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The majority of chronic hepatic diseases are caused by nutritional imbalance.

These nutritional inequities include excessive intake of alcohol and fat, which

causes alcoholic liver disease (ALD) and non-alcoholic fatty liver disease

(NAFLD), respectively. The pathogenesis of hepatic diseases is mainly

dependent on oxidative stress, autophagy, DNA damage, and gut microbiota

and their metabolites. These factors influence the normal physiology of the liver

and impact the hepatic microenvironment. The hepatic microenvironment

contains several immune cells and inflammatory cytokines which interact

with each other and contribute to the progression of chronic hepatic

diseases. Among these immune cells, Foxp3+ CD4+ regulatory T cells (Tregs)

are the crucial subset of CD4+ T cells that create an immunosuppressive

environment. This review emphasizes the function of Tregs in the

pathogenesis of ALD and NAFLD and their role in the progression of NAFLD-

associated hepatocellular carcinoma (HCC). Briefly, Tregs establish an

immunosuppressive landscape in the liver by interacting with the innate

immune cells and gut microbiota and their metabolites. Meanwhile, with the

advancement of steatosis, these Tregs inhibit the proliferation, activation and

functions of other cytotoxic T cells and support the progression of simple

steatosis to HCC. Briefly, it can be suggested that targeting Tregs can act as a

favourable prognostic indicator by modulating steatosis and insulin resistance

during the pathogenesis of hepatic steatosis and NAFLD-associated HCC.
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Introduction

Human beings acquire a sophisticated immune system that

actively exists with complex biological mechanisms to defend the

host by attacking and destroying the foreign substances (antigen)

and transformed or infected cells. Simultaneously, numerous

immune regulatory processes are projected to dodge the auto-

immune mechanisms resulting against the body’s own tissues.

The immune system retains a distinct CD4+ cells population,

regulatory T cells (Tregs), known to serve essential modulatory

roles in immune homeostasis by maintaining peripheral

tolerance and controlling the pathological and physiological

immune response (Vignali et al., 2008; Lu et al., 2017). These

Treg cells assist in limiting the inflammatory responses and

abolish autoreactive T cells (Peterson, 2012; Scheinecker et al.,

2020).

In 1970, it was first proposed that the presence of thymic-

derived suppressor T cells, other than helper T (Th) cells, plays a

role in self-tolerance by restricting the effector immune reactions

(Gershon and Kondo, 1970). These suppressor T cells were later

found responsible for the over-production of

immunosuppressive cytokines, such as transforming growth

factor β (TGF-β) and interleukin 10 (IL-10), which take part

in the immune suppression (O’Garra and Murphy, 1994; Cottrez

et al., 2000). Afterward, Sakaguchi et al. (1995), identified the IL-

2 receptor α-chain (CD25 molecule) on the surface of these

suppressive T cells and named Treg cells. It has been estimated

that 5% to 50% of CD4+ T cells in the human peripheral blood are

comprised of naturally arising CD25+ Treg cells that suppress

immune activity (Sakaguchi et al., 1995; Gregg et al., 2005).

Moreover, CD25+CD4+ Tregs were determined to express

forkhead box P3 (FOXP3), a transcriptional factor which

regulated the development and proper functioning of Treg

cells (Hori et al., 2003). Therefore, these suppressor T cells

can be characterized as CD4+CD25+FOXP3+ Treg cells in

murine and humans (Ziegler, 2006).

Multiple mechanisms have been defined for the proper

functioning of Treg cells. These include the secretion of

cytokines and soluble factors, cell-to-cell contact, and changes

in the extracellular milieu to target a diverse population of

immune cell populations, such as antigen-presenting cells

(APCs), CD8+ T killers and cell counterparts of conventional

CD4+ T cells (Vignali et al., 2008). Emerging evidence suggests

the presence of these Treg cells population residing or infiltrating

in numerous peripheral organs where they mediate tissue-

specific functions. For instance, peroxisome proliferator-

activated receptor-γ (PPAR-γ) expressing visceral adipose

tissue-specific Treg population execute highly distinct

functions, including the regulation of numerous genes known

to have crucial functions in lipid and glucose metabolism

(Cipolletta et al., 2012). Similarly, in muscle and lung, the

presence of amphiregulin, a ligand of epidermal growth factor

receptor, expressing Treg cells population can directly expedite

the tissue repairing process (Burzyn et al., 2013; Arpaia et al.,

2015). Foxp3+ Tregs play various roles in liver homeostasis and

pathogenesis by interacting with other hepatic immune cells and

hepatocytes. Hepatocytes have exhibited enclysis ability to engulf

CD4+ T cells, predominantly Tregs, during hepatic inflammation

to regulate T cell population (Davies et al., 2019).

Although the non-lymphoid tissue-specific Tregs molecular

signature and functions have been interrogated in numerous

investigations, our knowledge of the functions and fundamental

biology of these liver-specific Treg cells and how they vary from

other non-lymphoid Treg cells and immune cells is yet

overlooked. Here, we reviewed the currently available studies

about Treg cells that infiltrate the liver, emphasizing the

mechanisms in the progression of chronic liver diseases from

simple steatosis to hepatocellular carcinoma (HCC).

