
ramine reduced bilirubin and transaminases, and 
no tumor lesions were detected. To confirm the 
close correlation between the development of 
HCC and gut dysbiosis, specific T5KO mice mod-
els not developing dysbiosis and liver-specific 
T5KO mice, having a normal intestinal expression 
of TLR-5, did not develop hyperbilirubinemia and 
HCC. Furthermore, cohousing with T5KO mice 
induced hyperbilirubinemia and HCC in wild-type 
mice; in contrast, antibiotics reduced the occur-
rence of the phenotype in ICD T5KO mice and 
the same was observed for germ-free T5KO mice 
fed with an irradiated ICD.

Taken together, the results of this study demon-
strate that, in the presence of gut dysbiosis, an 
excess of soluble fibers can cause butyrate over-
load and alterations in the bile acid pool, with 
consequent accumulation of lipids in the liver, 
inflammation, and tumorigenesis.

Another model of hepatocarcinogenesis involving 
the gut microbiota and induced by arsenic has been 
described.114 Germ-free mice showed higher uri-
nary excretion of arsenic and its metabolites, with 
an increased monomethylarsonic acid (MMA)/
dimethylarsinic acid (DMA) ratio, compared with 
conventional mice, as well as decrease in the fecal 

concentration of arsenic. The authors showed in a 
culture model that the gut microbiota is involved in 
the uptake of arsenic and also that germ-free mice 
present a downregulation of enzymes involved in 
arsenic methylation. Furthermore, gut microbiota 
depletion enhanced the toxic effect of arsenic on 
the liver by altering the expression of genes related 
to the p53 pathway and others related to hepatocar-
cinogenesis (StAR-related lipid transfer (START) 
domain containing 13 (STARD13), VEGF A, 
antizyme Inhibitor 1 (AZIN1), secreted phospho-
protein 1 (SPP1), HIV-1 Tat interactive protein 2 
(HTATIP2), oxidative stress induced growth 
inhibitor 1 (OSGIN1), activated leukocyte cell 
adhesion molecule (ALCAM), prothymosin-alpha 
(PTMA), tribbles homolog 2 (TRIB2), and Atonal 
BHLH Transcription Factor 8 (ATOH8), suggest-
ing an increased risk of developing HCC in germ-
free mice.

Therefore, preclinical data show that intestinal 
dysbiosis coexists with the process of hepatocar-
cinogenesis. The gut microbiota could be 
involved through (a) the exacerbation of inflam-
mation, (b) reduced conversion of primary bile 
acids with the accumulation of toxic compounds 
such as DCA, (c) the production of potentially 
harmful metabolites at high concentrations such 
as short chain fatty acids, and (d) altered metab-
olism of xenobiotics with carcinogenic effect. In 
particular, dysbiosis-related inflammation seems 
to play a strong pathogenetic role in all the exper-
imental settings, whereas the toxic effect of bile 
acids and short chain fatty acids has been better 
studied in HCC models associated with hepatic 
steatosis. However, it is likely that these mecha-
nisms can act synergistically in the complex pro-
cess of hepatocarcinogenesis. For all these 
reasons, the modulation of the gut microbiota 
using antibiotics or probiotics seems to be a 
promising tool to interfere with the development 
or progression of neoplastic lesions.

Human studies
There is little evidence on the potential mechanis-
tic relationship between the gut microbiota and 
HCC in humans.

A small prospective controlled study based on cul-
ture techniques analyzed the gut microbiota of 15 
cirrhotic patients with HCC awaiting liver trans-
plantation.115 Higher fecal counts of E. coli were 
significantly associated with HCC and showed a 
predictive accuracy of 0.742, with a bacterial 
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count cut-off of 17.728 having a sensitivity of 
66.7% and a specificity of 73.3%. However, the 
study was not based on metagenomic sequencing 
analyses, and only the stool counts of Enterococcus, 
E. coli, Proteus, Klebsiella, Enterobacter, Citrobacter, 
Serratia, Pseudomonas, Bifidobacterium, Bacteroides, 
Lactobacillus, Clostridium, and yeasts were taken 
into account.

