
INTRODUCTION

Cytosine is methylated in the context of CpG dinucleotides,
and most CpGs are methylated except for those on CpG is-
lands. CpG islands are DNA segments of 0.5 to 2.5 kb in
size, which are rich in cytosine-guanine dinucleotides and
are often located in the promoter or 5’ exonal sequences of
genes. About half of human genes harbor CpG islands in their
promoter sequences and these CpG islands are normally pro-
tected from methylation (1-3). Although the cause is un-
clear, promoter CpG islands can be methylated in relation
to cancerization. Methylated CpG islands are bound with
methylated cytosine binding proteins, which recruit histone
deacetylase (4, 5). Moreover, histone modifications, such as,
deacetylation and methylation, cause chromatin to adopt a
closed structure, which cannot be accessed by transcription
factors, which results in gene silencing (6, 7). 

Hypermethylation of promoter CpG islands is an impor-
tant mechanism of gene inactivation for tumorigenesis and
acts as an alternative to gene mutations like point mutations
or intragenic deletions (8, 9). Hypermethylation of promot-
er CpG islands in tumor suppressor genes or tumor-related

genes is a common finding in human cancers, regardless of
tissue type. However, tissue-to-tissue variations exist in CpG
island methylation with regard to the type of gene methy-
lated, the methylation frequency of a specific gene, and the
overall methylation extent (10, 11). Esteller et al. (11) ana-
lyzed 15 major tumor types for the methylation statuses of
12 genes and demonstrated that the profiles of CpG island
methylation for genes is cancer type-dependent, and thus,
CpG island methylation provides tumor-type and gene-spe-
cific profiles. However, in this study, all 12 genes were not
studied in each types of cancer. In particular, information
available about methylation profiles in gastric cancer and
hepatocellular carcinoma, which are common in Eastern Asian
countries (12), is limited by the small number of cases includ-
ed and genes studied, and furthermore, uterine cervical can-
cer was not included in the study.

In the present study, we analyzed 8 tissue types of human
cancer, which are prevalent in Korean patients, namely, breast
cancer, colorectal cancer, gastric cancer, liver cancer, lung can-
cer, laryngeal cancer, prostate cancer, and uterine cervical can-
cer, for the methylation status of 13 genes (APC, COX-2,
DAP-kinase, E-cadherin, GSTP1, hMLH1, MGMT, p14, p16,
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Methylation Profiles of CpG Island Loci in Major Types of Human
Cancers 

Several reports have described aberrant methylation in various types of human can-
cers. However, the interpretation of methylation frequency in various human can-
cers has some limitations because of the different materials and methods used for
methylation analysis. To gain an insight into the role of DNA hypermethylation in
human cancers and allow direct comparison of tissue specific methylation, we gen-
erated methylation profiles in 328 human cancers, including 24 breast, 48 colon,
61 stomach, 48 liver, 37 larynx, 24 lung, 40 prostate, and 46 uterine cervical can-
cer samples by analyzing CpG island hypermethylation of 13 genes using methy-
lation-specific PCR. The mean numbers of methylated genes were 6.5, 4.4, 3.6,
3.4, 3.1, 3.1, 3.1, and 2.1 in gastric, liver, prostate, larynx, colon, lung, uterine cervix,
and in breast cancer samples, respectively. The number of genes that were methylat-
ed at a frequency of more than 40% in each tumor type ranged from nine (stom-
ach) to one (breast). Generally genes frequently methylated in a specific cancer
type differed from those methylated in other cancer types. The findings indicate that
aberrant CpG island hypermethylation is a frequent finding in human cancers of vari-
ous tissue types, and each tissue type has its own distinct methylation pattern. 
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RASSF1A, RUNX3, THBS1, and TIMP-3). These genes
were selected because they have important roles in tumor
suppression, cell-to-cell attachment, cell cycle, DNA repair
and protection, apoptosis, and metastasis, and also because
they have been previously demonstrated to be inactivated by
CpG island hypermethylation in cancer cell lines or primary
tumor tissues. The aim of this study was to determine the
methylation profiles of the major types of human cancers to
better understand the role of CpG island hypermethylation in
human carcinogenesis. 

