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Abstract

Background: Numerous studies have revealed that long noncoding RNAs (IncRNAs)
are closely related to the development of many diseases and carcinogenesis. However,
their specific biological function and molecular mechanism in oesophageal squamous
cell carcinoma (ESCC) remains unclear.

Methods: RNA-Seq was performed to determine the differential expressions of IncR-
NAs in ESCC, and the level of SNHG16 expression was detected in ESCC and intraepi-
thelial neoplasia (IEN) samples. In vitro and in vivo experiments were performed to
explore the role of SNHG16 and the interaction of EIF4A3 and Ras homologue family
member U (RhoU) signalling.

Results: One hundred and seventy-five upregulated and 134 downregulated IncRNAs
were identified by RNA-Seq. SNHG16 was highly expressed in ESCC and intraepithelial
neoplasia (IEN) samples, and its expression level was correlated with tumour differ-
entiation and T stage. Overexpression of SNHG16 can facilitate ESCC cell proliferation
and metastasis. Mechanistically, we noticed that SNHG16 could bind RNA binding
protein (RBP)-eukaryotic translation initiation factor (EIF4A3) and interact with it to
form a complex. Importantly, the coalition of SNHG16 and EIF4A3 ultimately regulated
Ras homologue family member U (RhoU). SNHG16 modulated RhoU expression by
recruiting EIF4A3 to regulate the stability of RhoU mRNA. Knockdown of RhoU further
alleviated the effect of the SNHG16 oncogene in ESCC cells.

Conclusions: The newly identified SNHG16-EIF4A3-RhoU signalling pathway directly
coordinates the response in ESCC pathogenesis and suggests that SNHG16 is a promis-
ing target for potential ESCC treatment.

Keywords: SNHG16, Oesophageal squamous cell carcinoma, mRNA stability, EIF4A3,
RhoU
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Background

Oesophageal cancer (EC) is the third highest incidence cancer and the fourth highest
cause of cancer-related mortality according to Cancer Statistics in China [1-3]. Approx-
imately 90% of EC in China are oesophageal squamous cell carcinoma (ESCC) [2, 4],
which shows aetiological and pathological characteristics distinct from oesophageal
adenocarcinoma (EA) [5, 6]. Although the development of multimodality therapy has
improved ESCC patient prognosis [7], the 5-year overall survival (OS) rate still remains
unsatisfactory [8]. It is believed that late diagnosis and tumour metastasis propensity are
associated with poor outcomes [3]. Genetic susceptibility, environmental factors and
gene—environment interactions contribute to the development and progression of ESCC
[9, 10]. An in-depth study of the molecular mechanisms of ESCC carcinogenesis and
screening specific biomarkers are of particular significance for ESCC therapy and early
diagnosis.

Long noncoding RNAs (IncRNAs), a recognized class of noncoding RNAs (ncRNAs)
with lengths longer than 200 nucleotides (nt), have limited or no protein-coding capacity
[11]. Although previous researchers regarded many IncRNAs as transcriptional noise, a
growing number have been shown to have authentic biological functions such as chro-
matin modification, transcription, post-transcriptional regulation and nuclear transport
[12-14]. As IncRNAs are more tissue specific or cell-type specific than protein-coding
genes, they have distinct biological roles in physiological and pathological settings, espe-
cially in cancers [15]. Studies on and understanding of IncRNAs in ESCC carcinogen-
esis have gradually increased in recent years [16, 17]. Previous studies have discovered
the expression profile of aberrant IncRNAs in ESCC, and identified varieties of ESCC-
associated IncRNAs, some of which could be used as biomarkers for cancer diagnosis or
prognosis [17-20]. Nevertheless, compared with the number of other cancer-associated
IncRNAs, only very few ESCC-associated IncRNAs have been studied, and their func-
tions and mechanisms have yet to be fully elucidated [20, 21]. Therefore, the vast major-
ity of ESCC-associated IncRNAs need to be further investigated in detail.

