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Abstract – 149 words 15 

Intervention strategies for minimizing indoor SARS-CoV-2 transmission are often based on 16 

anecdotal evidence because there is little evidence-based research to support them. We 17 

developed a spatially-explicit agent-based model for simulating indoor respiratory pathogen 18 

transmission, and used it to compare effects of four interventions on reducing individual-level 19 

SARS-CoV-2 transmission risk by simulating a well-known case study. We found that imposing 20 

movement restrictions and efficacious mask usage appear to have the greatest effects on reducing 21 

infection risk, but multiple concurrent interventions are required to minimize the proportion of 22 

susceptible individuals infected. Social distancing had little effect on reducing transmission if 23 
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 2 

individuals move during the gathering. Furthermore, our results suggest that there is potential for 24 

ventilation airflow to expose susceptible people to aerosolized pathogens even if they are 25 

relatively far from infectious individuals. Maximizing rates of aerosol removal is the key to 26 

successful transmission-risk reduction when using ventilation systems as intervention tools. 27 

 28 

Main Text – 3499 words 29 

1. Introduction 30 

Understanding transmission mechanisms is necessary to generate evidence-based guidance 31 

for controlling infectious diseases. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-32 

CoV-2), the causative agent of Coronavirus Disease 2019 (COVID-19), is primarily spread 33 

through infectious respiratory droplets and aerosols of varying size (1, 2, 3, 4, 5). These media 34 

are expelled when an individual speaks, coughs, sneezes, or otherwise expectorates (6, 7). 35 

Pathogen transmission can occur when these virion-containing particles are inhaled by, or 36 

otherwise come into contact with the mucosae or conjunctiva (i.e., mouth, nasal membranes, or 37 

eyes) of a susceptible person (5). Aerosol transmission is emerging as an important transmission 38 

pathway, particularly for large clusters associated with superspreading events (2, 8, 9, 10). van 39 

Doremalen et al. (2020) (11) found that SARS-CoV-2 can remain viable in aerosolized droplets 40 

for at least 3 hours post expectoration. While these results may not accurately represent SARS-41 

CoV-2 stability outside of laboratory conditions (5), their findings are in line with case reports of 42 

viral-RNA detection in air collected from hospital rooms housing COVID-19 patients (12, 13, 43 

14, 15).  44 

Transmission of SARS-CoV-2 is more likely in indoor settings than outdoors (8, 9). 45 

Households are the most common venue linked to transmission, but healthcare facilities, 46 
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religious venues, food processing plants or prisons are also likely to be associated with large 47 

clusters of COVID-19 cases (9). Recommended interventions to reduce indoor transmission 48 

include: social distancing, use of face coverings, increased ventilation, and reduced group sizes 49 

(1). U.S. state government recommendations and restrictions for group size limits in indoor 50 

gatherings range from 10 to 100 people or 10 – 75% of a locale’s original capacity (16). There is 51 

little evidence-based research to support specific group size restrictions, however, and few 52 

studies have sought to identify the most-effective strategy for limiting indoor SARS-CoV-2 53 

transmission.  54 

Some mathematical models have been built to support individual-level risk assessment of 55 

indoor transmission and analyze aerosol contributions to past outbreaks. Chande et al. (2020) 56 

(17) created a tool to assess the U.S. county level probability that someone infected with SARS-57 

CoV-2 will attend events of varied sizes. Their tool is useful for estimating the probability that 58 

SARS-CoV-2 transmission could occur during any gathering, but provides no direct measure of 59 

transmission risk from infectious individuals during events and no way to assess the impact of 60 

intervention strategies other than reducing group sizes. Other models have sought to determine 61 

the role that aerosolized infectious droplets play in indoor SARS transmission relative to larger 62 

droplets that are unlikely to be inhaled, and quantify the transmission risk attributable to aerosols 63 

in varied environments (18, 19, 20, 21, 22). These models are primarily based on Wells-Riley 64 

equations for estimating aerosol-attributable risk, which assume homogenous spatiotemporal 65 

mixing of air constituents and exposure to infectious agents (23). Mathematical indices and 66 

parameter values in these models can be adjusted to simulate effects of intervention strategies 67 

like social distancing (22) and increased ventilation rates (18, 20, 21, 22), but are insufficient for 68 

capturing or accounting for any behavior- or environment-mediated spatiotemporal heterogeneity 69 
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in transmission risk. Shao et al. (2021) (24) used a fluid dynamics model to simulate ventilation 70 

effects on SARS-CoV-2 transmission while allowing for heterogenous droplet movement 71 

behaviors. Their findings highlight the need to account for within-room spatial heterogeneity 72 

when studying indoor transmission risk, as phenomena like ventilation can increase infection risk 73 

to individuals in one area of a room or building while simultaneously mitigating risk in another.  74 