MATERIALS AND METHODS

Archival tissue samples of primary tumors of 8 types were
studied, i.e., of gastric cancer (adenocarcinoma, n=61), colon
cancer (adenocarcinoma, n=48), lung cancer (adenocarcino-
ma, n=24), laryngeal cancer (squamous cell carcinoma, n=37),
breast cancer (invasive ductal carcinoma, n=24), hepatocel-
lular carcinoma (n=48), uterine cervical cancer (squamous
cell carcinoma, n=46), and prostate carcinoma (adenocarci-
noma, n=40). After microscopic examinations of hematoxylin
and eosin-stained slides, tumoral portions with the ratio of
tumor cells to normal cells more than 30:70 were marked
with a pen, and the corresponding portions of the archival

blocks were punched out. Punched tissues were cut with scis-
sors into tiny pieces, dewaxed in xylene, and then treated in
ethanol. DNA was extracted using proteinase K and phenol/
chloroform/isoamylalcohol.

Methylation-specific PCR (MSP)

Bisulfite modification was performed as described previ-
ously (13). In brief, 5 g of DNA was denatured by heating
at 97℃ for 6 min and then cooled. After centrifugation, the
DNA was added with 2 M NaOH and stored at room tem-
perature for 15 min. The denatured DNA was then treated
with 1 mM hydroquinone and 3.5 M sodium bisulfite and
incubated for 16 hr at 55℃. Following purification using a
purification kit (Genomed, Bad Oeynhausen, Germany), the
DNA was treated with 3 M NaOH and precipitated with
three volumes of 100% ethanol and a two-thirds volume of
7.5 M NH4Ac at -20℃. The precipitated DNA was then
washed with 70% ethanol and dissolved in 10 mM Tris buffer.
A panel of the 13 genes was analyzed for methylation status
using MSP. The primer sequences of each gene, the annealing
temperature and the number of cycles used, and references
are given in Table 1. The 25 L reaction volume contained
a PCR mixture of; 1X PCR buffer (16.6 mM (NH4)2SO4/
67 mM Tris/pH 8.8/6.7 mM MgCl2/10 mM -mercaptoe-

Genes Forward primer (5′-3′) Reverse primer (5′-3′)
Product 
size (bp)

Annealing tem-
perature (°C)

APC M: TATTGCGGAGTGCGGGTC M: TCGACGAACTCCCGACGA 98 55
U: GTGTTTTATTGTGGAGTGTGGGTT U: CCAATCAACAAACTCCCAACAA 60 108

COX2 M: TTAGATACGGCGGCGGCGGC M: TCTTTACCCGAACGCTTCCG 161 61
U: ATAGATTAGATATGGTGGTGGTGGT U: CACAATCTTTACCCAAACACTTCCA 171 61

DAP-kinase M: GGATAGTCGGATCGAGTTAACGTC M: CCCTCCCAAACGCCGA 106 60
U: GGAGGATAGTTGGATTGAGTTAATGTT U: CAAATCCCTCCCAAACACCAA 98 60

E-cadherin M: TTAGGTTAGAGGGTTATCGCGT M: TAACTAAAAATTCACCTACCGAC 116 57
U: TAATTTTAGGTTAGAGGGTTATTGT U: CACAACCAATCAACAACACA 97 53

GSTP1 M: TTCGGGGTGTAGCGGCGTC M: GCCCCAATACTAAATCACGACG 91 59
U: GATGTTTGGGGTGTAGTGGTTGTT U: CCACCCCAATACTAAATCACAACA 97 59

hMLH1 M: TATATCGTTCGTAGTATTCGTGT M: TCCGACCCGAATAAACCCAA 153 60
U: TTTTGATGTAGATGTTTTATTAGGGTTGT U: ACCACCTCATCATAACTACCCACA 124 60

MGMT M: GGTCGTTTGTACGTTCGC M: GACCGATACAAACCGAACG 118 60
U: GTAGGTTGTTTGTATGTTTGT U: AACCAATACAAACCAAACA 121 60

p14 M: GTGTTAAAGGGCGGCGTAGC M: AAAACCCTCACTCGCGACGA 122 60
U: TTTTTGGTGTTAAAGGGTGGTGTAGT U: CACAAAAACCCTCACTCACAACAA 132 60

p16 M: TTATTAGAGGGTGGGGCGGATCGC M: GACCCCGAACCGCGACCGTAA 150 65
U: TTATTAGAGGGTGGGGTGGATTGT U: CAACCCCAAACCACAACCATAA 151 60

RASSF1A M: GTGTTAACGCGTTGCGTATC M: AACCCCGCGAACTAAAAACGA 93 60
U: TTTGGTTGGAGTGTGTTAATGTG U: CAAACCCCACAAACTAAAAACAA 105 60