More recently, the gut microbiota profile was 
evaluated in 20 Child Pugh A cirrhotic patients 
with NAFLD and early HCC and compared 
with counterparts without evidence of liver 
tumor, matched for age and severity of portal 
hypertension, and controls.116 This prospective 
study recognized an increase in intestinal perme-
ability, measured by high circulating levels of 
zonulin-1 (ZO-1) and LPS, and in fecal calpro-
tectin, which is a marker of intestinal inflamma-
tion, in patients with cirrhosis compared with 
healthy subjects. However, among cirrhotic 
patients, those with HCC presented a marked 
increase in fecal calprotectin without significant 
differences in permeability and LPS. This was 
associated with a specific increase in systemic 
cytokines and chemokines milieu, which was 
characterized by an increase in IL-8, IL-13, 
CCL-3, CCL-4, and CCL-5, and correlated 
with circulating activated monocytes and mono-
cytic MDSC (mMDSC) in the HCC group. 
Metagenomic analysis showed a lower abun-
dance of Akkermansia and an increase in 
Enterobacteriaceae in NAFLD cirrhotic patients 
compared with controls, and an additional 
depletion in Bifidobacterium and enrichment in 
Bacteroides and Ruminococcus in those affected by 
HCC compared with those without evidence of 
tumor. To draw a complete picture of the com-
plex connections between all the microbial, 
inflammatory, and immunological elements, a 
correlation network displayed that the beneficial 
bacteria Akkermansia and Bifidobacterium were 
inversely associated with intestinal inflamma-
tion, which in turn was related to the expression 
of cytokines and chemokines, connecting the gut 
to the immune system compartment and the 
presence of HCC. The abundance of Bacteroides 
was correlated with pro-inflammatory cytokines 
such as IL-8 and IL-13, being involved in the 
development of HCC through inflammation 
probably due to the Western-type diet that is 
common in NAFLD cirrhotic patients.

Finally, Ren and colleagues117 explored the role of 
the gut microbiota as a potential biomarker for 

early HCC in a Chinese population of HBV cir-
rhotic patients. In the training cohort, Actinobacteria 
phylum and other 13 genera including Gemmiger, 
Parabacteroides, and Paraprevotella were enriched in 
cirrhotic patients with early HCC compared with 
those without. Other differences included a reduc-
tion in Verrucomicrobia and an increase in 12 gen-
era including Alistipes, Phascolarctobacterium, and 
Ruminococcus and the reduction in six other genera, 
including Klebsiella and Haemophilus in HCC 
patients compared to controls. A probability of dis-
ease (POD) index was calculated using the best 30 
operational taxonomic unit (OTU) markers for 
early HCC. In the validation phase, the POD 
showed an AUC of 76.80% between early HCC 
and controls and of 80.40% between advanced 
HCC and controls. However, it was not able to dif-
ferentiate patients with early HCC from those with 
advanced tumors.

Taken together, the few studies available in 
humans show that during liver disease the gut 
microbiota is involved in the process of hepato-
carcinogenesis, mainly feeding the pro-inflamma-
tory microenvironment and interfering with the 
immune system (Figure 1).

Diagnostic and therapeutic potential of the 
gut microbiota for HCC
Several attempts have been made to identify key 
molecular or metabolic alterations able to charac-
terize the transition from regenerating liver tissue 
to dysplasia and early HCC.2,118–121 However, 
HCC is a highly heterogeneous tumor, and this 
severely compromises our possibility to select the 
optimal biomarker for its early detection in patients 
at risk.

The gut microbiota could harbor a high diagnos-
tic and therapeutic potential in this context. This 
may be associated with both the gut bacteria 
composition and metabolic functions. In fact, 
preclinical and clinical studies have shown a 
direct correlation between Gram-negative bacte-
ria and inflammatory changes related to the 
development of HCC; in contrast, anti-inflam-
matory and beneficial bacteria seem to be 
depleted. These data suggest that the assessment 
of the proportion of harmful to beneficial bacteria 
can be considered as a prognostic indicator for 
the development of HCC. However, as demon-
strated in the real-life, the gut microbiota compo-
sitional differences between patients with HCC 
and controls can be blurred when comparisons 
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are made between cirrhotic patients.116 As a sur-
rogate marker of the derangement of the gut–liver 
axis, fecal calprotectin can be used reliably to 
identify those patients with an enhanced intesti-
nal inflammation and at higher risk of developing 
HCC. Furthermore, the gut microbiota metabo-
lites can be considered as promising tools in the 
early diagnosis of HCC. The analysis of biliary 
acids composition or the quantification of fecal 
butyrate can help to identify those patients at high 
risk, and may be integrated with the assessment of 
the gut microbiota metagenomic profile to further 
stratify patient’s risk.

However, several limitations affecting the use of 
the gut microbiota for these purposes should be 
taken into account. First, cirrhotic patients are 
often subjected to antibiotic treatments that pro-
foundly alter the composition and function of 
their gut microbiota.122–124 Second, comorbidities 
can affect the gut microbiota12 and, therefore, 
make its use unreliable. Finally, ethnic differences125 
and the inclusion of patients with different etiolo-
gies of liver disease make it difficult to compare 
the results of the available studies. It is also to 
underline that all the studies published so far are 
very preliminary and need further confirmations 

in larger series. Moreover, metagenomic sequenc-
ing of the gut microbiota is still a technique avail-
able to a limited number of laboratories, and has 
not yet been implemented in clinical practice. 
Metabolites, especially bile acids, are very chal-
lenging to analyze and this may be expensive and 
difficult in clinical practice. Therefore, it is not 
yet clear how all this information can be managed 
and how it can be integrated into already estab-
lished diagnostic algorithms. If high-risk patients 
were identified on the basis of the gut microbial 
or metabolomic profile, how the patient follow up 
should be adapted is still unknown.

