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Abstract

Bone morphogenetic protein (BMP) signaling pathway plays important roles in urinary tract development although the
detailed regulation of its activity in this process remains unclear. Here we report that follistatin-like 1 (Fstl1), encoding
a secreted extracellular glycoprotein, is expressed in developing ureter and antagonizes BMP signaling activity. Mouse
embryos carrying disrupted Fstl1 gene displayed prominent hydroureter arising from proximal segment and ureterovesical
junction defects. These defects were associated with significant reduction in ureteric epithelial cell proliferation at E15.5 and
E16.5 as well as absence of subepithelial ureteral mesenchymal cells in the urinary tract at E16.5 and E18.5. At the molecular
level, increased BMP signaling was found in Fstl1 deficient ureters, indicated by elevated pSmad1/5/8 activity. In vitro study
also indicated that Fstl1 can directly bind to ALK6 which is specifically expressed in ureteric epithelial cells in developing
ureter. Furthermore, Sonic hedgehog (SHH) signaling, which is crucial for differentiation of ureteral subepithelial cell
proliferation, was also impaired in Fstl1-/- ureter. Altogether, our data suggest that Fstl1 is essential in maintaining normal
ureter development by antagonizing BMP signaling.
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Introduction

Congenital malformations of the kidney and urinary tract are

the primary causes of renal failure in children and young adults [1]

and frequently affect human infants. Many of these hereditary

diseases display hydroureter and/or hydronephrosis with di-

latation of the ureter and/or the renal pelvis, caused by failure

to conduct urine from the renal pelvis to the bladder [2,3]. The

underlying causes of these congenital malformations are still

largely unknown.

Murine urinary tract development is a model that is broadly

used to understand the underlying mechanism of human urinary

tract malformations. On gestational day 10.5 (E10.5), ureteric bud,

an epithelial outgrowth from Wolffian duct (WD), appears at the

level of the future hind limbs. Then the ureteric bud invades

a condensation of the intermediate mesoderm, called metanephric

mesenchyme, and is induced by metanephric mesenchyme to

branch from E11.5 onwards to develop to the renal collecting duct

system [4,5]. The primary stalk of the ureteric bud that connects

the developing kidney first to the Wolffian duct and later to the

bladder, develops to become the ureter. The most posterior

Wolffian duct segment is called the common nephric duct (CND),

which connects ureteric bud to urogenital sinus, the later bladder

[5,6]. In later developmental stages, the CND undergoes apoptosis

to let the ureter join urogenital sinus directly [7]. The ureter

budding site along the Wolffian duct as well as the appropriate

CND absorption process are important to the final position of

ureterovesical junction and distal ureter maturation.

During ureter development, the epithelial cells differentiate into

the urothelium, while a layer of smooth muscle cells are

differentiated from the condensed mesenchymal cells around the

ureteric epithelium, and mediate peristalsis, conducting urine from

the renal pelvis to bladder. In later stage, another kind of

mesenchymal cells is differentiated between smooth muscle layer

and epithelium in ureter, called subepithelial ureteral mesenchy-

mal cells. Recent report revealed that Shh from ureteric

epithelium is required for differentiation of subepithelial ureteral

mesenchymal cells. Deletion of Shh in urothelium causes absent of

subepithelial ureteral mesenchymal cells. The mutant mice display

congenital renal hypoplasia, hydronephrosis and hydroureter

phenotype at birth [8].

BMP signaling pathway is essential for many development

processes. During ureter development, Bmp4 and Bmp5 are

expressed in ureteral mesenchymal cells, while Bmp7 is expressed

in ureteric epithelium [9]. Gene targeting approaches have

uncovered some of their important roles during ureter de-

velopment. Bmp7 deficient mice display a dysplastic kidney and

hydroureter phenotype [10,11]. Mice heterozygous for a null

mutation of Bmp4 display abnormalities that mimic human

congenital anomalies of the kidney and urinary tract (CAKUT),

suggesting that Bmp4 has important functions in the early
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development of urinary tract by inhibiting ectopic budding from

WD or the ureter stalk [12]. At later stage, Bmp4 is reported to

have multiple biological functions in urinary system development.

For instance Bmp4 can act on the metanephric mesenchyme,

prevents cell death and promotes expansion and migration of

mesenchymal cells [13]. Fstl1 encodes a secreted extracellular

glycoprotein that belongs to the BM/SPARC/osteonectin family,

which contains an extracellular calcium-binding (EC) domain and

a follistatin (FS)-like domain [14,15]. In zebrafish, morpholino

knockdown of zFstl2 (the mouse Fstl1 homolog) results in

a ventralized body axis [16]. Recently, Fstl1 is indicated to act

as a BMP4 signaling antagonist in lung development [17].

Nevertheless, how Fstl1 affects BMP signaling or the function of

Fstl1 during ureter development remains unclear.