RUNX3 M: TGTTTTCGTTTATTTTGTCG M: CGCTATTATACGTATTCCCG 101 55
U: TTTGGGTTTATGGGAATATG U: TTCTCACAACAACAACAACC 121 52

THBS1 M: TGCGAGCGTTTTTTTAAATGC M: TAAACTCGCAAACCAACTCG 74 62
U: GTTTGGTTGTTGTTTATTGGTTG U: CCTAAACTCACAAACCAACTCA 115 62

TIMP-3 M: CGTTTCGTTATTTTTTGTTTTCGGTTTC M: CCGAAAACCCCGCCTCG 116 59
U: TTTTGTTTTGTTATTTTTTGTTTTTGGTTTT U: CCCCCAAAAACCCCACCTCA 122 59

Table 1. Oligonucleotide sequences of primers (methylated or unmethylated forms) used for methylation specific PCR, their PCR prod-
uct sizes and annealing temperatures
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thanol), dNTPs (each at 1 mM), primers (10 pM each), and
bisulfite-modified DNA (30-50 ng). The reactions were hot-
started at 97℃ for 5 min prior to adding 0.75 units of Taq
polymerase (Bioneer Co., Seoul, Korea). The PCR products
(7 L) were electrophoresed on 2.5% agarose gel and visual-
ized after staining with ethidium bromide. Samples showing
signals approximately equivalent to that of the size marker
(3.5 ng) were scored as methylated. Samples that gave negative

results in the PCR with specific primer sequences for the un-
methylated forms of E-cadherin or p16 were excluded from
the study. This was because the presence of unmethylated
E-cadherin and p16 was considered to ensure adequate bisul-
fite modification and the integrity of the bisulfite-modified
DNA in the samples. Normal peripheral blood lymphocytes,
obtained from patients with no evidence of cancer (n=20),
were used as a control group. The 13 genes were not methy-
lated in the normal peripheral blood lymphocytes. For each
MSP reaction, we used normal lymphocyte DNA treated with
Sss1 methyl transferase and distilled water without template
DNA as positive control and negative control, respectively.

Statistical analysis

All statistical calculations were made using the SPSS soft-
ware (version 11.0 SPSS, Chicago, IL). Student’s t-test was
used to compare the numbers of methylated genes between
different tissue types of cancers. The Mann-Whitney test was
used to examine methylation concordances at multiple loci.
The p-values of <0.05 were considered to be statistically sig-
nificant.

RESULTS

We analyzed a total of 328 samples of human cancers en-
compassing eight different tissue types for 13 genes (APC,
COX-2, DAP-kinase, E-cadherin, GSTP1, hMLH1, MGMT,
p14, p16, RASSF1A, RUNX3, THBS1, and TIMP-3) using
MSP. A representative example of MSP analysis is demon-

Tissue
type

APC COX2 DAPK
E-cad-
herin

GSTP1
hMLH

1
MGMT p14 p16

RASSF
1A

RUNX
3

THBS1 TIMP3
No. of genes
methylated*

(C.I.)

Lung 14 1 7 10 5 0 0 6 3 12 11 2 4 3.1 (2.11-
(n=24) (58%) (4%) (29%) (42%) (21%) (25%) (13%) (50%) (46%) (8%) (16.7) 4.14)

Breast 8 0 6 4 5 0 0 5 4 12 6 0 0 2.1 (1.23-
(n=24) (33%) (25%) (17%) (21%) (21%) (17%) (50%) (25%) 2.92)

Prostate 27 4 3 9 35 0 0 2 5 34 12 12 0 3.6 (2.89-
(n=40) (68%) (10%) (8%) (23%) (88%) (5%) (13%) (85%) (30%) (30%) 4.25)

Larynx 13 0 32 3 0 0 19 17 3 10 23 4 0 3.4 (2.81-
(n=37) (35%) (87%) (8%) (51%) (46%) (8%) (27%) (62%) (11%) 3.88)

Liver 43 6 6 13 37 0 2 7 22 29 35 2 8 4.4 (3.79-
(n=48) (90%) (13%) (13%) (27%) (77%) (4%) (15%) (46%) (60%) (73%) (4%) (17%) 4.95)

Colon 10 9 27 24 2 10 8 20 17 7 4 6 6 3.1 (2.48-
(n=48) (21%) (19%) (57%) (50%) (4%) (21%) (17%) (42%) (35%) (15%) (8%) (13%) (13%) 3.76)