In this study, we performed a next-generation RNA sequencing assay from four pairs of
ESCC and normal oesophagus tissues to identify novel ESCC-associated IncRNAs. We
then focused on a small nucleolar RNA host gene 16 (SNHG16) and detected its expres-
sion in a cohort of precancerous, cancerous and normal oesophageal tissues. In vitro and
in vivo experiments were used to investigate the biological function of SNHG16. Finally,
a mechanistic investigation was performed to determine how SNHG16 regulates ESCC
cells, and explored its underlying targets.

Materials and methods

Patient sample collection and RNA-Seq screening

Oesophageal intraepithelial neoplasia (IEN) tissues, ESCC tissues and paired normal
oesophagus tissues were obtained from inpatients who had previously received endo-
scopic submucosal dissection (ESD) or oesophagectomy with no chemoradiotherapy in
the Department of Gastroenterology and the Department of Cardiothoracic Surgery at
Zhongda Hospital Affiliated of Southeast University from February 2019 to November
2021. Staging of superficial neoplastic lesions of the oesophagus was done according to
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the Paris classification of gastrointestinal neoplasms. The protocol of this study com-
plied with the ethical guidelines of Declaration of Helsinki principles and was authorized
by the Ethics Committee of Zhongda Hospital (2019ZDSYLL022-P01).

Four pairs of ESCC tissues and normal oesophagus tissues were used to obtain a
genome sequence screen (Kangchen Biotech, Shanghai, China). Detailed information
is provided in Additional file 1: Table S1. Fold change (FC)/P-value/false discovery rate
(FDR) filtration (multiple > 1.5, P<0.05 and FDR <0.05) were determined to identify dif-
ferentially expressed ESCC-related IncRNAs. Raw data are available on the Gene Expres-
sion Omnibus (GEO) website (GSE189830).

Cell lines and culture

Four human ESCC cell lines (Ecal09, KYSE30, KYSE140 and KYSE410) were purchased
from the Institute of Biochemistry and Cell Biology of the Chinese Academy of Sci-
ences (Shanghai, China). The normal human oesophageal epithelial cell line HET-1A
was kindly provided by Professor Lin. L (The First Affiliated Hospital of Nanjing Medi-
cal University). Cells were cultured in RPMI 1640 medium (Gibco, Carlsbad, CA, USA)
containing 10% fetal bovine serum (FBS, Gibco) at 37 °C in a humidified incubator sup-
plemented with 5% CO,.

Cell transfection and stable cell line establishment

Short hairpin RNA targeting SNHG16 (sh-SNHG16 #1/2/3) and small interfering RNA
(siRNA) against EIF4A3 (si-EIF4A3 #1/2/3) and RhoU (si-RhoU #1/2/3) were synthe-
sized by GenePharma (Shanghai, China) to knock down the respective gene expression.
Cell transfection was conducted by Lipofectamine RNAiMAX (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s protocol. Stable cell lines were established by
infection with the indicated lentiviruses and selected for puromycin (1-2 pg/ml, Sigma,
MO, USA) resistance. Sequences of the the shRNA and siRNA used in this study are
listed in Additional file 1: Table S2.

RNA isolation, qRT-PCR and actinomycin D treatment
Total RNA from tissues and cells were extracted by an Omega Total RNA kit (Bio-Tek,
USA). Reverse transcription was conducted based on the protocol of the Reverse Tran-
scription kit (Takara, Tokyo, Japan). GAPDH and U6 were employed as normalization
controls. The primers used in this study for qRT-PCR are listed in Additional file 1:
Table S2.

To block transcription, 2 pug/ml actinomycin D (APExBIO, USA) was added to the
cell culture medium after transfection. After actinomycin D co-culture for various time
points, the remaining mRNA was detected by qRT-PCR.

Western blot analysis and immunohistochemistry (IHC)

Western blotting was performed to analyse protein expression. The antibodies used were
specific for EIF4A3 (1:1000; Abcam) and RhoU (1:500; Origene). GAPDH (1:6000, Gene-
Tex) and B-actin (1:3000, GeneTex) were used as the controls. Protein bands were visu-
alized using an enhanced chemiluminescence (ECL) chromogenic substrate (Beyotime,
Shanghai, China) and assessed by Image-Lab analysis software (San Leandro, CA, USA).
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Paraffin-block tissues of subcutaneous xenografts in mice were stained with haema-
toxylin and eosin (HE) and IHC, and subsequently evaluated by a pathologist blindly.