Clues about Fstl1 function in the developing urinary system is

suggested by its dynamic expression in the nephric duct and the

nascent nephron epithelia of the developing kidney [18]. In this

study, we report that Fstl1 knockout mice (Fstl1-/-) display

a prominent hydroureter beginning at E16.0. Our histological

and biochemical results suggest that Fstl1 has important roles in

regulating ureteric epithelial cell proliferation, subepithelial

ureteral mesenchymal cells differentiation and distal ureter

maturation, mainly via regulating BMP and SHH signaling

pathways.

Materials and Methods

Ethics Statement
This study was approved by the Institutional Animal Care and

Use Committee of Model Animal Research Center, Nanjing

University, in strict accordance with the Guide for the Care and

Use of Laboratory Animals, China. The relevant approved animal

protocol (MARC-AP#: XG28) is entitled ‘‘Fstl1 antagonizes BMP

signaling by regulating epithelial-mesenchymal interaction during

ureter development’’.

Mouse Strains
Fstl1 floxed mice (Fstl1flox/+) were generated by inserting two

loxP sites into intron 1 and intron 2 respectively, followed by

a neomycin cassette and a third loxP site in same orientation [19].

Heterozygous Fstl1 knockout mice (Fstl1+/-) were generated by

crossing Fstl1flox/+ mice with EIIa-Cre mice (B6.FVB-Tg(EIIa-

cre)C5379Lmgd/J, 003724), in which Cre recombinase expression

occurs prior to implantation in the uterine wall [20]. Intercross of

Fstl1+/- mice produced null mutant mice (Fstl1-/-) with exon 2

deletion. Ptch-lacZ+/– mice (STOCK Ptch1tm1Mps/J, 003081) were

obtained from The Jackson Laboratory (Bar Harbor, ME). Fstl1

knockout mice (Fstl1+/-) as well as Fstl1+/-;Ptch-lacZ+/– mice were

kept at 129;B6 mixed background. All mice were maintained in an

AAALAC accredited SPF facility in Model Animal Research

Center of Nanjing University.

Histology and Immunohistology
For histological staining, urinary system was fixed in 4%

paraformaldehyde, paraffin-embedded, sectioned (6mm), and

stained with hematoxylin-eosin. Immunohistochemistry was per-

formed on paraffin sections following a standard protocol with

antibodies listed below [21].

For X-gal staining of urinary systems, the whole urinary tract

was fixed for 30min in fixative buffer (0.05 M NaPO4 buffer, PH

7.3, 1.8% formaldehyde, 0.02% NP-40, 2 mM MgCl2, 0.01%

deoxycholate) on ice. After fixation, the urinary systems were

washed 5 min in rinse buffer (0.05 M NaPO4 buffer, PH 7.3,

0.02% NP-40, 2 mM MgCl2) for three times and stained by

immersion in X-gal staining solution (0.05 M NaPO4 buffer, PH

7.3, 2 mM MgCl2, 5 mM potassium ferrocyanide, 5 mM

potassium ferricyanide, 0.1% X-gal) overnight at 37uC in the

dark. The X-gal-stained urinary systems were rinsed with PBS,

and post-fixed with 4% paraformaldehyde in PBS at 4uC. Then
the samples were paraffin embedded and sectioned (10 mm). The

sections were counterstained with nuclear fast red.

Antibodies
Antibodies and reagents used are as follows: goat anti-Fstl1

(R&D system, AF1738), goat anti-Smad1 (R&D system, AF2039),

rabbit anti-phospho-Smad1/5/8 (Cell Signaling Technology,

9511), rabbit anti-Pax2 (Zymed, 71–6000), DAPI (Sigma-Aldrich,

D9542), rabbit anti-pan-Cytokeratin (Santa Cruz Biotechnology,

SC-15367), mouse anti-a-SMA (Neomarkers, MS-113-P1), goat

anti-SM22 a (Abcam, ab10135), mouse anti-smMHC (Abcam,

ab53219), mouse anti-phospho-AKT (Ser473) (Cell Signaling

Technology, 4051), rabbit anti-AKT (Cell Signaling Technology,

9272), mouse anti-b-actin (Sigma, A5441), mouse anti-GAPDH

(Santa Cruz Biotechnology, SC-32233), mouse anti-c-Myc (Santa

Cruz Biotechnology, SC-40), mouse anti-HA (Sigma-Aldrich,

H3663), FITC-conjugated mouse (Sigma-Aldrich, F5262) and

Cy5-conjugated rabbit (Biomeda Corp., SJ29004) secondary

antibodies and DAB (Maixin, KIT-9710), Goat anti-mouse IgG

(Fc) (Pierce, 31439), Rabbit anti-Goat IgG (Sigma-Aldrich,

A5420), and Goat anti-Rabbit IgG (Sigma-Aldrich, A9169).

Dye Injection
To visualize the urinary tract lumen, Bromophenol blue was

injected into the pelvic region of the kidneys using a three

dimensional manipulator (MN-153, NARISHIGE).

Analysis of Peristalsis
E18.5 kidneys and associated ureters were dissected from wild-

type and Fstl1-/- embryos and were incubated in an in vitro culture

chamber attached to an Olympus X71 inverted microscope.