Treg cells in hepatic
microenvironment

One of the largest internal tissues, the liver, connects with the

gastrointestinal tract through the portal vein, which delivers

multiple pathogenic and non-pathogenic antigens derived

from the gastrointestinal tract (Jenne and Kubes, 2013; Kubes

and Jenne, 2018). Therefore, besides enduring non-pathogenic

organisms, it plays frontline immunological functions by

establishing and escalating specific immune responses (Jenne

and Kubes, 2013). As a vast organ, liver retains a predominant

population of cells, including T lymphocytes, which are

immunologically active and maintain essential immunological

functions (Parker and Picut, 2012). The phenotypic

characteristics and function of Treg cells differ between

intrahepatic and circulatory compartments. This difference is

due to the residence of Tregs in the hepatic microenvironment,

which are deprived of sufficient oxygen while supplemented with

inflammatory cytokines, hormones and metabolic products

(Jeffery et al., 2016).

As the gut and liver are connected via the portal vein,

several environmental factors, including dietary nutrients and

metabolites, impact the functionality of Treg cells (Zeng and

Chi, 2015). It is evident that gut microbiota and their

metabolites strongly affect immune responses (Wu and Wu,

2012). Several microbial metabolites and bile acids have been

linked with the expansion and stability of Tregs (Hang et al.,

2019; Campbell et al., 2020; Song et al., 2020; Wiechers et al.,

2021). Increasing evidence suggests that intake of short-chain

fatty acids (SCFAs), metabolites produced by numerous

symbionts, improves the proportion of Treg cells in mice

treated with antibiotics (Arpaia et al., 2013). Similarly, oral

gavage of microbes or SCFAs also activates Treg cells in

response to several diseases (Ben Ya’acov et al., 2015; Smith

et al., 2013). These gut microbiota and their metabolites also

influence the normal physiology and immune response in the
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liver (Visekruna and Luu, 2021). It can be suggested that

microbiota and their metabolites can also play a vital role in

stabilizing the Treg cells.

Bile acids, cholesterol metabolites, are immensely produced

in the liver through amultiple-step complex process that involves

peroxisomal, mitochondrial, and cytosolic enzymes (Russell,

2003). These bile acids are best known to regulate metabolic

processes, cellular processes, and the immune system (Chiang

and Ferrell, 2019; Fiorucci et al., 2021). Bile acids exert their

function by activating numerous receptors, including RAR-

related orphan receptor γt (RORγt), liver X receptors α/β
(LXRα/β), farnesoid X receptor (FXR), vitamin D receptor

(VDR), constitutive androstane receptor (CAR), pregnane X

receptor (PXR), and membrane-bound G protein-coupled

receptors Takeda G protein-coupled receptor 5 (TGR5) (Keitel

et al., 2019; Shin and Wang, 2019; Cai et al., 2021). Among these

receptors, FXR and TGR5 have been acknowledged as legitimate

targets for treating metabolic-associated NAFLD (Arab et al.,

2017). Activation of these receptors also influences and shapes

the innate immune response, thus playing critical roles in the

progression and development of NAFLD-related HCC (Schubert

et al., 2017). Increasing evidence indicates that bile acids and

their receptors also influence the adaptive immune system

(Campbell et al., 2020; Song et al., 2020); however, the role of

these receptors in adaptive immune response, especially in liver

resident Tregs, is not studied well. A recent study identified

isoallo-LCA and 3-oxo-LCA as metabolites of lithocholic acid

(LCA). Among these, 3-oxo-LCA directly binds to the RORγt
and suppresses the differentiation of Th17 cells. Meanwhile,

isoallo-LCA stimulates mitochondrial ROS production and

promotes Treg differentiation by increasing FOXP3 expression

(Hang et al., 2019). Interestingly, obeticholic acid (OCA), FXR

agonist, was approved by FDA for the treatment of primary

sclerosing (Ali and Lindor, 2016). On the other hand, OCA

ameliorates fibrosis and NASH; thus, it exerts beneficial effects by

reducing hepatic cirrhosis (Shah and Kowdley, 2020). However,

the effect of OCA and other bile acid molecules on the population

and function of FOXP3+CD4+ cells is not studied.

It has been documented that fat-soluble vitamins are highly

prevalent in the liver (Stacchiotti et al., 2021). A metabolite of

vitamin A, all-trans retinoic acid (RA), plays a role in the growth,

differentiation and proper functioning of immune cells,

including Treg cells (Liu et al., 2015). In the liver, RA is

produced by stellate cells, which increases the Foxp3 in CD4+

T cells and takes part in the development (Dunham et al., 2013),

functioning and stability of the Treg cells during the

inflammatory microenvironment (Zhou et al., 2010; Lu et al.,

2014). TGF-β is considered one of the essential

immunosuppressive cytokines that activate the population of

CD4+ CD25+ FoxP3+ Treg cells (Kanamori et al., 2016). RA can

directly influence and promote the TGF-β-dependent
differentiation of naive T cells into the FoxP3+ Treg cells

(Mucida et al., 2009; Martínez-Blanco et al., 2021).

Besides the TGF-β in an inflammatory hepatic

microenvironment, several other pro-inflammatory cytokines,

including IL-1, IL-12, IL-6, IL-8, and TNFα, are also present.

However, it was reported that IL-2 is deficient, which is necessary

for the overall survival of Treg cells (Chen et al., 2016a).

Activation of APCs is known to secrete these pro-

inflammatory cytokines (Blanco et al., 2008). These

intrahepatic resident Treg cells also rely on the APCs for their

differentiation, proper functioning, and survival. Tregs interact

with APCs by binding with CD80/86 through CD28/CTLA-4,

engaging with MHC Class II through TCR in the presence of

antigen, and responding to APC secretory cytokines through

cytokine receptors (Goddard et al., 2004; Lai et al., 2007).