Cell viability, colony formation, migration and wound healing assay

Cell viability was measured with a Cell Counting Kit-8 (CCK8) (Beyotime, Shanghai,
China) at 24, 48, 72 and 96 h. Colony formation was performed by seeding 300-500 cells
in a six-well plate. Two weeks later, the plates were washed and stained with crystal vio-
let. Cell migration was determined by a Transwell assay and wound healing scratch assay
according to standard protocols.

Fluorescence in situ hybridization (FISH)

Cells were fixed with 4% paraformaldehyde and subsequently treated with 0.5% Tri-
ton X-100. For the FISH assay, a digoxigenin (DIG)-labelled SNHG16 probe (Service
Bio, Wuhan, China) was used. Hybridization was conducted by utilizing a fluorescent
using an in situ hybridization kit (RIBO Bio, Guangzhou, China) in a dark humidifying
box at 37 °C overnight. The nuclei of cells were stained by 4/,6-diamidino-2-phenylin-
dole (DAPI). Images were obtained by an Olympus confocal laser scanning microscope
(Olympus Optical, Tokyo, Japan).

Subcellular fractionation location

The separation of nuclear and cytosolic fractions was performed based on the protocol
of the PARIS Kit (Life Technologies, Carlsbad, CA, USA). qRT-PCR was then used to
determine the expression of SNHG16. U6 and GAPDH were used as internal controls
for nuclear and cytoplasmic RNA.

RNA protein pull-down assay and mass spectrometry (MS)

Sense and antisense of SNHG16 were transcribed in vitro with a T7 Quick High Yield
RNA Synthesis Kit (Thermo Fisher Scientific, USA). Transcribed RNA was purified by
RNA Clean & Concentrator-25 (Zymo Research, Beijing, China). A Pierce Magnetic
RNA-Protein Pull-down kit (Thermo Fisher Scientific, MA, USA) was used according to
the manufacturer’s instructions. After RNA pull-down, equal amounts of samples pulled
down by sense and antisense SNHG16 were loaded on SDS-PAGE gels. Then, the gel
was stained with a Protein Fast Silver Stain Kit (Leagene, Beijing, China) according to
the protocol. Bands were cut and analysed by liquid chromatography—mass spectrom-
etry (LC-MS/MS) (Oebiotech Company, Shanghai, China). Protein identifications were
retrieved from the human RefSeq protein database (National Center for Biotechnology
Information) using Mascot version 2.4.01 (Matrix Science, London, UK).

RNA immunoprecipitation (RIP) assay

RIP was implemented with the Imprint RNA Immunoprecipitation (RIP) Kit (Sigma,
Aldrich, US). Cell extracts were obtained by RIPA lysis buffer and then incubated with
a mixture of magnetic beads and antibodies against EIF4A3. Anti-IgG antibody was uti-
lized as a control. The final co-precipitated RNAs were purified and subjected to RT-
PCR or qPCR.
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In vivo xenograft tumour models

Female BALB/c nude mice (4—6 weeks of age, GemPharmatech Co. Ltd, Nanjing,
China) received humane care according to the Guide for the Care and Use of Lab-
oratory Animals, and were raised under specific pathogen-free conditions. A total
of 5x 10° SNHG16 stable knockdown or overexpressed cells and control cells were
subcutaneously injected into the back of each mouse. Tumour size was calculated as
(length x width?)/2 and recorded every 3 days. Mice were sacrificed 30-40 days after
injection, and subcutaneous tumours were obtained and imaged. The animal study
was approved by the institutional review board of Southeast University (20210709006)
and was performed in compliance with the Basel Declaration.

Statistical analysis

Experiments in our study were carried out in triplicate, and the values are expressed
as the mean + standard deviation (SD). Statistical significance was determined by the
nonparametric Mann—Whitney U test or two-tailed paired Student’s ¢-test. The find-
ings were considered to be significant at P <0.05. Statistical analyses were performed
using SPSS 22.0 software (IBM, NY, USA) and GraphPad Prism v5.01 (GraphPad, La
Jolla, CA, USA).