Here, we present a spatially-explicit agent-based model (ABM) for simulating within-room 75 

respiratory pathogen transmission to inform policy-making decisions aiming to mitigate indoor 76 

transmission and implementing individual-level interventions. By simulating spatiotemporal 77 

droplet dynamics (e.g., emission of varying droplet size and subsequent distribution in the 78 

environment) as well as allowing for dynamic movement and positioning of infectious and 79 

susceptible individuals, our model allows virion exposure rates to vary within indoor settings. 80 

We use our model to estimate effects of proposed COVID-19 intervention strategies for indoor 81 

environments (i.e., increased airflow, limiting contact durations, wearing masks, and increased 82 

interpersonal spacing). For benchmarking purposes, we simulate the outbreak that took place 83 

during a choir practice in Skagit County, WA in March 2020 (2). Additionally, we further 84 

investigate potential drivers of superspreading events, like the Skagit County example, by 85 

characterizing and comparing how different aspects of indoor gatherings (i.e., population 86 

density, duration, quanta production by infectious individuals, and ventilation effects) impact 87 

transmission risk. Through these analyses we provide guidance for minimizing SARS-CoV-2 88 

transmission during indoor gatherings. 89 

2. Methods 90 

2.1 Model Description 91 
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We developed a spatially-explicit, stochastic ABM to simulate both direct-droplet and 92 

airborne respiratory pathogen transmission in indoor settings. This model was created and 93 

executed using the open-source modeling software, NetLogo (Ver. 6. 1. 1) (25) and is available 94 

for download at https://github.com/lanzaslab/droplet-ABM. In Appendix S1 we provide a 95 

detailed description of our model in accordance with ODD (Overview, Design concepts, Details) 96 

standards outlined by (26). We present a limited summary of the model design below. When 97 

describing infectious media in our model, we use the term “droplet” to refer to respiratory 98 

droplets of any size. 99 

Agents in our model represent people congregating in a fixed space (e.g., students in a 100 

classroom, diners in a restaurant, etc.). Patches (i.e., grid cells in the NetLogo model interface) 101 

represent 1 x 1 m2 areas, and the spatial extent can range from 1 to ∞ m2. The model time step is 102 

1 minute. Droplets ranging from 3 to 750 𝜇m in diameter are expelled by infectious agents. 103 

Subsequently, droplets can be inhaled, fall out, diffuse to nearby patches, move via directed 104 

airflow, and decay at fixed rates over the course of a simulation. Infection in our model is driven 105 

by exposure to virions contained in these droplets, and the number of virions per droplet scales 106 

with droplet size. The rate at which droplets fall out (i.e., are removed from circulating air flows) 107 

of the simulation is based on the calculated terminal velocity falling speed for droplets, and 108 

therefore varies with droplet size. Droplet sizes incapable of settling on the ground within one 109 

minute are allowed to move between patches via ventilation- and diffusion-induced airflow. 110 

Thus, risk of exposure and subsequent infection for susceptible individuals varies by space and 111 

time during the simulation (Figure 1). We recognize that the ability of forced air ventilation 112 

systems to reduce local respiratory pathogen transmission is linked to their ability to move 113 

aerosolized droplets away from susceptible individuals in three dimensions (18, 24). Though this 114 
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effect is not explicitly tied to airflow inputs in our model, which only allows airflow in two 115 

dimensions, we can effectively simulate ventilation-induced aerosolized droplet movement to 116 

heights outside of individuals’ inhalation ranges by increasing the decay rate when ventilation 117 

effects are simulated. In addition to controlling the number of individuals present and the size of 118 

the simulated world, users can dictate infectiousness parameters and other scenario-specific 119 

variable values (e.g., number of infectious individuals, probability that infectious individuals are 120 

asymptomatic, cough frequency, number virions per mL of droplet fluid, risk of infection given 121 

exposure to 1 virion, etc.), ventilation parameters (e.g., direction and speed of airflow, droplet 122 