Important considerations can also be made for 
therapeutic purposes. It is clear that changes in 
the gut microbiota,  the intestinal environment, and 
the systemic mediators associated with HCC sug-
gest an inflammatory setting, which can promote 
the development of neoplastic aberrations directly 
or, when persisting over time, through the exhaus-
tion of the immune system. In this scenario, dif-
ferent interventions can be hypothesized at 
different levels. The modulation of the gut micro-
biota through antibiotics, eubiotics, and probiot-
ics should be aimed at avoiding the development 
of a proinflammatory bacterial community, and 

Figure 1. The lack of beneficial bacteria and the increase of intestinal permeability trigger a condition of 
chronic inflammation with consequent immunological activation, which in the long term can depress the 
immune system. Metabolic products of the gut microbiota, such as bile acids and short chain fatty acids, are 
involved in this process at multiple levels, through direct or indirect effects. This leads to the development of a 
pro-oncogenic microenvironment that promotes hepatocarcinogenesis and sustains tumor progression.
HCC, hepatocellular carcinoma.
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consequently its negative influence on the hepatic 
microenvironment and the immune system. 
Probiotics seem to have a positive effect in animal 
models of HCC, reducing the tumor burden and 
the inflammatory milieu.99,100 Other effects of 
probiotics in cancer are related to the improvement 
of intestinal barrier function and immunomodu-
latory activity.126 Antibiotic treatment has also 
been associated with reduced occurrence and 
progression of HCC in several studies,97,98,101,104,106 
although data on humans are lacking. Rifaximin, 
an eubiotic compound capable of inducing 
the overgrowth of beneficial bacteria such as 
Bifidobacterium, Faecalibacterium, and Lacto-
bacillus, and of exerting an anti-inflammatory 
effect,127 has never been tested in preclinical 
models of HCC and may represent a promising 
approach, considering the almost ubiquitous 
depletion of beneficial bacterial species associated 
with the development of HCC. Finally, fecal 
microbial transplantation (FMT), which is a 
recognized therapeutic option for C. difficile 
infection,128 has been employed with promising 
results in many other conditions related to gut 
microbiota derangement, such as restoring its the 
balance after allogeneic hematopoietic stem cell 
transplantation.129 Preliminary experiences in the 
treatment of liver cirrhosis from different etiolo-
gies and of its complications have also been 
published.130–138 Therefore, its adoption in HCC 
management deserves further attention.

Another possible approach involves drugs with 
anti-inflammatory effects, that could be used to 
reduce the intestinal and systemic inflammatory 
environment associated with the development of 
HCC. Various drugs may have an impact on the 
gut microbiota composition, as demonstrated 
recently,139 and some of them may play a role in 
the prevention and treatment of HCC. Metformin 
has previously been associated with a reduced 
incidence of HCC,140,141 and recent data suggest 
that it could play a role in decreasing nonresolv-
ing inflammation in animal models of NAFLD-
related HCC.142  Metformin alters gut microbiota 
of healthy mice143; Furthermore, it is a potent 
modulator of the gut microbiota.144,145 In particu-
lar, the relative abundance of Bifidobacterium145 
and Akkermansia146 are increased by metformin 
administration, suggesting that the anti-inflam-
matory role of this compound may be partially 
mediated by a favorable change in the gut micro-
biota composition. Similar effects have been 
recently shown for aspirin.147–149 Mesalazine, a 

derivative of 5-aminosalicylic acid, can alter the 
gut microbiota through different mechanisms, 
acting on the intestinal microenvironment, the 
mucosa or directly on gut bacteria.150 Although 
this drug is mainly used for its anti-inflammatory 
effects in patients with inflammatory bowel dis-
eases (IBDs), it could be potentially used in other 
disease conditions, such as HCC associated with 
liver cirrhosis. In addition statins, which are 
known modulators of the inflammatory response 
and of the gut microbiota, and their metabo-
lites151–156 have been associated with a reduced 
incidence of HCC in the general population and 
in high-risk patients.157–162

As a final consideration, the lessons from other can-
cers clearly indicate that a harmful dysbiosis can 
modulate the immune response and reduce effec-
tiveness of immunotherapy, whereas the opposite is 
observed when there is a positive balance in the gut 
microbial community.163 Therefore, the awakening 
of antitumor immune response, which can be 
stunned by persistent chronic stimulation by intes-
tinal antigens, can be adopted as preemptive strat-
egy or therapeutic approach to avoid disease 
progression or recurrence after treatment in patients 
with early HCC, and can be achieved through the 
modulation of the gut microbiota.
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