Results

SNHG16 expression is significantly upregulated in ESCC and IEN tissues

RNA sequences detected 2145 different IncRNAs, including 175 upregulated (fold
change>1.5, P<0.05) and 134 downregulated (fold change<0.5, P<0.05). Here, we
focus on SNHG16, for which no function in ESCC has been previously ascribed.
Among all the differentially expressed IncRNAs, SNHG16 was one of the upregu-
lated IncRNAs in ESCC tissues (Fig. 1A). Two publicly accessible microarray datasets,
including 301 oesophageal carcinoma samples and 405 normal samples, also verified
the higher level of SNHG16 expression (GSE53624, 53,622) (Fig. 1B). Furthermore,
we examined SNHG16 expression in 25 primary ESCC tissues and matched normal
oesophageal tissues, and found that SNHG16 was significantly upregulated in ESCC
tissues (Fig. 1C). We further detected SNHG16 in samples resected by ESD therapy.
To our surprise, SNHG16 expression was high in 19 and low in 11 of 30 ESD samples
(Fig. 1D), and its expression was correlated with tumour differentiation (P=0.037)
and T stage (P=0.098), suggesting that SNHG16 upregulation was an early event in
ESCC development. The correlation between SNHG16 expression and detailed clini-
cal baseline characteristics of the patients in our study are presented in Table 1.

SNHG16 promotes ESCC cell proliferation and migration in vitro

To explore the biological role of SNHG16 in ESCC, we detected SNHG16 expression
in diverse human ESCC cell lines. As shown in Fig. 2A, the level of SNHG16 was
increased in ESCC cell lines (Ecal09, KYSE30, KYSE140 and KYSE410) compared
with the normal oesophageal cell line (HET-1A). Three independent shRNAs, #1, #2
and #3, were transfected into ESCC cell lines to knockdown SNHG16 expression. It
was satisfactory that SNHG16 was more efficiently diminished by shRNA #2, which
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was selected for the primer sequence of the lentivirus package (Fig. 2B). As endog-
enous SNHG16 levels in KYSE30 and KYSE410 cells were higher than those in Ecal09
and KYSE140 cells, they became stable cell lines packaged with lentivirus to stably
knockdown SNHG16. Additionally, SNHG16 was ectopically overexpressed with a
lenti-SNHG16 vector in Ecal09 and KYSE140 cells.

Cell proliferative vitality was analysed by CCK-8 and colony formation assays, which
showed that knockdown of SNHG16 decreased cell proliferation and colony forma-
tion compared with scrambled control cells (Fig. 2C, D). To estimate whether SNHG16
could affect ESCC cell migration, Transwell and scratch wound healing assays were per-
formed. Interestingly, the number of migrating KYSE30 and KYSE410 cells was strongly
reduced after SNHG16 knockdown (Fig. 2E). Scratch wound healing assays also showed
that SNHG16 knockdown significantly suppressed migration ability (Fig. 2F). shARNA
depletion experiments may suffer from off-target effects, therefore, we subsequently
investigated the effect of SNHG16 overexpression. As shown in Fig. 2C—F, Ecal09 and
KYSE140 cells overexpressing SNHG16 displayed more cell proliferation and migration
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Table 1 Correlation between SNHG16 expression and clinical pathological characteristics of ESCC

patients
Characteristics All cases (%) SNHG16 expression P value
High-expression Low-expression cases
cases (n) (n)

Total number 55

Gender
Male 38 28 10 0.033
Female 17 7 10

Age
>60 50 31 19 0.643
<60 5 4 1

Degree of tumour differentiation
Cancer 42 30 12 0.037
HG-IEN 3 2 1
LG-IEN 10 3 7

Tumour location
Upper/middle 30 20 10 0.779
Lower 25 15 10

Tumour length
>3cm 41 28 13 0.335
<3cm 14 7 7

T stage
T0 10 3 7 0.098
Tis 3 2 1
T 17 13 4
T2 22 14 8
T3 3 3 0

Lymphatic metastasis
Positive 7 6 1 0402
Negative 48 29 19

HG-IEN high-grade intraepithelial neoplasia, LG-IEN low-grade intraepithelial neoplasia

ability than controls. Altogether, gain- and loss-of-function experiments showed that
SNHG16 promotes ESCC cell proliferation and migration in vitro.