filtration probability, etc.), and adherence to transmission-risk-reduction guidelines (e.g., mask 123 

usage, local social distancing, etc.).  124 

2.2 Testing SARS-CoV-2 transmission reduction strategies 125 

2.2.1 Case scenario and model inputs 126 

 In March 2020, there was a probable SARS-CoV-2 superspreading event during a choir 127 

practice taking place at a church in Skagit County, Washington, USA (2). Sixty-one people were 128 

in attendance, one attendee was experiencing flu-like symptoms at the time and later tested 129 

positive for COVID-19 (2). This individual likely infected 53 other attendees over the course of 130 

the event (2). We briefly describe our rationale for setting scenario-specific input values to 131 

simulate this case in our model below, but more-detailed explanations for input and parameter 132 

values are given in Appendix S2, and Appendix S3 describes how sensitive simulated infection 133 

risk is to variations in select model parameters. 134 

 We know from (2) that the choir practice lasted 150 minutes in total, split into 4 distinct time 135 

intervals. In our simulations, we decided to rearrange agents in our model after 40, 90, and 105 136 

minutes to recreate mixing associated with changing time intervals. At timestep 105, individuals 137 
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moved back to their initial placements, representing their adherence to assigned seating during 138 

interval 4 (i.e., minutes 105 – 150). The seating chart has not been shared due to privacy 139 

concerns (21) however, we can assume that a maximum of 2 people could be within 1-m2 140 

patches in this scenario. We set the inhalation rate for simulated individuals to 0.023 m3 air/min, 141 

a rate consistent with adults participating in light activity (27). Because it is uncertain whether or 142 

not the forced-air system was turned on during the choir practice (21), we decided to run our 143 

simulations in two sets: ventilation-on (i.e., both forced-air effects and natural diffusion moved 144 

droplets between patches) and ventilation-off (i.e., only natural diffusion moved droplets 145 

between patches).  146 

 In addition to model the baseline scenario, we modulated values of model inputs related to 147 

group-level risk-reduction strategies (i.e., limited population, limited contact durations, mask 148 

usage, and meter-level social distancing) between simulations in order to assess the efficacy of 149 

each strategy on reducing the number of susceptible individuals infected. Regarding mask usage, 150 

we assumed face coverings have both source-prevention and wearer-protection effects, and 151 

reduced global droplet exposure/exhalation rates by 0%, 25%, 50%, 75% and 90%. The upper 152 

range here is intended to simulate the use of N95 and simple surgical masks, which are estimated 153 

to reduce aerosol emission rates by approximately 90% and 74%, respectively (28, 29). Lower 154 

values are intended to simulate the use of single- and multi-layered fabric masks, for which a 155 

wide range of aerosol-filtration efficacies have been reported (30). When simulating mask usage, 156 

we assumed that all individuals were wearing masks and that all masks had the same efficacy. 157 

Table 1 outlines the model input values for our superspreading-scenario simulations.  158 

2.2.2 Running simulations and analyses 159 
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We set up a factorial simulation run within the NetLogo BehaviorSpace using our specified 160 

input levels. We ran 1000 replicates of all input set combinations, ultimately resulting in 161 

1,080,000 simulations. Simulations were aggregated into a single data set prior to analysis.  162 

We used a beta regression model with a fixed unknown precision parameter, 𝜙, (31) to 163 

estimate effects of interventions on the mean proportion of susceptible individuals infected in our 164 

full simulation set, 𝜇. Beta regression models are employed to analyze proportion data (31, 32). 165 

We chose to use this method because the potential number of infected individuals in each 166 

simulation was limited by the simulated group size, which was a predictor variable of interest, 167 

and because preliminary analysis suggested that fitting our data to a beta distribution better 168 

explained observed variation than other regression models. We therefore determined it was more 169 

appropriate to evaluate effect sizes in terms of the relative proportion of susceptible people 170 

infected rather than their total number. We fit our data to the model: 171 

ln %
𝜇

1 − 	𝜇) = 	𝛽! + 𝛽"
(Gathering	duration) + 𝛽#(Mask	use) + 𝛽$(Mask	efficacy)172 

+ 𝛽%(Group	size) + 𝛽&(Social	distancing) + 𝛽'(Ventilation) + 𝛽((Movement)173 

+ 𝛽)(Mask	use ∗ Group	size) + 𝛽*(Mask	use ∗ Social	distancing)174 

+ 𝛽"!(Group	size ∗ Social	distancing)175 

+ 𝛽""(Mask	use ∗ Group	size ∗ Social	distancing), 176 

where “Gathering duration,” “Mask efficacy,” and “Group size” are intervention-strategy 177 