However, TGF-β, in combination with higher IL-6, generates

IL-17 producing Th17 cells from naïve T cells, which further

suppresses the induction of Treg cells (Bettelli et al., 2006). In

addition, hepatocytes also play an important role in the

differentiation of Foxp3+ Tregs upon TCR stimulation from

the CD4+ T cells via Notch-signaling (Burghardt et al., 2014).

Resident Treg cells, even present in slightly lower regulatory

potential, acquire an intact functional ability and affirm short-

term lineage during culturing conditions that imitate and

maintain the intrahepatic microenvironment (Chen et al.,

2016a).

Immune metabolic pathways have been well studied for the

activation, differentiation, survival, and proliferation of the

immune cells, including metabolically active Treg cells

(O’Neill et al., 2016; Wang et al., 2019). The expression of

Foxp3, a pivotal transcription factor of Treg, is known to

involve in metabolic pathways, such as glycolysis and fatty-

acid oxidation (Fontenot et al., 2003; Gerriets et al., 2016;

Angelin et al., 2017). During inflammatory circumstances, the

ratios of metabolic supply-and-demand dramatically alter.

Inflammatory lesions induce the level of hypoxia-inducible

factor-1α (HIF-1α) in the tissues deficient in enough oxygen.

HIF-1α plays a vital role in enhancing the population and

suppressive roles of thymic Treg (Ben-Shoshan et al., 2008;

Clambey et al., 2012) by directly binding the promoter region

of FOXP3 (Clambey et al., 2012). However, during an oxygen-

deficient environment, the ablation of mTOR signaling is found

to be involved in the elimination of the HIF-1α functions (Land

and Tee, 2007). Activating transcription factor 3 (ATF3), a

member of ATF/CREB transcriptional family, is induced at

early inflammatory responses by cytokines, i.e., IFN-α, IFN-β,
IFN-γ and IL-4 (Farber, 1992; Drysdale et al., 1996). The absence
of ATF3 escalated the mTOR-dependent induction of the HIF-

1α, which minimized the Foxp3+ Treg cells (Zhu et al., 2018).

Therefore, the hypoxic anti-inflammatory process induces HIF-

1α that improves the population and functions of Treg cells by

strengthening their effectiveness and reducing the proliferation

of effector cells (Ben-Shoshan et al., 2008).

Conclusively, it is evident that hepatic immune responses and

Treg population and functionality are greatly dependent on the
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hepatic microenvironment (Figure 1). This hepatic

microenvironment has an excessive hypoxic atmosphere due

to higher blood supply, especially around zone 3 (Jeffery et al.,

2016). Meanwhile, other environmental signallings, including

environmental factors, microbial metabolites and metabolic

pathways, also influence the transcriptional programming of

Foxp3 and the functional plasticity of Treg cells.

Functions of Tregs in metabolic-
associated chronic hepatic diseases

As mentioned earlier, the human liver acquires a large

amount of blood supply, ~70%–80%, from the portal vein,

which is intensified with numerous metabolites and nutrients

(Balmer et al., 2014). Therefore, the liver-resident immune

cells, e.g., APCs, Tregs and T effector cells (Teffs), are

continuously exposed to numerous signals which

significantly impact their activation and alter their

functions. Besides the effects of metabolites and nutrients

on Tregs, innate immune cells and pro-inflammatory

cytokines also impact the Tregs (Figure 2). Reported data

on the immunosuppressive functions of Tregs suggest that

intrahepatic suppression/overexpression or inadequate

regulation of Tregs contribute to the onset of various

diseases, including chronic hepatitis B&C virus (Cabrera

et al., 2004), HCC (Unitt et al., 2005), autoimmune

hepatitis (Longhi et al., 2004), alcoholic liver disease (ALD)

(Matos et al., 2013), non-alcoholic liver disease (NAFLD)

(Rau et al., 2016), primary biliary cirrhosis (Lan et al.,

2006), acute rejection after liver transplant (Demirkiran

et al., 2006). Here, we will be focusing on the function of

FIGURE 1
Tregmediated immune suppression in the hepaticmicroenvironment. Tregs are activated by interactingwith theMHC-II on the surface of APCs
in the presence of antigen. Tregs also suppress conventional T cells by interacting with pro-inflammatory cytokines and pairing with CD80/86 via
CTL-4/CD28 and deprive the co-stimulatory signal to responder T cells. Besides the APC, Tregs also interact with other hepatic cells. Hepatocytes
differentiate the naïve CD4+ cells into FOXP3+ Tregs via notch signaling. HSCs release retinoic acid, which activates the TGF-β signaling and aids
Tregs differentiation. Meanwhile, in the presence of IL-6, TGF-β activates Th-17 cells, which reduces the activation and development of Tregs.
Additionally, in oxygen-deprived environment, HIF-1α directly interacts with the FOXP3 and enhance the population of Tregs. Besides the
intrahepatic regulation of Treg development and functions, gut microbiota and their metabolites also influence the Treg functions. Abbreviations:
APC, Antigen presenting cell; Treg, regulatory T cell; Th-17, T helper 17 cell; HSC, hepatic stellate cell; IL, interleukin; CTLA4, cytotoxic T lymphocyte-
associated antigen 4; DC, dendritic cell; CD, cluster of differentiation; TGF-β1, transforming growth factor-beta 1; MHC, major histocompatibility
complex; IEC, intestinal epithelial cells; LPS, lipopolysaccharide; SCFA, Short-chain fatty acids.
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Tregs in metabolic-associated chronic hepatic diseases,

including ALD, NAFLD, NASH, and NAFLD-

associated HCC.