SNHG16 promotes ESCC cell tumourigenesis in vivo

To further clarify if SNHG16 exerts ESCC cell carcinogenesis effects in vivo, Ecal09 cells
stably overexpressing SNHG16 or control empty vector were subcutaneously injected
into nude mice. As displayed in Fig. 3A, tumour volumes and tumour growth in the
LV-SNHG16 group was obviously faster than in the control group in the whole pro-
cess of feeding. After 35 days, ultimate xenograft tumours were obtained. The xenograft
tumours were photographed and showed that tumours formed in the control group were
generally smaller than those in the LV-SNHG16 group (Fig. 3A). In contrast, the tumour
weight and tumour growth after injection with KD-SNHG16 were smaller than those
of the negative control groups (Fig. 3B). We further detected the staining of Ki-67 and
CD34 through immunohistochemistry (IHC) analysis, which showed higher Ki-67 and
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CD34 intensity in the LV-SNHG16 group than in the control group, while crosscurrent
results were observed in the KD-SNHG16 group (Fig. 3C).

SNHG16 interacts with EIF4A3

To further demonstrate the potential molecular mechanisms of SNHG16 in ESCC, sub-
cellular fractionation and FISH staining were used. As displayed in Fig. 4A, B, SNHG16
was mostly located in the cytoplasm against the nucleus, which suggested that SNHG16
may play a regulatory role at the post-transcriptional level. Pull-down assays were carried
out to identify the probable RNA binding proteins (RBPs) binding to SNHG16. Intrigu-
ingly, Fig. 4C showed specific bands in the 40-55 kDa, 35 kDa and 15 kDa regions by sil-
ver staining, which implies that some RBPs bind to SNHG16. Considering that the range
of 40-55 kDa can pull down more proteins, we performed LC—-MS from this band to
look for specific RBPs interacting with SNHG16. Subsequently, we discovered 341 differ-
ential RBPs binding to SNHG16 and 164 RBPs binding to antisense SNHG16, according
to LC-MS (Fig. 4D). We stripped away the overlapping proteins and focused on EIF4A3,
which specifically binds to SNHG16 (Fig. 4E). As shown in Fig. 4F, the abundance of
SNHGI16 was detected in the precipitates of EIF4A3 antibody, and the enrichment of



Ren et al. Cellular & Molecular Biology Letters (2022) 27:89 Page 10 of 17

EIF4A3 protein in the products pulled down by SNHG16 (Fig. 4G) further confirmed
the results of LC—-MS. Dramatically, we noticed that the level of EIF4A3 remained unal-
tered after SNHG16 knockdown or overexpression (Fig. 4H), and SNHG16 exhibited
no significant change with EIF4A3 depletion (Fig. 4I), which suggests that SNHG16 and
EIF4A3 are not downstream regulators of each other but may form a complex. Alto-
gether, SNHG16 may recruit EIF4A3 to regulate its downstream genes.

EIF4A3 acts as an oncogene in ESCC cell progression

The online GEPIA database (http://gepia.cancer-pku.cn/) shows that EIF4A3 is highly
upregulated in oesophageal cancer, and its expression is positively correlated with
SNHG16 (Additional file 1: Fig. S1A). To verify its role in ESCC, we synthesized siR-
NAs target EIF4A3 to knock down its expression. As shown in Additional file 1: Fig. 1B,
si-EIF4A3 #1 exhibited ~50% knockdown efficiencies and was selected for subsequent
functional experiments. CCK-8 and colony formation assays showed that EIF4A3 down-
regulation significantly reduced ESCC cell viability (Additional file 1: Fig. S1C-D). In
addition, cell migration ability was also weakened due to EIF4A3 knockdown according
to the transwell and scratch wound healing assays (Additional file 1: Fig. SIE-F). These
findings indicated that EIF4A3 promoted ESCC cell malignant proliferation and migra-
tion, corresponding with the oncogenic role of SNHG16 in ESCC.