Ureter movements were observed and captured by digital camera

of the microscope apparatus.

Proliferation and Apoptosis Analysis
To determine proliferative activity of the developing ureter,

Timed-mated pregnant females were intraperitoneal injected with

10ml/g body weight BrdU (5mg/ml) (Sigma-Aldrich). E15.5

urinary systems were harvested 1 hour after injection, and E16.5

urinary systems were collected 2 hours after injection. For E15.5

embryos, a total of over 20 ureter sections from three embryos of

each genotype were collected for quantification. For E16.5

embryos, a total of 20 ureter sections from the distal segment of

ureter of each genotype were collected for quantification.

Proliferative activity was examined after treatment with Fstl1 in

culture: Wild-type E15.0 urinary system (kidney, ureter and

bladder) was dissected and positioned on top of a culture plate

insert (0.4 mm pore size, Millipore Corporation, Bedford,

MA01730, USA) within an individual well of a 24-well tissue

culture plate and cultured in mock or Fstl1-containing conditioned

media for 16 hours, with 10 mM BrdU added during the last 4

hours of treatment [22]. A total of 7 sections from 3 pairs of

cultured ureters were used for quantification. The BrdU-labeling

index was defined as the number of BrdU-positive nuclei relative

to total number of nuclei, which were counterstained with

hematoxylin.

Apoptotic cells were detected using TUNEL assay that

performed on 6mm paraffin sections using DeadEndTM Fluoro-
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metric TUNEL System (Promega, G3250). For both E15.5 and

E16.5 embryos, a total of 6 ureter sections from two embryos of

each genotype were analyzed. For E12.5 embryos, a total of

6 sections containing CND region from two embryos of each

genotype were analyzed.

In Situ Hybridization
In situ hybridization was performed as previously described [23].

A 619 bp 3’ UTR fragment of Fstl1 cDNA was subcloned into the

pBluescript II KS (-) (Stratagene) plasmid, which was used to

generate an in situ hybridization probe (PCR primers are listed in

Table S1). Pax3 probe was kindly provided by Dr. Yingzi Yang

from NIH as a gift. Pax2 probe was provided by Dr. Yeguang

Cheng (Tsinghua University, Beijing, China) as a gift. 3 embryos

of each stage were used for Fstl1 expression examination.

4 embryos of each genotype were used for whole mount in situ

hybridization using Pax2 and Pax3 probes.

Quantitative Real-Time PCR
The ureters were dissected and separated from the rest of the

kidney. Two pairs of ureter were pooled into one sample. Over

4 groups of each genotype were used for real-time PCR for each

gene. Total RNA from E16.5 ureter samples was isolated using the

Qiagen RNeasy Mini kit (Qiagen). First strand cDNA was

synthesized using AMV reverse transcriptase (Takara). Primers

targeting specific transcripts were designed for real-time RT-PCR

(SYBR). b-actin was used as internal control in each reaction.

Quantitative real-time PCR was performed using an ABI PRISM

7700 (ABI) with conditions recommended by the manufacturer.

Each reaction was performed triplicate. The quantity of each

experimental sample is first determined using a standard curve

based on their Ct values and then expressed relative to the internal

control. The primers used to amplify each gene are listed in Table

S1.

Cell Culture and Transfection
HEK-293 (CRL-1573TM, ATCC) cells were routinely cultured

in DMEM supplemented with 10% FBS. Fstl1 coding sequence

was subcloned into pcDNA3.1 (Invitrogen) vectors to express Fstl1

with (pcDNA3.1- Myc-Fstl1) or without Myc-tag (pcDNA3.1-

Fstl1). HA tagged ALK3, ALK5 and ALK6 plasmids were

provided by Dr. Yeguang Cheng (Tsinghua University, Beijing,

China) as gifts.

To prepare the conditioned media, pcDNA3.1-Fstl1 or

pcDNA3.1 vector (Mock) were transfected into cells using

Lipofectamine 2000 (Invitrogen) following the manufacturer’s

instructions. 24 hours after transfection, supernatant medium was

collected as conditioned media for following treatment. The cells

subject to conditioned media treatment were plated at 36105 per

well in 12 well plate, and starved for 4 hours before medium

changed. Cells were treated with the conditioned media in

addition of BMP4 (20 ng/ml) (PeproTech, Rocky Hill, NJ) for 30

min.

Immunoprecipitation and Western Blot
For immunoprecipitation assay, HEK293 and COS7 cells were

co-transfected with pcDNA3.1-Myc-Fstl1 and Bmp receptors

expression plasmids HA-ALK3, ALK6 or ALK5. After trans-

fection, the cells were cultured for 48 hours. Whole cell lysate was

incubated with anti-c-Myc antibody, and rotated at 4uC for 6

hours. Then Protein A/G Agarose beads (Biyuntian Bio) were

added and incubated overnight at 4uC with rotation.