variables relating to: minutes of simulated interaction between individuals, the efficacy of worn 178 

face masks for reducing expectoration and inhalation of infectious droplets, the simulated 179 

population size, and attempted meter-level social distancing in each realized simulation, 180 

respectively. The variables “Mask use,” “Movement,” and “Ventilation” are known confounders 181 

related to: reduced droplet spread distance from expectorating infectious individuals wearing 182 
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masks, the number of times individuals were rearranged within simulations to reflect mixing of 183 

event attendees, and movement of infectious aerosols throughout the simulated space due to a 184 

forced-air ventilation system, respectively. “Mask use” is a binary variable taking the value of 1 185 

when simulated individuals are masked (i.e., “Mask	efficacy" > 0), and 0 when they are not. 186 

“Movement” takes any one value within the range of 1-to-4, dependent on “Gathering duration.” 187 

“Ventilation” is a binary variable taking the value of 1 for simulations in the “ventilation-on” 188 

subset, and 0 for those in the “ventilation-off” subset.  189 

Because beta regression procedures assume all dependent variable values fall between 0 and 190 

1, we used the data transformation procedure described by (33) to reconstruct our proportion data 191 

without these extremities. All analysis and plotting was carried out using functions from the 192 

“betareg” R package (32) in RStudio (v. 1.1.463) (34) running R (v. 3.6.2) (35). We calculated a 193 

pseudo-R2 (31) to assess goodness of fit for our regression model 194 

2.3 Evaluating drivers of transmission in indoor gatherings  195 

To assess the relative contribution of environmental conditions to SARS-CoV-2 transmission 196 

risk, we conducted a sensitivity analysis to ascertain relative effects of population density, 197 

gathering duration, quanta production by infectious individuals, and ventilation on SARS-CoV-2 198 

infection risk beyond the conditions tested in the Skagit County case. In addition, we quantified 199 

the ability of different ventilation system aspects (i.e., air-change rate, filtration rate, and 200 

effective three-dimensional droplet removal rate) to reduce SARS-CoV-2 transmission risk. 201 

Table 2 describes the model input values for these indoor-gathering-risk-assessment simulations.  202 

 We set up a factorial simulation run within the NetLogo BehaviorSpace using our specified 203 

input levels. We ran 1000 replicates of each parameter set combination when the “Forced air” 204 

parameter was set to “on” and when it was “off.” We ran these sets separately in order to save 205 
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computation time as there were many inputs that only changed when forced airflow was 206 

simulated. Ultimately, we produced 144,000 “off” simulations, and 20,160,000 “on” simulations. 207 

In both sets, we identified simulations when transmission occurred (i.e., simulations where ≥ 1 208 

person was infected), and recorded this occurrence as the binary variable 𝑦+ so that 209 

𝑦+ = M		1			if	transmission	was	observed0			if	no	transmission	occurred,  210 

for each realized simulation, 𝑖. 211 

 We aggregated simulation data into a single data set and carried out a logistic regression 212 

analysis to estimate effects of variable inputs on observed differences in the probability of 213 

observing ≥ 1 infections. We fit our data to the model: 214 

ln(	,-(/!	1	")
,-(/!	1	!)

	) = 	𝛽! + 𝛽"(Population	density) + 𝛽#(Gathering	duration) +215 

𝛽$(Quanta	per	hour) + 𝛽%(Excess	droplet	removal	rate) + 𝛽&(Air	change	rate) +216 

𝛽'(Air	filtration	rate), 217 

where “Population density” is given by 3
4"	, and the “Excess droplet removal rate” (%/min) 218 

represents the increased removal of aerosols due to ventilation-induced 3-dimensional droplet 219 

movement. It is given by the equation: (Virion	decay	rate − 1.05). The 1.05 here represents the 220 

general SARS-CoV-2 decay rate (i.e., 1.05%/min) as reported by (11). Subtracting this baseline 221 

value from the simulated Virion decay rate gives us an excess removal rate that we use as a 222 

proxy for 3-dimensional droplet removal attributable to forced airflow movement. When no 223 

forced airflow is simulated, excess droplet removal, air change, and filtration rates all equal 0. 224 