Role of Treg in alcoholic liver disease

Alcohol abuse, an emerging and alarming health concern

with high mortality worldwide, encompasses a broad range of

injuries. These include alcoholic liver disease (ALD) with mild

steatosis to steatohepatitis, fibrosis, and cirrhosis, leading to

hepatocellular cancer (O’Shea et al., 2010; Breitkopf et al.,

2009). It has been estimated that excessive alcohol intake is

responsible for up to 4% of the yearly deaths (Singal and Anand,

2013). Ample evidence suggests that innate and adaptive

immune responses are entailed in the development,

pathogenesis and progression of ALD (Mille r et al., 2011;

Albano, 2012; Gao et al., 2019). Alcoholic hepatic injury

recruits peripheral immune-related cells, including infiltrating

monocytes, neutrophils and T lymphocytes (Chedid et al., 1993;

Nagy, 2015). Excessive exposure to alcohol or chronic ALD leads

to the dysregulation of the balance between these immune cells

and disruption of the immune activity. It contributes to the

development of the unresolved inflammation features of ALD.

The role of inflammatory response activation and aberrant

immune responses in worsening the ALD and its outcome has

been extensively studied. It is generally believed that mild or

excessive ethanol abuse may modify the immune responses

and functions (Szabo et al., 2011; Azizov et al., 2020; Luck

et al., 2021). Ethanol impairs the functions of APCs and

monocytes, decreases the proliferation of T cells and

interferes with the expression of adhesion molecules (Szabo

and Mandrekar, 2009). During the progression of ALD, there

is an increase in the production of pro-inflammatory

chemokines/cytokines by the liver resident macrophages,

i.e., kupffer cells (KC) (Slevin et al., 2020). Meanwhile,

damaged hepatocytes may produce several antigens to

initiate the intrahepatic immune responses, resulting in

massive intrahepatic inflammatory cell recruitment,

including Treg cells (Viitala et al., 2000).

With the advancement in experimental techniques, multiple

T cell subtypes have been identified. It has been recognized that

alcohol exposure impacts the T cells phenotypes and Treg cells

population (Matos et al., 2013). Earlier studies elucidating the

molecular mechanism underlying the progression and

development of ALD illustrated the presence of CD4+ and

CD8+ cells in the liver biopsies from ALD patients (Chedid

et al., 1993). The population of peripheral blood CD4+/CD25+

Treg cells is not altered (non-significant increase) in chronic

alcoholic patients. Still, it significantly decreases with the

increased inflammatory cytokines in patients with alcoholic

hepatitis (AH) (Almeida et al., 2013). A similar relative and

FIGURE 2
Influence of factors involved in the chronic liver disease spectrum on the Treg cells. Hepatic injury is caused by various environmental stressors,
including ethanol, a high-fat diet and gutmicrobiota and theirmetabolites. These stressors initiate the simple steatosis and lead to steatohepatitis and
cirrhosis in the liver, which finally progresses towards the tumor development. In the beginning, environmental stressors induce hepatic oxidative
stress, ROS, lipotoxicity, insulin resistance, fibrosis and obesity, which are the pathogenic factors for ALD, NAFLD, NASH and HCC. These factors
considerably contribute in downregulating the activation of Tregs and their population for the development of steatosis and fibrosis. However, the
progression of NASH towards the tumor development increases the population of Tregs to establish a pro-tumor microenvironment. Meanwhile,
adaptive and innate immune systems communicate with each other through Tregs and neutrophils, which aid in the progression of NAFLD-
associated HCC. Abbreviations: Treg, regulatory T cell; Th-17, T helper 17 cell; NAFLD, Non-alcoholic fatty liver disease; ALD, alcoholic liver disease;
NASH, non-alcoholic steatohepatitis; HCC, hepatocellular carcinoma.
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absolute Treg population in AH, regardless of chronic

hepatopathy symptoms, concluded that decreased CD4+/

CD25+ Treg cells in AH depend on the acute hepatic

inflammation (Almeida et al., 2013).

Similarly, Treg cells are most likely to participate in the

pathogenesis of viral hepatitis in individuals with alcohol abuse.

It was evident by the enhanced CD4+ FOXP3+ and CD25+

FOXP3+ Treg cell subtypes which were prompted in mice

immunized with DCs, isolated from ethanol-fed mice, and

loaded with HCV core (Ortiz and Wands, 2014). In contrast

to decreased circulatory CD4+/CD25+ Treg cells in alcoholic

patients (Almeida et al., 2013), another study reported an

increased population of circulatory CD4+/CD25+ Treg cells in

alcoholic patients (Ribeiro et al., 2017), suggested the role of Treg

cells in reducing the detrimental effects of excessive alcohol

intake on the liver. Meanwhile, it has been investigated that

inflammatory immune response in ALD has resulted from the

increased Th17 population (Kasztelan-Szczerbińska et al., 2015),

and Treg cells reduce the development and differentiation of

Th17 cells by modulating the levels of anti-inflammatory IL-10

and TGF-β cytokines (Chaudhry et al., 2011; O’Garra and Vieira,
2004; Lee, 2018). Likewise, the increased distribution of Treg cells

close to the portal tract in the inflamed human liver demonstrates

the close association with the suppression of immune response

(Oo et al., 2010). Therefore, it can be suggested that an increased

Treg cells population in patients with extreme ethanol might

reduce the alcoholic hepatic inflammatory responses.