Protein extracts (50mg/lane) were separated on discontinuous

10% SDS-PAGE gel followed by transfer to PVDF membrane

(Amersham Biosciences), 100V for 1 hr. The transferred mem-

brane was blocked in 5% skim milk in TTBS (0.1% Tween-20 in

TBS) buffer for 1hr at RT, then immunoblotted with primary

antibody overnight at 4uC. After four washes with TTBS for

10 min each, the membrane was incubated with peroxidase-

coupled secondary antibody for 1 hr at RT. After three washes in

TBS for 10 min each, the immuno-reactive bands were visualized

with a chemiluminescent substrate for peroxidase (Super Signal

West Pico substrate, Pierce). For ureter samples, ureters were

dissected and separated from the rest of the kidney. 10 pairs of

ureters from each genotype were pooled together as one sample.

The experiments from both E15.5 and E16.5 ureters were

duplicated. The results on E18.5 kidney samples were confirmed

with more than 4 litters of embryos.

Statistics
All results were presented as mean 6 SEM. All statistical

analyses were done using GraphPad Prism5 software. Two-tailed

Student’s t tests were used for comparisons between two groups.

*, p,0.05; **, p,0.01; ***, p,0.001. p,0.05 was considered

significant.

Results

Fstl1 is Expressed in Developing Ureter
We examined Fstl1 expression in the developing ureter by

immunohistochemistry (IHC) at E11.5 (Figure. 1A), E13.5

(Figure. 1C), E15.5 (Figure. 1D), E16.5 (Figure. 1E), and E17.5

(Figure. 1F). IHC result of E11.5 Fstl1 null embryo was presented

as negative control (Figure. 1B). In developing ureter, Fstl1 protein

was detected in both epithelial cells of ureteric bud and the

surrounding mesenchymal cells (Figure. 1A) as early as E11.5. In

later stages, Fstl1 was detected in the mesenchyme (inner and

outer layers) and epithelium of the developing ureter at E13.5

(Figure. 1C), E15.5 (Figure. 1D), E16.5 (Figure. 1E), and E17.5

(Figure. 1F).

Since Fstl1 is a secreted glycoprotein, Fstl1 mRNA expression

was also examined by in situ hybridization. Fstl1 mRNA was

mainly produced in ureteral mesenchymal cells at E13.5 (Figure.

S1A, B) and E15.5 (Figure. S1C, D). The difference of expression

pattern of Fstl1 protein and RNA in ureter indicated that the Fstl1

protein found in the ureteric epithelium might be derived from the

ureteral mesenchymal cells by diffusion.

Fstl1-/- Embryos Developed Congenital Hydroureter and
Hydronephrosis
To study the function of Fstl1 in development and pathophys-

iology, Fstl1 conventional knockout allele was generated by

crossing heterozygous conditional knockout mice (Fstl1flox/+) [19]

with EIIa-Cre mice (B6.FVB-Tg (EIIa-cre) C5379Lmgd/J,

003724) [20].

Fstl1-/- mice died shortly after birth due to severe lung

developmental defects [17,24]. We found Fstl1 mutant embryos

also displayed profound hydroureter and hydronephrosis at birth.

In order to define the onset and progression of urinary tract

malformations in Fstl1-/- embryos, we analyzed urinary systems of

wild-type and Fstl1-/- embryos from E15.0 to E17.5 (Figure. 2A, B,

C). Morphologically, obvious ureter dilatation was observed from

E16.0 (Figure. 2B) in Fstl1-/- ureters, but was not detected at as

early as E15.0 (Figure. 2A). The dilation was more severe in the

proximal region than distal part of the ureter. At E17.5, mutant

urinary tracts displayed prominent hydroureter phenotype. The

Fstl1 Regulates Ureter Development
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mutant ureters were dilated, convoluted, fluid-filled and increased

in length (Figure. 2C). All these abnormalities occurred bilaterally

and were fully penetrant in both male and female null mutants.

At the histological level, HE staining did not show any obvious

differences between wild-type and Fstl1-/- ureters in the proximal

segment at E15.0 (Figure. 2E, F). At E16.0, the ureter became

dilated from the proximal fragment (Figure. 2G, H). At E16.5, the

urothelium of wild-type embryo was multilayered and surrounded

by multiple layers of mesenchymal cells (Figure. 2I). In contrast,

the Fstl1-/- ureter was enlarged with thinner layers of urothelium

and mesenchyme (Figure. 2J).

Kidney was also examined. Since Fstl1 was highly expressed in

collecting duct in kidney at E17.5 [18], Pax2 expression was

examined as a colleting duct marker. From E15.5 to E17.5, Pax2

expression level in the collecting duct of mutant kidneys was

normal (Figure. S2). However, from these histological results, we

found that Fstl1 mutant kidney was reduced in size and displayed

the dilatation of the pelvis and atrophy of papilla at E17.5,

suggesting Fstl1-/- kidneys exhibited hydronephrosis at this stage

(Figure. S2E, F). Obvious enlargement of renal pelvis was not

observed in Fstl1 embryo at E15.5 (Figure. S2A, B) and E16.5

(Figure. S2C, D), therefore we speculate that hydronephrosis was

possibly a secondary consequence of hydroureter.