We calculated the Tjur (36) pseudo-R2 for our logistic regression model to assess goodness of fit. 225 

3. Results & Discussion 226 
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 We presented a stochastic ABM for studying indoor individual-level respiratory pathogen 227 

transmission, and used it to demonstrate the potential effectiveness of multiple intervention 228 

strategies for reducing SARS-CoV-2 transmission in an indoor group setting mimicking that of a 229 

known superspreading event. We were able to effectively recreate the empirical proportion of 230 

susceptible individuals likely infected during the Skagit County superspreading event by 231 

simulating the gathering without implementing any intervention strategies (Figure 2).  232 

 Our beta regression model for estimating intervention efficacy had a pseudo-R2 of ≈ 0.43. 233 

Given the number of stochastic processes in our ABM, the explanatory power of the model is 234 

acceptable. Duration limits and efficacious mask usage appear to have the greatest effects on 235 

reducing the proportion of susceptible individuals infected, but multiple concurrent interventions 236 

are required to minimize the proportion of susceptible individuals infected (Table 3, Figure 3). 237 

However, it is important to note that observed proportional differences are more meaningful for 238 

relatively large groups than for smaller ones. The effectiveness of limiting the duration of 239 

gatherings for reducing the proportion of infected individuals appears to largely result from 240 

reducing the confounding movement effect that increases over time, thereby reducing the 241 

probability that susceptible individuals will move from uncontaminated space to areas with 242 

greater concentrations of infectious aerosols or nearby to infectious individuals where they may 243 

be exposed to large virion-containing droplets (Table 3). We show that simply by limiting the 244 

time spent rehearsing that night to 40 min, reducing random mixing between attendees by ending 245 

the event prior to splitting into disparate groups (2), the proportion of people infected could have 246 

been reduced by 70 – 88% even without implementing any other intervention strategies. 247 

Therefore, imposing movement restrictions could be a more effective intervention than strict 248 

duration limits. 249 
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 We found that mask usage and social distancing interventions are relatively more effective 250 

for reducing proportional infection rates in small groups than in large ones. Our findings suggest 251 

that in the Skagit County choral case, duration limits with implied movement restrictions and 252 

mask usage would have been the most-effective intervention strategies for reducing SARS-CoV-253 

2 infection rates, but multiple interventions would have needed to be deployed simultaneously to 254 

reach near-zero rates (i.e., mean rate < 0.5 people / gathering duration). Infection rates generally 255 

increased with group size and decreased with mask efficacy, and we found that when movement 256 

rates were minimized (i.e., gathering durations ≤ 40) we could minimize infection rates with 257 

relatively-low mask efficacy or even no mask usage in some cases. Our results support recent 258 

evidence suggesting that even wearing masks with relatively low droplet-filtering abilities 259 

around others can help to reduce exposure to infectious agents (30, 37). Attempted social 260 

distancing up to 3 m had little effect on transmission rates relative to other intervention 261 

strategies. That said, because social distancing generally had a greater effect on proportional 262 

infection rates when group size was limited to 10 people, and 2-m social distances reduced the 263 

mean number of infections in larger groups, we can intuit that the relatively small overall effect 264 

of social distancing was likely due to the presence of physical barriers (e.g., edges of the 265 

simulated world) or the physical arrangement of nearby individuals impeding agents’ attempts to 266 

social distance, rather than due to far-reaching droplet spread that makes social distancing 267 

irrelevant.  268 

 Conclusions regarding social distancing effects are further supported by our logistic 269 

regression model results that describe the relative effects of population density, gathering 270 

duration, quanta production, and ventilation on the probability of indoor SARS-CoV-2 271 

transmission from a single infectious individual (Table 4). This model had a pseudo-R2 value of 272 
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0.25 and demonstrated that among the considered variables, population density was the most-273 

important contributor to SARS-CoV-2 transmission risk. Additionally, increases in gathering 274 

duration, infectious aerosol production, and horizontal air movement all escalate the probability 275 

that transmission will occur during gatherings, though the effect is much lesser than that of 276 

increasing population density. The relatively small effects of quanta production and duration on 277 

transmission risk suggest that once individuals are exposed to infectious agents, they are likely to 278 

become infected quickly. Thus, minimizing susceptible people’s exposure to infectious media is 279 

of paramount importance for controlling COVID-19 incidence.  280 

 Regarding observed effects of ventilation in our beta and logistic regression models, our 281 

results suggest that in spite of some evidence that forced-air ventilation systems can reduce risk 282 

of respiratory pathogen infection from indoor aerosols (38, 39), there is potential for forced 283 

airflow to expose susceptible people to aerosolized pathogens even if they are relatively far from 284 

infectious individuals, and therefore increase transmission risk. We show that, though filtering 285 

re-circulated air can lower transmission risk (Table 4), increasing this effect is unlikely to 286 

compensate for the elevated risk attributable to increased horizontal air-change rates (Tables 3 & 287 