As previously described, the liver is directly connected to the

gut and is continuously susceptible to harmless antigens and

byproducts of gut bacteria. Currently available studies have

discovered that alterations in the intestinal microbiome serve

an important regulatory role in initiating ALD in humans and

murine (Yan et al., 2011; Mutlu et al., 2012). Likewise, excessive

alcohol intake may damage microbiome balance, distort the

intestinal barrier, and lead to a dysfunctional liver and other

vital organs (Bishehsari et al., 2017). Alcohol-induced intestinal

barrier disruption helps the endotoxins, including

lipopolysaccharide (LPS), and cytokines, including IL-6 and

TNFα, to translocate into the liver and interact with

hepatocytes and immune cells (Bala et al., 2014; Bishehsari

et al., 2017; Zheng and Wang, 2021), which play pivotal roles

in ALD and hepatic inflammation. Evidence of the ethanol-

dependent modifications in the expression of CD4+ T Cell

subsets in LPS-stimulated peripheral blood mononuclear cells

suggests that ethanol impedes the Foxp3 kinetics and the

production of IL-1 and TNF-α after the LPS challenge,

thereby affecting the Treg/Th17 cells balance (von Haefen

et al., 2011).

Ethanol intake damages the liver by reducing the population

of Treg cells while increasing the Th17 cells population along

with the production of IL-17 and increasing the intestinal

permeability by reducing the expression of tight junction

proteins (Wang et al., 2011; Chen et al., 2016b). Probiotic

supplementation is well known to improve the functions of

the intestinal barrier by improving the expression of tight

junction proteins and exerting protective effects in response to

damaging factors, including alcohol abuse (Rao and Samak,

2013). Lactobacillus rhamnosus GG (LGG) is a probiotic that

strives to treat and prevent various diseases by stimulating

immune responses (Segers and Lebeer, 2014). A recent study

showed that LGG supernatant supplementation ameliorates ALD

by improving the population of Treg cells and decreasing the

Th17 population (Chen et al., 2016b).

Alcohol consumption, either acute or chronic, lowers the

antigen presentation by DCs, and reduces the T-cell proliferation

and activation by affecting the levels of costimulatory molecules

(Eken et al., 2011). Hepatic resident APCs activate the Treg cells

from naive CD4+ precursors (Bamboat et al., 2009). In ALD-

cirrhosis patients, diminished levels of circulatory IL-1β, IL-6, IL-
12, and TNF-α inflammatory cytokines, along with fewer number

of circulatory DCs have been observed (Laso et al., 2007).

Excessive alcohol consumption impairs the production of

cytokines IL-6, IL-12, IL-17A and IFN-γ from APCs which

are basically involved in initiating the adaptive immune

response (Heinz and Waltenbaugh, 2007). Generally, ethanol

diminishes the expression of stimulatory molecules on the

surface of DCs, impairs their ability to prime T cells, affects

the activation of naive T cells, and restricts the development of

allogeneic T cells. Upon CpG stimulation, hepatic DCs collected

from ethanol-fed mice exhibited reduced functional maturation

(Lau et al., 2006). It implies that the alcohol-induced

dysfunctional DCs might serve as a protective mechanism for

immunosuppression by excessive alcohol drinking (Szabo, 1999;

Lau et al., 2006) and may impair the Treg population.

Meanwhile, cell-cell interaction between DCs and Treg cells

depends on the MHC-II for activation of Treg cells. Individuals

with chronic alcohol intake may show lower MHC II-dependent

T cell response (Chang and Norman, 1999). It can be advocated

that besides the exclusive effects of alcohol on the cells

responsible for innate immune response, early consequences

on the adaptive immune system by alcohol contribute to the

AH and ALD. Similarly, dysfunctional Treg cells are well known

to contribute to the development and progression of these

alcoholic diseases. However, the influence of alcohol on the

roles of liver resident Treg cells is not studied well. Therefore,

further investigations are necessary to improve our

understanding of mechanisms underlying ALD and provide

aid in finding novel therapeutic targets to treat AH and ALD.

Role of Treg in non-alcoholic fatty
liver disease

Non-alcoholic fatty liver disease (NAFLD), affecting one-

third of the population, is known for the presence of hepatic

steatosis, which accelerates a series of hepatic diseases ranging
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from non-alcoholic fatty liver (NAFL) to non-alcoholic

steatohepatitis (NASH) and progress to cirrhosis and

hepatocellular carcinoma (HCC) (Younossi et al., 2016;

Younossi et al., 2018). Hypothetically, the progression of

NAFLD has been illustrated in a “multi-hit” manner, which

initiates the accumulation of lipids in hepatocytes. Afterward, an

increase in free fatty acids secretion from adipocytes, oxidative

stress, decreased adiponectin, and increased pro-inflammatory

cytokines (resistin, leptin, TNFα, and IL-6) collectively prompt

the development of hepatic steatosis and inflammation (Starley

et al., 2010). Meanwhile, several other factors, including TGF-β1-
dependent collagen deposition, macrophage activation, hepatic

reactive oxygen species (ROS), metabolically active natural killer

T cells (NK-T) and CD8+ T cells, and imbalance between

Th17 and Treg, take part in the disease progression beyond

NAFL (Wolf et al., 2014; Paquissi, 2016).

Increasing evidence suggested the close association of NASH

with activated innate immune response in mice (Tosello-

Trampont et al., 2012) and humans (Malehmir et al., 2019).