Physical obstruction is a potential cause of ureter dilation during

urinary system development. To determine whether there was

complete physical obstruction along the urinary tract in Fstl1

mutant embryo, we injected dye directly into the pelvic region of

E18.5 Fstl1-/- kidneys. The purple dye could flow through the

Figure 1. Fstl1 protein expression in developing murine ureter.
Fstl1 immunohistochemistry analysis in sagittal sections of WT (A) and
Fstl1-/- ureteric bud (B, negative control for antibody) at E11.5 and
transverse sections of ureters at E13.5 (C), E15.5 (D), E16.5 (E) and E17.5
(F). Note that Fstl1 immunostaining was observed in the mesenchyme
(um) as well as the ureteric epithelium (ue) from E15.5 to E17.5 (C-F).
Scale bars: 40 mm. ub: ureter bud; m: metanephric mesenchyme; um:
ureteral mesenchyme; ue: ureteric epithelium.
doi:10.1371/journal.pone.0032554.g001

Figure 2. Histological analysis of the Fstl1-/- urinary system. (A-
C) Kidneys and ureters from WT and Fstl1-/- embryos at stages of E15.0
(A), E16.0 (B) and E17.5 (C). Arrows indicate mutant ureters, and
arrowheads indicate wild-type ureters. (D) Dye injection experiments
detected no complete physical obstruction of the Fstl1-/- ureter at E18.5.
(E-J) H&E staining on transverse sections of WT (E, G, I) and Fstl1-/- (F, H,
J) ureters at E15.0 (E, F), E16.0 (G, H) and E16.5 (I, J). (E, F) No obvious
change was detected at E15.0 in Fstl1-/- ureter. (G, H) Fstl1-/- ureter
became dilated from E16.0. (I, J) There are prominent changes in the
histological structure of the Fstl1-/- ureter compared to the WT ureter at
E16.5. Scale bar: (E-J) 40 mm. k, kidney; p, pelvis; u, ureter; bl, bladder;
um: ureteral mesenchyme; ue: ureteric epithelium.
doi:10.1371/journal.pone.0032554.g002
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urinary path to the bladder (Figure. 2D). This result indicates that

the hydroureter phenotype wasn’t caused by a complete obstruc-

tion.

Defects of Distal Ureter and Ureterovesical Orifice in
Fstl1-/- Embryos
Ureterovesical junction defects were observed in many hydro-

ureter mouse models [25,26] as well as human patients with

CAKUT [1]. Previous report also revealed that Bmp4 heterozy-

gote mutant embryos display ureterovesical junction defects with

high penetrance [12]. Fstl1 is suggested to be a BMP signaling

antagonist [17]. Therefore, we examined the ureterovesical orifice

as well as the distal ureter of Fstl1-/- embryos. We found that the

very distal segment of Fstl1-/- ureters was extremely narrow

(Figure. 3A, D, right, C, F) compared with wild-type (Figure. 3A,

D, left, B, E) ureter at E15.5 (Figure. 3A, B, C) and E16.5

(Figure. 3D, E, F). Histological analysis also revealed that distance

between the two ureteral orifices is significantly shorter in Fstl1-/-

embryos (Figure. 3H, Figure. S3B, D, I) than in wild-type

(Figure. 3G, Figure. S3A, C, I) embryos at E15.5 (Figure. 3G, H,

Figure. S3A, B, I) and E16.5 (Figure. S3C, D) which was similar to

the ureterovesical junction defects in Bmp4+/- embryo [12]. These

results suggested that Fstl1 deficiency caused developmental

defects in the distal part of ureter and ureterovesical junction.

During the development of urinary tract, ureteric bud first binds

to the Wolffian duct, migrates to cloaca, and finally joins bladder.

The abnormality of ureterovesical orifice could be caused by

ectopic initial ureteric budding site or by defects of subsequent

processes, such as the absorption of common nephric duct (CND)

[7,12,25,27,28]. Therefore, we examined ureterovesical junction

in earlier developmental stages. At E11.0, we investigated whether

aberrant ureteral budding occurred. Wild-type (n=4) and Fstl1-/-

(n=4) embryos were subjected to in situ hybridization using Pax2

and Pax3 antisense probes. Pax2 is expressed in the epithelial

ureteric bud in the urinary system [29], while Pax3 is expressed in

many tissues, including the somites [30]. Then we analyzed the

embryos after in situ hybridization of both probes, and we found

that both in wild-type (Figure. 3I) and Fstl1-/- (Figure. 3J) embryos,

the position of the initial ureteric budding site aligned with the 28th

somite. These observations demonstrated that position for initial

ureteric bud outgrowth along the Wolffian duct was not affected

by Fstl1 deficiency.