4). It appears that maximizing rates of three-dimensional aerosol removal is the key to successful 288 

transmission-risk reduction when using forced-air ventilation systems as intervention tools. Our 289 

results are therefore consistent with the findings of (18), who advise that “displacement” 290 

ventilation systems, those designed to vertically stratify indoor air by temperature and remove 291 

warmer air, are likely able to reduce local SARS-CoV-2 transmission risk. “Mixing” ventilation 292 

systems, designed to distribute temperature and aerosols equally throughout the space, are likely 293 

insufficient for preventing transmission and may even facilitate it (18).   294 
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 Given our findings, we maintain that in areas where COVID-19 prevalence remains high, 295 

holding events associated with relatively-increased mixing rates between individuals (e.g., social 296 

gatherings, sporting events, etc.) should be avoided even if attendance rates are presumed to be 297 

low. Such events are likely to be associated with SARS-CoV-2 transmission if ≥ 1 infectious 298 

individual(s) were to attend, the probability of which increases linearly with group size (17). It is 299 

important to note however, that though our results provide insight into mechanisms for reducing 300 

SARS-COV-2 transmission rates, given the effect that model parameters can have on simulation 301 

outcomes (see Appendix S3), our findings may not be reasonably extrapolated to accurately 302 

predict transmission in scenarios dissimilar from those we modeled here (e.g., ≥ 2 infectious 303 

individuals, fewer aerosolized virions produced during expectorations, etc.). Regardless, we can 304 

still conclude that imposing mask usage requirements, group size restrictions, duration limits, 305 

and social distancing policies have additive, and in some cases multiplicative protective effects 306 

on individual-level SARS-CoV-2 infection risk during gatherings, and can be particularly 307 

efficacious interventions when deployed simultaneously.  308 
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Tables 454 

Table 1. Parameter descriptions for simulations of the Skagit County, WA March 2020 SARS-455 

CoV-2 transmission case study. 456 

Parameter/Model Input Value(s) Reference(s) 

Infectiousness parameters   

Cough frequency (coughs/min) 0.19 40 

Droplet count (droplets/expectoration) 9.7e5 (3.9e5)† 
21, Appendix 

S2 

Droplet spread angle – coughing  (º) 35 41 

Droplet spread angle – not coughing (º) 63.5 41 

Droplet travel distance – coughing (m) 5 (0.256)† 42 

Droplet travel distance – not coughing (m) 0.55 (0.068)†§ 43 

Scenario environment and individual behavior inputs 

Area (m2) 180* 2 

Expectoration height (m) 1.7 44 

Inhalation rate (m3 air/min) 0.023 27 
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Maximum people in a single 1-m2 patch 

(people) 
2 2 

Number of symptomatic individuals (people) 1 2 

Scenario virion behavior inputs   

Virion count (virions/mL fluid) 2.35e9 45 

Virion decay rate (%/min) 1.05 11 

Virion infection risk (%/inhaled virion) 6.24 Appendix S2 

Scenario airflow inputs   

Diffusion rate (m3/min) 1.5e-3 46 

Forced air on, off – 

Forced air direction 
North-to-South, East-to-

West 
– 

Air change rate (%/min) 4.3 21 

Re-circulated air filtration (%/min) 90 21 

Scenario intervention inputs   

Attempted social distancing (m) 0, 1, 2, 3 – 

Contact duration (min) 20, 40, 60, 90, 105, 150 – 

Mask efficacy (%) 0‡, 25, 50, 75, 90 28, 29 

Population (people) 10, 50, 61 2, 16 

*Simulated worlds were 10 m X 18 m. †Standard deviations are given in parentheses. ‡Zero-457 

percent mask efficacy is equivalent to no mask use. §Das et al. (2020) (45) estimated the average 458 

travel distance of a 100-micrometer droplet expelled from a height of 1.7 m at a velocity of 0.5 459 

m/s to be 0.55 m. They also found that the majority of 100-μm droplets will fall 0.55-2.35 m 460 
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away from the expelling individual, depending on initial velocity, but droplets may settle up to 461 