Stomach 51 35 43 41 10 8 14 43 27 11 33 37 41 6.5 (5.72-
(n=55) (84%) (59%) (71%) (67%) (16%) (13%) (23%) (73%) (44%) (18%) (56%) (61%) (67%) 7.19)

Uterine cervix 8 6 32 41 0 0 12 4 11 6 0 21 2 3.1 (2.63-
(n=46) (17%) (13%) (70%) (89%) (26%) (8.7) (24%) (13%) (46%) (4%) 3.57)

Total 174 61 156 145 94 18 55 104 92 121 124 84 61
(n=328) (53%) (19%) (48%) (44%) (29%) (6%) (17%) (32%) (28%) (37%) (38%) (26%) (19%)

Table 2. The methylation frequency of each gene CpG island locus in 8 tissue types of human cancers

C.I., 95% confidence interval.

Fig. 1. Representative samples of MSP analysis for the methylat-
ed (M) and unmethylated (U) forms of six CpG island loci (APC,
GSTP1, hMLH1, p16, RASSF1A, and RUNX3) in stomach cancer,
colon cancer, and prostate cancer. The positive control was a pla-
cental DNA treated with Sss1 methylase before bisulfite modifica-
tion, and the negative control was distilled water without template
DNA. Marker 1 and 2, 100 bp DNA ladder of 14 ng and 3.5 ng,
respectively; +, positive control; -, negative control.

M
1 2 4 9 11 14 60 61 62 80 81 82 + -

Marker Stomach Colon Prostate

APC

U

M GSTP1

U

M hMLH1

U

M p16

U

M RASSF1A

U

RUNX3M

U
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strated in Fig. 1. The methylation frequencies of CpG islands
for each gene in each tumor type are summarized in Table 2.
The number of genes methylated per tumor type was 6.5,
4.4, 3.6, 3.4, 3.1, 3.1, 3.1, and 2.1 for stomach, liver, prostate,
larynx, colorectal, lung, uterine cervix, and breast cancer,
respectively. Gastric cancer showed the highest number of
methylated genes, and the difference between the number
of methylated genes in gastric cancer and the second most
frequently methylated tumor, liver cancer, was statistically
significant (p<0.001, two-tailed student t test). 

As shown in Table 2, each tissue type and each gene showed
its own specific methylation pattern. The number of genes
that were methylated at a frequency of more than 40% in
each tissue type ranged from nine (gastric cancer) to one (breast
cancer), and genes frequently methylated in a specific tissue

type differed from those frequently methylated in other tissue
types. In gastric cancer, nine genes (APC, COX2, DAPK, E-
cadherin, p14, p16, THBS1, and TIMP3) showed methylation
frequencies of >44%, and the remainder (GSTP1, hMLH1,
MGMT, and RASSF1A) were methylated in <24%. Prostate
cancer demonstrated a contrasting methylation pattern; it
showed methylation frequencies of <27% for the genes fre-
quently methylated in gastric cancer (except for APC) and
methylation frequency of >80% for GSTP1 and RASSF1A,
which were less frequently methylated in gastric cancer. 

The methylation frequencies of the 13 genes in all samples
ranged from 53% to 6%, in the decreasing order of methyla-
tion frequency as follows; APC, DAPK, E-cadherin, RUNX3,
RASSF1A, p14, p16, GSTP1, THBS1, COX2, TIMP3, MG-
MT, and hMLH1. APC, DAP-kinase, E-cadherin, p14, p16,
and RASSF1A were methylated in all tissue types, but COX-
2, GSTP1, hMLH1, MGMT, RUNX3, THBS1, and TIMP-
3 were not. hMLH1 was methylated in gastric and colorec-
tal cancers only, and GSTP1 was not methylated in laryngeal
cancer or uterine cervical cancer (both of which are squamous
cell carcinomas), but methylated in liver cancer and prostate
cancer at frequencies of >40%. DAPK and RASSF1A showed
contrasting methylation patterns; DAPK was methylated at
frequencies of >40% in laryngeal, colorectal, gastric, and ute-
rine cervical cancers but at frequencies of <40% in lung, breast,
prostate, and liver cancers, whereas RASSF1A was methylat-
ed at frequencies of <40% in the former tissue types and at
frequencies of >40% in the latter tissue types. 