At E12.5, when the ureter still binds the WD, the CND is

actively absorbed into the cloaca by apoptosis [7]. We thus

examined the length and apoptotic level of the CND in Fstl1-/-

embryos. At this stage, the length of CND was similar in both wild-

type (Figure. S3E) and Fstl1-/- (Figure. S3F) embryos. The

apoptosis of CND was detected by TUNEL assay. TUNEL

positive nuclei were highly localized in the epithelium of the CND

(Figure. S3G, H). No obvious difference of CND apoptosis was

detected between wild-type (Figure. S3G, J) and Fstl1-/- (Figure.

S3H, J) embryos. These results suggested that the defects of

ureterovesical junction and distal ureter in Fstl1 mutant embryo

are not caused by ectopic ureteric budding site or inappropriate

regression of CND.

Inactivation of Fstl1 Results in Defective Ureteric
Epithelial Cell Proliferation and Differentiation
The hydroureter is often associated with cell proliferation and/

or apoptosis defects during ureter development [8,13,31,32,33,34].

Beside the dilation of ureter at proximal part, we also found the

distal ureter of Fstl1 mutant embryo is significantly narrower than

that of wild-type embryo. Therefore, we examined proliferation

and apoptosis in Fstl1-/- embryonic ureters. Very few cells in wild-

type and Fstl1-/- ureters underwent apoptosis at E15.5 as

determined by the TUNEL assay. There was no significant

difference in ureteric epithelium and ureteral mesenchyme

between wild-type and mutant embryos (Figure. S4A, B). Similar

results were obtained in E16.5 ureters (Figure. S4C, D).

We examined proliferation of ureteric epithelium and ureteral

mesenchyme by BrdU incorporation in E15.5 wild-type and

Fstl1-/- ureters (Figure. 4A, B, E). There was no change in the rate

of mesenchymal cell proliferation (Figure. 4E). On the contrary,

proliferation of Fstl1-/- ureteric epithelium was significantly

reduced at E15.5 (Figure. 4E). At E16.5, the proximal segment

of Fstl1-/- ureter was already dramatically dilated. Therefore, we

analyzed the proliferation rates of distal segment of ureter, which

was narrower in Fstl1-/- embryo compare to wild-type. Similar

with E15.5, BrdU incorporation indicated that the proliferation of

ureteric epithelial cell was significantly decreased in distal segment

of Fstl1-/- ureter (Figure. 4C, D, E), and the ureteral mesenchymal

cell proliferation was not affected by Fstl1 deficiency (Figure. 4C,

D, E).

To further confirm the effect of Fstl1 on ureteric epithelium

proliferation, we cultured wild-type E15.0 ureters with conditioned

media from cells transfected with pcDNA3.1 vector (Mock)

(Figure. 4F) or Fstl1 expression plasmid (Figure. 4G). The presence

of Fstl1 in conditioned media was confirmed by western blot

(Figure. 4H). Proliferation of epithelial cells was significantly

increased in wild-type ureters treated with Fstl1-containing media

compared to control media, as quantified by BrdU incorporation

(Figure. 4I). Our results indicate that Fstl1 is required for

maintaining normal ureteric epithelial cell proliferation during

development.

To determine whether urothelium differentiation was affected

in Fstl1 deficient mice, we examined the expression of Upk3a,

a urothelium differentiation marker [35,36], in E15.5 and E16.5

ureters. Expression of Upk3a was down-regulated in Fstl1-/- ureters

compared to wild-type at E15.5 and E16.5 as determined by real-

time PCR (Figure. S5), suggesting that urothelium differentiation is

also impaired in the Fstl1-/- ureter.

Subepithelial Ureteral Mesenchymal Cells were Absent in
Fstl1-/- Ureter
Previous studies have suggested that the hydroureter may result

from defects in ureteral mesenchymal cell differentiation [8,31]. So

we examined the expression of mesenchymal cell markers in the

Fstl1-/- ureter. At E15.5, the expression level of smooth muscle

differentiation markers a-SMA (Figure. S6A, B), SM22a (Figure.

S6C, D), and smMHC (Figure. S6E, F) were indistinguishable

between wild-type (Figure. S6A, C, E) and Fstl1-/- ureters (Figure.

S6B, D, F). Western blot assay also confirmed that the expression

level of these three markers was not changed in Fstl1-/- ureter at

E16.5 (Figure. S6G).

To further examine the contractile function of ureter smooth

muscle, E18.5 (Movie S1, S2) kidneys and associated ureters were

isolated and cultured. Ureter movements were observed. We

found that even in late stages that the morphology of mutant

ureters dramatically changed, contraction of the smooth muscle

seemed to be normal in Fstl1-/- embryos (Movie S2) compared

with wild-type embryos (Movie S1).

A layer of a-SMA-negative mesenchymal cells was differenti-

ated between the ureteric epithelium and the multilayer a-SMA-

positive mesenchymal cells in later developmental stages [8].