However, the role of adaptive immunity and Treg cells in NASH

hasn’t been studied well. A recent clinical study showed the low

population of resting Tregs in the peripheral blood of NASH

patients and an increase in intrahepatic Th17 cells (Rau et al.,

2016), suggesting that higher Th17/rTreg is engaged in NAFL to

NASH progression. Another study indicated that NAFLD-

related severe hepatic inflammation in children was linked

with higher intralobular Foxp3+ lymphocytes, while adults

exhibited decreased Foxp3+ and higher IL-17A+ lymphocytes

in portal/periportal (P/P) tracts (Cairoli et al., 2021). Similarly,

the high-fat diet (HFD)-induced NAFLD model showed an

elevated population of intrahepatic Th17 cells. This increased

Th17 and IL-17 are linked with the development of steatosis and

the expression of pro-inflammatory cytokines (Tang et al., 2011).

Subsequently, increased Th17 in liver during the chronic liver

injuries exhibits a decreased proportion of Treg cells with the

increased IL-6, IL-17 and IL-23 (He et al., 2017; Khanam et al.,

2019).

Insulin resistance (IR), lipotoxicity and adipose

inflammation are the hallmarks of NAFLD. Generally,

lipotoxicity accelerates the pathogenesis of NAFLD by

aggravating hepatic inflammation, adipose tissue inflammation

and IR (Manco, 2017). It has been implicated that CD4+ T cells,

especially Tregs, play critical roles in the regulation of IR, adipose

inflammation and obesity. For instance, Tregs repress the

immune response, whereas Th1 and Th17 cells enhance

adipose inflammation (Bluestone et al., 2009; Newton et al.,

2016). Upon activation, resting naive CD4+ T lymphocytes are

differentiated into Tregs and Teffs to and employ immunological

responses. Obesity and IR affect the Tregs cells by suppressing

their differentiation or impairing their functions (Feuerer et al.,

2009; Cipolletta et al., 2012; Wagner et al., 2013). It was found

that maintenance of Tregs in VATs of HFD-induced obese

animal model significantly reduces adipocyte size and

decreases the body weight gain and visceral adipose tissue

weight; thus, impairing Tregs worsens HFD-induced obesity

and IR in mice (Tian et al., 2011; Cipolletta et al., 2012).

Several cellular metabolic activities, including inflammation,

stress responses, and cell survival, are responsible for the

oxidative stress and production of ROS within the cells

(Pizzino et al., 2017). ROS production promotes hepatic

inflammation, fibrogenesis and lipotoxicity in NAFLD (Delli

Bovi et al., 2021). Lack of fatty acid β-oxidation along with

intensive lipogenesis cause the excessive accumulation of

triglycerides within the hepatocytes. During the process of

NASH, increased ROS combines triglycerides and leads to IR

and hepatic steatosis (Mansouri et al., 2018). Oxidative stress in

the liver exerts detrimental effects on the hepatic Tregs. It was

observed that oxidative stress induces Treg apoptosis and leads to

their deletion within the steatotic liver (Ma et al., 2007), and

consequently increases hepatic inflammation and avitivates

TNF-α signaling pathway. This results in further hepatic

injury, including the progression of simple steatosis to

steatohepatitis, especially when liver is exposed to endotoxins,

e.g., LPS, which can be delivered to liver or endogenously

produced by gut microbiota (Ma et al., 2007; An et al., 2021).

Moreover, adoptive transfer of Tregs have decreased HFD-

induced intrahepatic TNF-α signaling and diminished the

LPS-induced hepatotoxicity (Ma et al., 2007).

As mentioned earlier, activation of Tregs and their ability to

perform suppressive functions are somehow dependent on the

MHC-II. Liver sinusoidal endothelial cells (LSECs) and KCs are

the key MHC-II expressing hepatic APC populations, which

display antigen to Tregs and other CD4+ T cells (Wiegard et al.,

2005). These Treg cells stimulated by KC and LSEC suppress the

other CD4+ T cells proliferation (Wiegard et al., 2005). Similarly,

hepatocytes can express MHC-II during hepatic inflammation,

which helps them contribute to inflammatory immune responses

by overcoming Treg suppressive functions during microbial

antigenic signals (Herkel et al., 2003; Wiegard et al., 2005).

The inflammatory hepatic microenvironment, i.e., TNF-α,
IFN-γ and oxidative stress induced by KCs and DCs impair

the survival and induce the apoptosis of Foxp3+ Treg cells during

the apoptosis of hepatocytes and NASH (Ma et al., 2007; Roh

et al., 2018). However, another study reported that the

population of hepatic Tregs enhanced during the NASH, and

depletion of Tregs can significantly inhibit the development of

HCC from choline-deficient, high-fat diet feeding and

diethylnitrosamine injection-induced NASH model (Wang

et al., 2021). These opposing findings describing the functions

of Tregs in NASH could have resulted from the different NASH

models, or there is a probability that Tregs exert contrasting

functions during the early and late NASH.