The number of genes methylated in each tissue type is sum-
marized in Table 3. Concurrent methylation of more than
five genes was observed in 601% of gastric cancers, 36% of
hepatocellular carcinomas, 25% of prostate cancers, 17% of
colorectal cancers, 17% of lung cancers, 8% of breast cancers,
8% of laryngeal cancers, and 4% of uterine cervical cancers.
The distribution of the number of methylated genes was of

No. of genes
methylated

0 1 2 3 4 5 6 7 8 9 10 11

Lung (n=24) 5 1 6 1 3 4 2 1  1 0 0 0
(21%) (4%) (25%) (4%) (13%) (17%) (8%) (4%) (4%)

Breast (n=24) 7 5 3 2 4 1 2 0 0 0 0 0
(29%) (21%) (13%) (8%) (18%) (4%) (8%)

Prostate (n=40) 3 1 10 9 6 1 7 1 1 1 0 0
(8%) (3%) (25%) (23%) (15%) (3%) (18%) (3%) (3%) (3%)

Larynx (n=37) 1 4 4 13 7 5 1 2 0 0 0 0
(3%) (11%) (11%) (35%) (19%) (14%) (3%) (5%)

Liver (n=48) 0 5 1 12 10 3 11 3 2 1 0 0
(10%) (2%) (25%) (21%) (6%) (23%) (6%) (4%) (2%)

Colon (n=48) 3 12 7 8 4 6 4 3 0 1 0 0
(6%) (25%) (15%) (17%) (8%) (13%) (8%) (6%) (2%) 

Stomach (n=61) 0 3 2 7 6 6 3 11 6 7 4 6
(5%) (3%) (12%) (10%) (10%) (5%) (18%) (10%) (11%) (7%) (10%)

Cervix (n=46) 1 8 9 8 9 9 2 0 0 0 0 0
(2%) (17%) (20%) (17%) (20%) (20%) (4%)

Table 3. The frequency of coincidental number of genes methylated in 8 tissue types of human cancers

Average no. of methylated genes
(in the other 12 genes)

Cases positive for 
methylation of a 
particular gene

Negative for for
methylation of a
particular gene

p-value
(Mann-
Whitney

test)

APC 4.3 2.4 0.000
COX2 5.8 3.3 0.000
DAPK 4.0 2.9 0.001
E-cadherin 4.3 2.9 0.000
GSTP1 3.8 3.6 0.393
hMLH1 5.2 3.8 0.017
MGMT 4.7 3.6 0.008
p14 4.7 3.1 0.000
p16 5.1 3.1 0.000
RASSF1A 3.9 3.4 0.062
RUNX3 4.6 2.9 0.000
THBS1 5.5 3.1 0.000
TIMP3 6.0 3.2 0.000

Table 4. Concordance of methylation of each gene with that of
the other genes



the continuous pattern, not of bimodal pattern, in seven tis-
sue types of human cancers except for gastric cancer. 

To examine whether CpG island hypermethylation at a
specific gene is coordinated with that of other genes, we deter-
mined and compared the number of other genes methylated
when a specific gene was methylated or not. Methylation at
each gene was associated with a higher number of methylat-
ed genes (Table 4), indicating the concordance of hyperme-
thylation at multiple genes. The association was statistically
significant, except for GSTP1 and RASSF1A. 

DISCUSSION

CpG island hypermethylation is an important mechanism
of inactivating tumor suppressor genes, and is found in vir-
tually all tissue types of cancer. In the present study, we exam-
ined CpG island hypermethylation of 13 genes in eight human
cancer tissue types, which included cancers prevalent in Korean
patients, and were able to confirm that CpG island hyper-
methylation is a frequent event in all eight of these human
cancers. However, the extent of aberrant CpG island hyper-
methylation differed within and between different cancer
types. Our data shows that gastric cancer showed the highest
number of methylated genes, followed by liver, prostate, lar-
ynx, colorectal, lung, uterine cervix, and breast cancer in des-
cending order of the number of genes methylated per tumor
type. In 7 cancers, except for gastric cancer, the distribution
of the numbers of genes methylated formed a continuous pat-
tern, from the least hypermethylated to the most hyperme-
thylated cases, within the same tissue type, which contradict-
ed the concept of CpG island methylator phenotype from
which a bimodal pattern of distribution was expected (14).
However, the concordant methylation of 12 gene CpG island
loci, except for GSTP1, suggests the presence of a methyla-
tion defect, and supports the concept of the CpG island methy-
lator phenotype. Whether a distribution is bimodal or con-
tinuous may depend on the selection of CpG island loci to
define the CpG island methylator phenotype. Although ref-
erence CpG island loci have been proposed to define CpG
island phenotype in colorectal cancer and gastric cancer (14,
15), no references have been set up in other tissue types. Stud-
ies to set up reference CpG island loci to define CpG island
methylator phenotype for each tissue type are necessary.