These cells, referred to as the subepithelial ureteral mesenchymal

cells, are also absent in Shh and Dlgh1 mutants displaying

hydroureter phenotype [8,37]. We traced differentiation of these
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cells in both wild-type and Fstl1-/- ureters from E15.5 to E18.5, by

double staining of epithelial cell marker pan-cytokeratin and

smooth muscle cell marker a-SMA. At E15.5 and E16.0, we could

not detect that type of cells negative for both of these markers in

either wild-type (Figure. S7A, C and Figure. 5A, G) or Fstl1

mutant ureter (Figure. S7B, D and Figure. 5B, H). But from E16.5

on, subepithelial ureteral mesenchymal cells developed in wild-

type ureter (Figure. 5C, I, arrows) and became a thicker cell layer

at E18.5 (Figure. 5E, K, arrows). However, this layer of cells was

always missing in the Fstl1-/- ureter at E16.5 (Figure. 5D, J) and

E18.5 (Figure. 5F, L). We didn’t detect any cell that is negative for

both markers in dilated Fstl1-/- ureters.

SHH signaling pathway is crucial for subepithelial ureteral

mesenchymal cells differentiation and ureter development [8].

Therefore, we analyzed Shh expression in the developing ureter at

E16.5. We found that Shh was down-regulated in the Fstl1-/- ureter

as determined by real-time PCR (Figure. 5M). Ptch is the receptor

of Shh as well as one of the downstream targets of SHH signal

[38]. Using Ptch-lacZ+/– mice, in which lacZ is knocked-in to the

Ptch locus, subepithelial ureteral mesenchymal cells can be

exclusively labeled by X-gal staining at E18.5 [8,38]. Therefore,

we used this mouse strain to examine SHH signaling in Fstl1

mutants. X-gal staining at E16.5 and E18.5 was performed. At

E16.5, Ptch-lacZ was expressed in mesenchymal cells in wild-type

ureters (Figure. 5N). X-gal staining signal was weaker in the

Fstl1-/-;Ptch-lacZ+/– ureters (Figure. 5O) than in the Fstl1+/+;Ptch-

lacZ+/– ureters (Figure. 5N). In E18.5 embryos, X-gal staining

signal in Fstl1+/+;Ptch-lacZ+/– ureters was strong in subepithelial

ureteral mesenchymal cells (Figure. 5P, arrow), whereas no signal

was detected in Fstl1-/-;Ptch-lacZ+/– littermates (Figure. 5Q, arrow).

These results confirm that subepithelial ureteral mesenchymal cells

are absent, and that SHH signaling is down-regulated in Fstl1-/-

ureters.

Fstl1 Deficiency Led to up-regulation of BMP Signaling in
Developing Ureter and Kidney
Previous reports have suggested a correlation between Fstl1 and

BMP signaling [16,17,39], and that BMP signaling is important

for urinary system development [2]. We examined the effect of

Fstl1 deficiency on BMP signaling in the urinary system. Smad1/

5/8 phosphorylation levels in the ureter and kidney were analyzed

by western blot (Figure. 6A, first, second, and third panels). There

was an increase of Smad1/5/8 activities in Fstl1-/- ureter at E15.5

(Figure. 6A, left panels), and E16.5 (Figure. 6A, second panels)

compared to wild-type ureter. The increased Smad1/5/8

phosphorylation level was also detected in Fstl1-/- kidneys

Figure 3. Defects of UV orifice and distal ureter in Fstl1-/- embryo. (A-F) Fstl1+/- mice were crossed to Ptch-lacZ +/- mice. Fstl1+/-; Ptch-lacZ
+/-

and Fstl1-/-; Ptch-lacZ
+/- ureters were stained for b-galactosidase (blue) at E15.5 (A) and E16.5 (D). The Fstl1-/- and wild-type ureters were paraffin

sectioned and stained with hematoxylin-eosin at E15.5 (distal segment) (B, C), E16.5 (distal segment) (E, F). Note that the Fstl1-/- ureter (A, D, C, F) is
narrower than wild-type ureter (A, D, B, E) at both E15.5 and E16.5. The arrows indicated that lacZ staining was reduced in distal part of ureters in
Fstl1-/- embryos compared to wild-type embryos. (G, H) Histological analysis of the ureterovesicle orifice at E15.5. Note that the distance between the
left and right orifices (asterisk) is shorter in the Fstl1-/- embryo (H), compared with the wild-type embryo (G) at E15.5. (I, J) At E11.0, Pax2 and Pax3
whole mount in situ hybridizations were performed for wild-type (n= 4) (I), Fstl1-/- (n= 4) (J). The somites, which were labeled by the Pax3 in situ
probe, in the caudal region of the embryo were numbered. The initial site of ureteric bud, which was labeled by Pax2 and indicated by a triangle, in
both the wild-type (I) and Fstl1-/- (J) embryos aligned with the 28th somite level. Scale bar: (B-F) 40mm, (G, H) 100mm.
doi:10.1371/journal.pone.0032554.g003
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(Figure. 6A, third panels) at E18.5. Although the pattern of

Smad1/5/8 phosphorylation didn’t change, the elevation of

Smad1/5/8 phosphorylation level was confirmed by immunos-

taining of wild-type (Figure. S8A, C, E) and Fstl1-/- ureters (Figure.

S8B, D, F) at E15.5 (Figure. S8A, B), 16.5 (Figure. S8C, D) and

E18.5 (Figure. S8E, F).