SNHG16-EIF4A3 regulates RhoU and affects its mRNA stability

To investigate the associated signal pathways and potential target genes involved in
SNHG16-EIF4A3 regulation in ESCC, a high-resolution transcriptome microarray
(Shengyin Biotech, Shanghai, China) after SNHG16 or EIF4A3 knockdown in ESCC
cells was performed. Microarray analysis identified 20,456 differentially expressed genes
after SNHG16 knockdown, and 22,602 altered genes after EIF4A3 knock down (fold
change > 1.5, P<0.05). Notably, we found 204 genes at the overlap of these two gene sets,
which were indicated to be the co-targets regulated by SNHG16 and EIF4A3 (Fig. 5A).
The mRNA levels of RhoU, FOXO6, WNT4, ST6GALNACI, AGR2, PAHTM, NELL2
and ALPP were significantly downregulated due to SNHG16 or EIF4A3 knockdown
in ESCC cells according to RNA-Seq (Fig. 5B). To further validate the screen common
target mRNAs, we performed qRT-PCR to explore the regulation of the eight mRNA
by SNHG16 and EIF4A3. As displayed in Fig. 5C, only RhoU mRNA was significantly
diminished in both KYSE30 and KYSE140 cells when SNHG16 or EIF4A3 was knocked
down. In addition, the protein level of RhoU was significantly reduced after SNHG16 or
EIF4A3 silencing (Fig. 5D). Furthermore, the results of RIP assay showed that EIF4A3
could interact with RhoU, and the enrichment of RhoU in anti-EIF4A3 precipitates was
strengthened due to SNHG16 overexpression (Fig. 5E).

Previous studies have reported that IncRNAs and RBPs can regulate mRNA stability,
so we treated KYSE30 and KYSE140 cells with actinomycin D, which measures the decay
of pre-existing mRNA. As shown in Fig. 5F, downregulation of SNHG16 or EIF4A3
decreased the RhoU mRNA half-life. Co-silencing SNHG16 and EIF4A3 in ESCC
cells further decreased RhoU mRNA stability. However, the upregulation of SNHG16
did not strengthen RhoU mRNA stability (Fig. 5G). To illustrate whether the func-
tion of SNHG16 was dependent on EIF4A3, we further transfected LV-SNHG16 cells
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Fig.5 SNHG16-EIF4A3 regulates RhoU and affects its mRNA stability. A A total of 204 transcripts were
altered simultaneously in sh-SNHG16-treated cells and si-EIF4A3-treated cells (fold-change > 1.5, P<0.05).

B The hierarchical cluster heatmap of the 204 differentially expressed mRNAs in RNA-Seq analysis of
sh-SNHG16-treated cells and si-EIF4A3-treated cells. Red represents upregulated transcripts, and blue
represents downregulated transcripts. C gRT-PCR validated the changes in eight mRNAs involved in

the regulation of sh-SNHG16 and si-EIF4A3. D Western blot analysis of RhoU after SNHG16 or EIF4A3
downregulation in ESCC cells. GAPDH was used as an internal control. E RIP showed that EIF4A3 interacted
with RhoU and increased under SNHG16. F RNA stability assays were performed to measure the degradation
rates of RhoU mRNA in KYSE30 and KYSE140 cells with SNHG16 or EIF4A3 knockdown. G RhoU mRNA stability
in ESCC cells with LV-SNHG16 cells, KD-SNHG16 cells, and EIF4A3 knockdown in LV-SNHG16-treated cells and
KD-SSNHG16 cells. *P<0.05, **P< 0.01, ***P < 0.001

with si-EIF4A3. As expected, EIF4A3 knockdown decreased RhoU mRNA stability in
LV-SNHG16 cells, which implied a more dominant role in regulating mRNA stability
(Fig. 5G). Altogether, these results implied that SNHG16 modulated RhoU expression by
recruiting EIF4A3 to enhance RhoU mRNA stability.