In the present study, the average number of genes methy-
lated was significantly higher in gastric cancer than in any
other tissue types. This finding was consistent with the find-
ing that the normal stomach shows a high frequency of age-
related hypermethylation (16). We examined non-neoplastic
tissues, including stomach, colon, liver, prostate, and uter-
ine cervical tissues, for the methylation statuses of the same
panel of genes (except APC) and found that the number of
the genes methylated in the stomach exceeded those of the
other normal tissue types (data not shown). The cause for this

level of difference between tissue types is unclear, but it may
be related to the accessibility of tissues to dietary factors or
exogenous agents. N-methyl-N’-nitro-N-nitrosoguanidine,
a well-known gastric carcinogen, has been demonstrated to
induce CpG island hypermethylation of p16, and this hyper-
methylation increased with lesion progression along the mul-
tistep gastric carcinogenesis in the rat stomach (17). In addi-
tion, in vitro studies have demonstrated that the exposure to
nickel causes CpG island hypermethylation (18, 19). Recent
studies (20, 21) have shown that Helicobacter pylori infection
is closely associated with aberrant CpG island hypermethy-
lation in the normal stomach, which suggests that the high
prevalence of Helicobacter pylori infection in the Korean pop-
ulation may contribute to the high frequency of aberrant
methylation in the normal stomach.

A unique profile of CpG island hypermethylation was ob-
served in each tumor type, in which CpG island hyperme-
thylations of APC, DAP-kinase, E-cadherin, p14, p16, and
RASSF1A were shared but those of COX-2, GSTP1, hMLH1,
MGMT, THBS1, and TIMP-3 were tissue-type specific.
These unique profiles can be utilized to characterize the pri-
mary sites of metastatic adenocarcinomas in the liver or lung.
Methylation analysis of metastatic tumors may complement
immunohistochemical studies in terms of elucidating primary
sites. The reason why some genes were hypermethylated and
others remained unmethylated in specific tissue types is un-
clear. One explanation is that certain genes become hyper-
methylated preferentially because their hypermethylation
confers a selective growth/survival advantage to a given can-
cer cell. However, this hypothesis cannot explain why MyoD1,
which is normally not expressed in epithelial cells, is methy-
lated in colon cancer cells (22). 

In addition, CpG island hypermethylation can be utilized
as a molecular marker to predict the response to chemother-
apy. MGMT removes methyl-residues from O6-methylgua-
nine, which otherwise would lead to the misreading of DNA
polymerase and transversion mutations. If MGMT is inacti-
vated due to CpG island hypermethylation, cancer cells be-
come sensitive to alkylating chemotherapeutic agent. Better
prognoses have been reported in cases of hematologic or CNS
malignancies with MGMT hypermethylation compared to
those with no MGMT hypermethylation (23, 24). In the
present study, laryngeal cancer showed a high frequency of
MGMT methylation (more than 50%), which suggests that
the prognostic value of MGMT hypermethylation should
be assessed in this tissue type. 

Alterations of the transforming growth factor- signaling
pathway are common in human cancers. RUNX3 is a com-
ponent of this pathway, and its inactivation by promoter CpG
island hypermethylation has been described in various human
cancers, including stomach (25), colon (26), liver (27, 28),
lung (29), bile duct (30), and pancreatic cancer (31). In the
present study, RUNX3 was methylated at frequencies >45%
in lung, larynx, liver, and stomach cancers, but at frequencies
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of <30% in prostate, breast, and colon cancers. The relation-
ship between RUNX3 methylation and clinical stage differs
depending on tissue type, and a close relationship between
RUNX3 methylation and an advanced clinical stage has been
demonstrated in stomach (25, 31), lung (29), prostate (32),
and urinary bladder cancers (33). However, no such associa-
tion was found in liver cancer (28). In the present study, we
found a significant difference of clinical stage between prostate
cancers with and without RUNX3 methylation, but no such
difference in other cancer types (data not shown). It might be
possible that the lack of a close association in stomach and
lung cancers was due to the limited number of the cases exa-
mined. 

In conclusion, we analyzed the methylation status of 13
genes in 8 tissue types of human cancers and found that CpG
island hypermethylation is a frequent event in the cancers
examined and that each CpG island locus and each tissue
type has its own gene-specific and tumor type-specific methy-
lation pattern. CpG island hypermethylation was found most
frequently in stomach and liver cancers and least frequently
found in uterine cervical and breast cancers. 
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