3.2 m away very rarely. a random draw of 10,000,000 samples from a log-normal distribution 462 

parameterized using 1.7-m and 0.2095-m droplet spread distance mean and standard deviation 463 

values, respectively, generated a distribution in line with this finding. The standard deviation we 464 

use in simulations for non-coughing expectoration is proportionate to the one used in this random 465 

draw.  466 

 467 

Table 2. Parameter descriptions for ventilation-system effect evaluations. 468 

Parameter/Model Input Value(s) Reference(s) 

Infectiousness parameters   

Cough frequency (coughs/min) 0.19 40 

Droplet count (droplets/expectoration)† 
1,000 (0)‡, 9.7e5 

(3.9e5)‡ 

21, Appendix 

S2 

Droplet spread angle – coughing  (º) 35 41 

Droplet spread angle – not coughing (º) 63.5 41 

Droplet travel distance – coughing (m) 5 (0.256)‡ 42 

Droplet travel distance – not coughing (m) 0.55 (0.068)‡§ 43 

Scenario environment and individual behavior inputs 

Area (m2)* 9, 36, 81 – 

Expectoration height (m) 1.7 44 

Inhalation rate (m3 air/min) 0.023 27 

Maximum people in a single 1-m2 patch (people) 2 2 

Number of infectious individuals (people) 1 – 
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 469 

*All simulated worlds were square-shaped. †Based on linear modeling described in Appendix S2, 470 

these values equate to 1 (SD = 0) and 970 (SD = 390) quanta/hr. ‡Standard deviations are given 471 

in parentheses. §Das et al. (2020) (45) estimated the average travel distance of a 100-micrometer 472 

droplet expelled from a height of 1.7 m at a velocity of 0.5 m/s to be 0.55 m. They also found 473 

Proportion of infectious individuals that are 

symptomatic (%) 
0, 100 – 

Scenario virion behavior inputs   

Virion count (virions/mL fluid) 2.35e9 45 

Virion decay rate (%/min) 
1.05, 5¶, 10¶, 25¶, 50¶, 

75¶, 90¶ 
11 

Virion infection risk (%/inhaled virion) 6.24 Appendix S2 

Scenario airflow inputs   

Diffusion rate (m3/min) 1.5e-3 46 

Forced air on, off – 

Forced air direction** East-to-West – 

Air change rate (%/min) 0#, 1¶, 5¶, 10¶, 25¶, 50¶ – 

Re-circulated air filtration (%/min) 0#,1¶, 5¶, 90¶, 100¶ – 

Scenario intervention inputs   

Attempted social distancing (m) 0 – 

Contact duration (min) 10, 30, 60 – 

Mask efficacy (%) 0†† – 

Population density (people/m2)‡‡ 0.333, 0.667, 1, 1.667 – 
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that the majority of 100-μm droplets will fall 0.55-2.35 m away from the expelling individual, 474 

depending on initial velocity, but droplets may settle up to 3.2 m away very rarely. a random 475 

draw of 10,000,000 samples from a log-normal distribution parameterized using 1.7-m and 476 

0.2095-m droplet spread distance mean and standard deviation values, respectively, generated a 477 

distribution in line with this finding. The standard deviation we use in simulations for non-478 

coughing expectoration is proportionate to the one used in this random draw. ¶These parameter 479 

values were only used when the “Forced air” parameter value was set to “on.” #These parameter 480 

values were only used when the “Forced air” parameter value was set to “off.” **All patches on 481 

the east side of the simulated world acted as supply vents. All patches on the west side acted as 482 

return vents. ††Zero-percent mask efficacy is equivalent to no mask use. ‡‡Instead of specifying a 483 

fixed number of individuals in simulations, we scaled the simulated population with world size. 484 