KLF10 is a well-known responsive transcription factor of

TGF-β1, which regulates the functions and differentiation of

Teffs and Tregs (Cao et al., 2009). A recent study concluded that

the expression of KLF10 is significantly reduced in Teffs and
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Tregs isolated from peripheral blood and spleen of HFD-induced

and obese mice (Wara et al., 2020). It is known that diet-induced

obesity and liver diseases increase the immune cell accumulation

in the liver and aggravate hepatic inflammation and lipid

metabolic dysfunction (Dallio et al., 2021). CD4+ T cell-

specific KLF10 deficiency leads to inflammation in adipose

tissue, IR, obesity and the onset of NAFLD with impaired

Treg accumulation (Wara et al., 2020). However, adoptive

transfer of Tregs in CD4+ T cell-specific KLF10 deficient mice

impede obesity, IR, adipose tissue inflammation and fatty liver

phenotype (Wara et al., 2020). Overall, Foxp3+ Tregs exert

protective roles during the progression of NAFLD from

simple steatosis to steatohepatitis. Therefore, it can be

concluded that despite the activation and marginal clonal

expansion of hepatic T cells in NASH, the increased

population of Treg counterbalance these effects. Meanwhile,

the adoptive transfer of Treg in NASH aggravates the disease

severity (Dywicki et al., 2022). Overall, the current

understandings of the protective function of Tregs are still

limited and need additional investigations to provide aid in

treating NAFLD and NASH through Treg targeted therapy.

Role of Treg in NAFLD-
associated HCC

HCC is deemed a major histological type of primary liver

cancer which accounts for approximately 75% of all hepatic

cancers (McGlynn et al., 2015). Leading evidence suggests that

a high incidence of NAFLD and the ultimate progression of

liver diseases are the leading causes of HCC. NASH leads to

the hepatocytes’ death and compensatory proliferation, and

converts the mild fibrosis to advanced fibrosis with elevated

levels of TNFα, TGF-β1 and IL-18, which increase the risks of

HCC (Anstee et al., 2019). The tumor microenvironment

comprises cancer cells, immune cells and their mediators,

and pro-inflammatory cytokines and chemokines (Gallimore

and Simon, 2008). In the liver, the pathogenesis of NASH-

associated HCC exclusively depends on the intrahepatic

inflammatory and immune responses, autophagy, oxidative

stress and DNA damage (Wolf et al., 2014; Anstee et al., 2019).

Immune evasion of cancer cells is regulated by various

immune suppressor mechanisms, which involve different

subsets of immune cells and contribute to the initiation

and progression of HCC (Greten et al., 2015). Meanwhile,

lymphocytic infiltrate at the tumor site decreases the risk of a

recurrent tumor and increases the overall survival rate

(Greten et al., 2013). However, the role of T cells,

especially Tregs, in NASH-associated HCC is not

understood well. Striking evidence advocated that the Tregs

population increases in peripheral blood and tumor tissues

collected from HCC individuals (Guo et al., 2014). Therefore,

researchers believe that increase in Tregs may exert adverse

effects on the HCC disease prognosis (Wilke et al., 2010), and

an augmented ratio of effector CD4+/Treg cells represent a

better prognosis for HCC (Kalathil et al., 2019).

Several studies have determined the critical role of CD4+

T cells in the initiation and progression of HCC. CD4+ T cells

generally impede the HCC initiation and progression, thereby

contributing to the tumor regression (Rakhra et al., 2010).

Tregs adversely affect the local immune microenvironment

(Nishida and Kudo, 2017). FOXP3+ Tregs exert

immunosuppressive functions in the tumor settings by

restricting the development and activation of anti-tumor

effector cells and facilitating the tumor immune escape

(Khazaie and von Boehmer, 2006). Thus, elevated

population of CD4+ CD25+ FoxP3+ Tregs promotes the

disease initiation and progression by impairing the

functions of effector CD8+ cells (Fu et al., 2007; Gao et al.,

2007; Shi et al., 2018). Earlier studies have indicated that Tregs

could regulate the differentiation and development of T cells

by secreting anti-inflammatory IL-10 and TGF-β1 or

repressing the IFN-γ and the T cells proliferation, thereby

inhibiting their immune function (Bergmann et al., 2011).

Meanwhile, HCC tumors themselves secret TGF-β1, which
serves as the foremost vital source of TGF-β1 in HCC patients

(Wang et al., 2016). This TGF-β1 could be a major factor in

activating the regulatory phenotype of Tregs and maintaining

their biological functions (Marie et al., 2005).

The functional heterogenicity of CD4+ T cells embraces

Teff and Treg cell functions depending on their differentiation

(Sallusto and Lanzavecchia, 2009). HCC pathogenesis greatly

depends on the selective loss of hepatic resident CD4+ T cells,

which accelerates the progression of HCC from NAFLD liver

(Ma et al., 2016). It is obvious that IFN-γ secreting cytotoxic

CD4+ Th1 cells monitor and clear the premalignant senescent

hepatocytes (Kang et al., 2011). However, FOXP3+ Tregs

inhibit the proliferation and function of Th1 and other

Teffs. Therefore, despite the decreased population of total

CD4+ in NASH liver, an enhanced population of Tregs has

been observed, which aggravates the inflammation in NASH

by establishing the pro-tumorigenic settings and leading to the

initiation of the NASH-HCC malignant process (Wang et al.,

2021).

Yes-associated protein-1 (YAP1) is a transcriptional

coactivator and downstream effector of the Hippo signaling

pathway (Manmadhan and Ehmer, 2019). Several studies have

reported the positive correlation of YAP1 with the severity of

hepatocyte injury and the progression of NAFLD and NASH

(Chen et al., 2018; Salloum et al., 2021). Moreover, inhibiting the

YAP1, reported as an independent prognostic marker and

associated with the disease-free survival HCC patients (Xu

et al., 2009), restores hepatocyte differentiation, and reduces

the tumor development and the advancement of HCC

(Fitamant et al., 2015). Besides the direct evidence of YAP in

the development of NAFLD-HCC, it was investigated that YAP is
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necessary for the differentiation and immunosuppressive

functions of Treg cells (Fan et al., 2017; Ni et al., 2018).