RhoU is involved in the oncogenic role of SNHG16

To explore whether RhoU was involved in SNHG16-induced ESCC cell proliferation
and migration, we carried out rescue experiments. Figure 6A shows that siRNA #1, #2
and #3 could not adequately inhibit inhibition individually, so we used siRNA #1, #2 and
#3 by using the smart pool method to transfect ESCC cells in the following functional
assays to achieve more effective RhoU inhibition. Fortunately, CCK-8 and colony for-
mation assays showed that cell proliferation was increased by SNHG16 overexpression
and was repressed when RhoU was knocked down (Fig. 6B, C). Similarly, cell migration
ability was impaired after RhoU suppression (Fig. 6D, E). Rescue experiments showed
that SNHG16 partially affected the tumourigenesis and development of ESCC through
RhoU.
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Discussion

Long noncoding RNAs (IncRNAs) have been recently identified as key participa-
tors in cancer-related biological processes, and indicate novel molecular targets in
cancer. Herein, we performed a high-throughput analysis of ESCC tissues and nor-
mal oesophageal tissues and discovered 2145 aberrantly expressed IncRNAs, which
updates the current ESCC IncRNA profile. We first reported high SNHG16 expres-
sion in high-grade intraepithelial neoplasia (HG-IEN) and showed that its expression
was correlated with tumour differentiation and T stage, which indicates that it may
play an oncogenic role in early ESCC. Mechanistically, we acknowledge that SNHG16
could bind to some RBPs. Furthermore, we targeted eukaryotic translation initia-
tion factor (EIF4A3), a core component of exon junction complex, and demonstrated
that the SNHG16-EIF4A3 coalition ultimately regulated the expression of the Ras
homolog family member U (RhoU). SNHG16 modulated RhoU expression by recruit-
ing EIF4A3 to enhance the mRNA stability of RhoU. In conclusion, our data suggest
that the SNHG16-EIF4A3-RhoU axis might provide new insight into the mechanism
underlying ESCC development.

Small nucleolar RNA host gene 16 (SNHG16), located on 17q25.1, was first reported in
aggressive neuroblastoma [22]. Subsequent studies identified its oncogenic role in other
cancers, such as lung [23], cervical [24], breast [25] and colorectal cancers [26]. How-
ever, its role in hepatocellular cancer is controversial [27, 28], which may be attributed to
tissue-specific or cell type-specific properties. Recently, SNHG16 expression was shown
to be upregulated in ESCC tissues compared with normal tissues [29, 30], indicating its
oncogenic effect in ESCC. In this study, we noticed that SNHG16 was upregulated in
ESCC tissues, according to our microarray analysis. We further explored its expression
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in a large cohort of ESCC tissues and confirmed its upregulation in ESCC tissues and
ESCC cell lines.

Currently, ESCC tends to be detected at an early stage because of the prevalence of
upper gastrointestinal endoscopy screening [31]. Endoscopic submucosal dissection
(ESD) has become an alternative, minimally invasive strategy to oesophagectomy, espe-
cially for oesophageal intraepithelial neoplasia (IEN) [32]. The detection of SNHG16 in
IEN can help us to better understand its role in the tumourigenesis of ESCC. Here, we
collected 30 pairs of oesophageal neoplasia samples (obtained by ESD therapy) and first
found that the level of SNHG16 was high in 19 TINOMO patients, which indicates that
SNHG16 is an ESCC-related biomarker. Furthermore, in vitro and in vivo assays showed
that ectopic expression of SNHG16 prompted ESCC cell proliferation and migration
ability. These findings imply an oncogenic role of SNHG16 in the development and pro-
gression of ESCC.

Accumulating evidence suggests that IncRNAs promote or suppress cancer by spong-
ing miRNAs. It was originally reported that SNHG16 has 27 AGO/miRNA binding sites
along its full length, indicating that SNHG16 might function as a competing endogenous
RNA (ceRNA), “sponging” miRNA off its cognate targets [26]. Subsequent studies have
revealed that SNHG16 competitively binds with miR-4518 [33], miR-140-5p [34], miR-
4500 [35] and miR-302a-3p [36] in various cancer types. Other confirmed mechanisms
for IncRNAs in the cytoplasm involve post-transcriptional regulating mRNA stability
or accessibility to the translational machinery [37], which is part of the interaction with
RNA-binding proteins (RBPs) [38, 39]. For instance, IncRNA MEG3 induced Shp mRNA
decay by interacting with PTBP1 to facilitate cholestatic liver injury [40]. Linc01093 trig-
gered the mRNA decay of GLI1 through interaction with IGF2BP1 to suppress hepato-
cellular carcinoma (HCC progression [41].