 485 

Table 3. Logit scale estimates associated with 1-unit increases in covariate values given by our 486 

beta-regression model for evaluating intervention effects. Wald 95% confidence intervals are 487 

given in parentheses. 488 

Coefficient Estimate p 

Intercept -2.927 (-2.940, -2.914) – 

𝝓 5.808 (5.791, 5.824) – 

𝐆𝐚𝐭𝐡𝐞𝐫𝐢𝐧𝐠	𝐝𝐮𝐫𝐚𝐭𝐢𝐨𝐧 (min) 0.012 (0.012, 0.012) < 0.001 

𝐌𝐚𝐬𝐤	𝐞𝐟𝐟𝐢𝐜𝐚𝐜𝐲 (%) -0.015 (-0. 015, -0.015) < 0.001 

𝐌𝐚𝐬𝐤	𝐮𝐬𝐞 -0.949 (-0.964, -0.935) < 0.001 

𝐌𝐨𝐯𝐞𝐦𝐞𝐧𝐭 (No. rearrangements) 0.491 (0.485, 0.497) < 0.001 

𝐆𝐫𝐨𝐮𝐩	𝐬𝐢𝐳𝐞 (people) 0.001 (0.001, 0.001) < 0.001 
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 489 

Table 4. Logit scale estimates associated with 1-unit increases in covariate values given by our 490 

logistic-regression model for evaluating effect on SARS-CoV-2 transmission risk during an 491 

indoor gathering. Wald 95% confidence intervals are given in parentheses. 492 

 493 

Figures  494 

𝐒𝐨𝐜𝐢𝐚𝐥	𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐢𝐧𝐠 (m) -0.250 (-0.256, -0.243) < 0.001 

𝐕𝐞𝐧𝐭𝐢𝐥𝐚𝐭𝐢𝐨𝐧 0.898 (0.895, 0.902) < 0.001 

𝐌𝐚𝐬𝐤	𝐮𝐬𝐞 : 𝐆𝐫𝐨𝐮𝐩	𝐬𝐢𝐳𝐞 0.014 (0.013, 0.014) < 0.001 

𝐌𝐚𝐬𝐤	𝐮𝐬𝐞	: 𝐒𝐨𝐜𝐢𝐚𝐥	𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐢𝐧𝐠 -0.018 (-0.025, -0.010) < 0.001 

𝐆𝐫𝐨𝐮𝐩	𝐬𝐢𝐳𝐞 : 𝐒𝐨𝐜𝐢𝐚𝐥	𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐢𝐧𝐠 0.004 (0.004, 0.004) < 0.001 

𝐌𝐚𝐬𝐤	𝐮𝐬𝐞	: 𝐆𝐫𝐨𝐮𝐩	𝐬𝐢𝐳𝐞 : 𝐒𝐨𝐜𝐢𝐚𝐥	𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐢𝐧𝐠 1.923e-4 (3.039e-5, 3.542e-4) 0.020 

Coefficient Estimate Odds ratio p 

Intercept -0.146 (-0.151, -0.140) – – 

Population density 

(people/m2) 
2.766 (2.761, 2.771) 15.891 (15.813, 15.968) < 0.001 

Gathering duration (min) 0.015 (0.015, 0.015) 1.015 (1.015, 1.015) < 0.001 

Quanta (quanta/hr) 0.002 (0.002, 0.002) 1.002 (1.002, 1.002) < 0.001 

Excess droplet removal rate 

(%/min) 
-0.024 (-0.024, -0.024) 0.976 (0.976, 0.976) < 0.001 

Air change rate (%/min) 0.017 (0.017, 0.017) 1.02 (1.02, 1.02) < 0.001 

Air filtration rate (%/min) -0.005 (-0.005, -0.005) 0.995 (0.995, 0.995) < 0.001 
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 495 

Figure 1. Model droplet dynamics. A) Infectious individuals expel droplets of different sizes. B) 496 

Relatively large droplets fall out of the air quickly post expectoration. C) Smaller droplets 497 

remain aerosolized for longer time periods and move throughout the simulated room via 498 

diffusion and forced airflow effects. D) Distribution of droplet sizes during expectoration events. 499 

Distributions of size classes during coughing and speaking events are based on findings of (47), 500 

and represent mean observed droplet-size measurements they recorded 60 mm away from 501 

individuals’ mouths immediately following these activities. 502 
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 503 

Figure 2. In the absence of interventions to reduce transmission risk, the proportion of 504 

susceptible people infected in simulations can reflect the case study value (i.e., 0.88) and is more 505 

likely to do so when forced airflow is included. 506 
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 507 

Figure 3. Predicted proportion of susceptible populations infected with SARS-CoV-2 for varied 508 

parameter sets suggest that concurrent deployment of multiple interventions is required to 509 

achieve near-zero transmission rates. 510 
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