Mounting evidence indicated the potential role of gut

microbiota in modulating T-cell immunity directly or via

their metabolites, including SCFAs (Asarat et al., 2016).

Microbial dysbiosis leads to the generation of excessive

amounts of SCFA, especially butyrate, which aid in setting

the tumor microenvironment (Singh et al., 2018). An ex-vivo

investigation showed a positive correlation between Treg and

butyrate. It indicated that gut microbiota in the NAFLD-HCC

model expands the population of total and effector IL-10+

Tregs while decreasing the expansion of CD8+ cells (Behary

et al., 2021). Similarly, it has been verified that IL-2 plays

important role in the activation and expansion of CD8+ T cells

(Chinen et al., 2016). The presence of peripheral Tregs

consumes the IL-2, thereby attenuating the functions of

CD8+ T cells (Chinen et al., 2016). Previous ex-vivo

investigation implied that this T cell expression profile is

triggered by the gut-microbiota isolated from NAFLD-HCC

patients, but not cirrhosis, and demonstrated the microbiota

and metabolites-specific regulatory effects on T cells in

NAFLD-HCC (Behary et al., 2021). Together, all these

investigations highlight the role of Treg in the onset of

NAFLD-HCC. However, detailed mechanistic studies are

still required to thoroughly understand the functions of

Tregs in the pre-tumor process from NAFLD to HCC.

Conclusion

Chronic hepatic diseases, such as ALD and NAFLD, are

emerging as the foremost cause of liver cancer and morbidity

worldwide. It has been estimated that the prevalence of

NAFLD-associated HCC will drastically increase (up to

45%–130%) in a decade (Grgurevic et al., 2021). The

progression of hepatic diseases largely depends on several

factors, such as ROS, oxidative stress, lipotoxicity, IR and gut

microbiota. In the hepatic microenvironment, numerous

hepatic parenchymal, non-parenchymal, innate immune

cells, adaptive immune cells, and inflammatory cytokines

and chemokines interact with each other to maintain

immune homeostasis. However, factors contributing to

metabolic steatosis disrupt this homeostasis which greatly

affects the population of T cells in the hepatic

microenvironment and leads to the CD4+ T cell infiltration

in the liver. Numerous CD4+ T cell subsets participate in

regulating the ALD, NAFLD, and NAFLD-related HCC

disease progression. Among these T cells, FOXP3+ Tregs

play pivotal roles in the progression of steatohepatitis and

in creating pre-tumor microenvironment settings. It was

suggested that during the hepatic injury, factors

contributing to the disease progression reduce the

activation and development of FOXP3+ Tregs. However, an

increase in Tregs is involved in tempering the features of ALD

and NAFLD by reducing the steatohepatitis and fibrosis, and

exerting the immunosuppressive effects by hindering the

inflammatory cellular immunity (Albano, 2012; Ikeno et al.,

2020). Meanwhile, an increased population of Tregs promotes

tumor development by setting a premalignant stage for the

progression of HCC in the NASH-associated liver (Wang

et al., 2021). It is noteworthy that various parenchymal and

non-parenchymal cells in the liver interact to induce an

immune response. Increasing evidence demonstrates that

various factors influence the activity and function of Tregs.

However, studies reporting the impacts of Tregs on the

hepatic parenchymal and non-parenchymal cells are not

illustrated.

Tregs-targeted therapy is regarded as a prospective HCC

therapeutic strategy. So far, numerous innovative therapeutic

strategies have been reported to target Tregs in clinical trials.

These strategies, including using small molecules or antibodies,

disrupt the function or differentiation of Tregs (Tsung and

Norton, 2015). Despite advancements in biological and cancer

research, little attention has been paid to developing strategies

targeting the Tregs, especially in NAFLD-associated HCC.

Various effective therapies, including monoclonal antibodies

(anti-PD-1, anti-PD-L1, and anti-CTLA-4), have shown

favorable prognosis and improved overall survival rates in

patients with solid tumous (Saleh and Elkord, 2020a).

However, studies demonstrating the effect of these

monoclonal antibody usages in treating NAFLD-associated

HCC are limited and need attention. More importantly,

considering the side effects and low efficacy of these

monoclonal antibodies, it is important to identify new anti-

tumor drugs and validate the efficacy of newly identified drugs

alone or in combination with other immune checkpoint

inhibitors. Treg-targeted therapy represses tumor growth by

enhancing the infiltration of CD8+ cells at the site of the

tumor, improving the functions of APCs and minimizing the

infiltration of myeloid suppressive cells in TME (Saleh and

Elkord, 2019; Saleh and Elkord, 2020b). Thus, realizing the

significant effects of the adoptive transfer of Tregs in the

NAFLD and NAFLD-related HCC (Van Herck et al., 2020), it

is important to evaluate the efficacy of natural or engineered

Tregs along with other immune checkpoint inhibitors in NAFLD,

premalignant NAFLD and NAFLD-related HCC. Meanwhile, it

is worthwhile to understand the effects and function of Tregs in

HCC tumors induced by different causative agents and varying

disease stages and histological grades.

In conclusion, the cell-cell interactions, production of

inflammatory cytokines and chemokines, and antigens in the

tumor microenvironment diversify the functional studies of

Tregs in HCC tumors. A comprehensive and clear

mechanistic understanding of the biology of hepatic Treg cells

in the steatosis and premalignant process may lead to inventing

novel therapeutic approaches that target Tregs to restrict and
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treat chronic hepatic diseases, metabolic steatosis and NAFLD-

associated HCC.
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