In this study, we found that SNHG16 was mostly located in the cytoplasm in ESCC
cell lines, which suggests its vital role in post-transcriptional regulation. We explored
whether some RBPs interact with SNHG16 by RNA protein pull down and LC-MS anal-
ysis. According to the literature, EIF4A3 is one of the three core components of the exon
junction complex (EJC), which causes mRNA decay and regulates protein expression at
the translational and post-translational levels [42, 43]. We initially noticed that EIF4A3
was one of the RBPs interacting with SNHG16 and further confirmed the abundant
binding relationship between them through RNA pull-down and RIP assays. Therefore,
we hypothesized that SNHG16—EIF4A3 could regulate target mRNA stability. Accord-
ing to RNA-Seq, we found that RhoU was the common target of SNHG16 and EIF4A3.
As expected, knocking down the expression of SNHG16 or EIF4A3 separately decreased
the RhoU mRNA stability, and co-reduction of SNHG16 and EIF4A3 further decreased
the half-life of RhoU. However, overexpression of SNHG16 failed to increase the mRNA
stability of RhoU, which suggests that the mRNA stability regulation of SNHG16 was
more dependent on EIF4A3.

Rho GTPases are class of small G proteins belonging to the Ras superfamily that
regulate number of cell functions, including cell migration, cell proliferation, cell junc-
tion and cell polarity. The atypical Rho GTPase RhoU was originally isolated as a gene
transcriptionally upregulated in wnt-1-transformed mouse mammary epithelial cells
that shares distinct homology with Cdc42, as well as some biological functions [44]. For
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example, RhoU binds and activates p21-activated kinase (PAK1), induces filopodia and
regulates cell tight junctions [45]. Impaired RhoU activity in fatty acid synthase-depleted
cells leads to reduced adhesion turnover downstream of paxillin serine phosphorylation,
which is rescued by the addition of exogenous palmitate [46]. Previous studies reported
that knockout of RhoU led to increased peripheral adhesions and reduced paxillin S272
phosphorylation, which is required for adhesion disassembly [45]. Upregulated RhoU in
prostate cancer correlated with disease progression, and silencing of RhoU was shown
to reduce the migratory ability of MDA-MB-231 and PC3 breast cancer cells [45, 47].
In our study, we found that EIF4A3 could interact with RhoU, and the enrichment of
RhoU in anti-EIF4A3 precipitates was strengthened by SNHG16 overexpression. In con-
clusion, we deemed that SNHG16 modulates RhoU expression by recruiting EIF4A3 to
enhance the mRNA stability of RhoU.

To determine whether RhoU participates in the oncogenic role of SNHG16, we
restrained the level of RhoU in SNHG16-overexpressing cells. Excitingly, we noticed that
RhoU knockdown repressed SNHG16 carcinogenesis in ESCC cells. As we did not find
an effective specific siRNA targeting RhoU, we were unable to perform in vivo experi-
ments to confirm the SNHG16—-RhoU axis. Despite this, we perceived the involvement
of RhoU in SNHG16-induced ESCC cell proliferation and metastasis on the basis of
in vitro studies.

Conclusion

Our work demonstrates that upregulation of SNHG16 could promote ESCC growth and
metastasis associated with tumour differentiation and T stage, which might be recog-
nized as a potential therapeutic target for ESCC. Mechanistically, SNHG16 could inter-
act with EIF4A3 and regulate RhoU mRNA stability. Targeting SNHG16—EIF4A3—RhoU
signalling may provide new insights into ESCC treatment strategies. Our findings may
provide new insight into how SNHG16 regulates mRNA stability and promote our com-
prehension of IncRNA regulatory characteristics in ESCC malignant development and
progression.
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