TGF-b signaling was determined by western blots of phosphor-

ylated Smad2. Smad2 activity was not affected by the Fstl1

deficiency in E18.5 kidney or E15.5 ureter (Figure. S9).

Previous reports indicated that Fstl1 plays important roles in the

cardiovascular system via AKT signal pathway [40,41], so we also

examined the effect of Fstl1 deficiency on AKT signal. Phosphor-

ylation level of AKT at Ser473 decreased in Fstl1-/- kidneys at

E18.5 (Figure. 6A, third panels). But the AKT activity was not

affected by Fstl1 deficiency in E15.5 (Figure. 6A, left panels) and

E16.5 (Figure. 6A, second panels) ureter.

Since we detected an increased BMP signal in Fstl1-/- ureter, we

then examined the levels of multiple BMP/TGF-b signal ligands

and receptors, including Bmp2, Bmp4, Bmp5, Bmp7, Tgf-b1, Alk3,
Alk6, Alk5, BmprII, ActrIIa, and ActrIIb. The expression level of these

BMP/TGF-b signal ligands and receptors were not altered in

Fstl1-/- ureter at E16.5 as determined by real-time PCR

(Figure. 6B). These results are consistent with previous speculation

that Fstl1 acted as a BMP antagonist [16,17,39].

To further confirm the function of Fstl1 on BMP signaling, we

examined the effect of Fstl1 in HEK293 cells using Fstl1-

containing conditioned media. Serum-starved HEK293 cells were

treated with Fstl1-containing conditioned media and 20 ng/ml

recombinant BMP4. Following BMP4 stimulation, BMP signal

was activated. Smad1/5/8 phosphorylation level was lower in cells

treated with Fstl1-containing conditioned media compared to the

control conditioned media (Figure. 6A, right penals), suggesting

that Fstl1 can antagonize BMP4-induced Smad1/5/8 activation in

HEK293 cells. By performing a similar in vitro assay in HEK293

cells, we found that Fstl1 also had mild inhibitory effects on BMP2

(10 ng/ml) stimulation (Figure. S10A, lane 3, 5).

We then sought to identify potential ligand or receptor that

physically interacts with Fstl1. Since BMP ligands and Fstl1 are

both secreted proteins, we focused on identifying BMP receptors.

We performed co-immunoprecipitations (co-IP) using Myc-tagged

Fstl1 and HA-tagged BMP/TGF-b receptors, including ALK3,

ALK5, and ALK6 in HEK293 cells. Using anti-HA antibody

following IP from whole cell lysates with an anti-c-Myc antibody,

we found that HA-ALK6 could be detected in IP protein from

HEK293 cells (Figure. 6C). To confirm this result, we also

performed same co-IP assay in COS7 cells, and found that both

HA-ALK6 and HA-ALK3 could be detected in IP protein from

COS7 cells (Figure. S10B). These in vitro results suggested that

BMP type I receptors may be potential Fstl1 binding targets in vivo

that mediates its antagonizing effect during ureter development.

Discussion

Ureter development is a complicated process involving

organogenesis at least at two directions, the elongation of the

ureter stalk and the differentiation of ureteric epithelial and

mesenchymal layers. BMP and SHH signaling pathways have

been reported to participate in regulation of these developmental

processes. However, the precise control of these pathways remains

obscure. In this study, we provided substantial evidences

suggesting that Fstl1, a secreted protein, plays important roles

during urinary tract development by antagonizing BMP signal

(Figure. 7). Disruption of Fstl1 causes multiple defects in

developing urinary tract, including hydroureter arising from

Figure 4. Proliferation defects in Fstl1-/- ureteric epithelial cells.
(A-D) Analysis of cell proliferation on transverse sections of wild-type (A,
C) and Fstl1-/- (B, D) ureters by BrdU incorporation at E15.5 (A, B) and
E16.5 (distal segment) (C, D). Arrows point to representative pro-
liferating cells. (E) Quantification of cell proliferation by BrdU labeling
index. In E15.5 ureter, p,0.001 for epithelial layer (n=20) and p= 0.49
for mesenchymal inner layer (n=20). In distal segment of E16.5 ureter,
p,0.001 for epithelial layer (n=20) and p=0.59 for mesenchymal inner
layer (n=20). (F, G) BrdU incorporation analysis of epithelial cell
proliferation on transverse section of cultured E15.0 ureters treated with
conditioned media transfected either with pcDNA3.1 vector (Mock) (F)
or an Fstl1 overexpress plasmid (G). Arrows point to representative
proliferating cells. (H) HEK293 cells were transfected with a plasmid
expressing mouse Fstl1 protein or pcDNA3.1 (mock). Western blot
analysis using an anti-Fstl1 antibody indicated that Fstl1 was over-
expressed in both the cultured media and cell pellet. (I) Quantification
of cell proliferation by BrdU labeling index in the cultured E15.0 ureteric
epithelium. p,0.005 (n = 7). Scale bar: (A-D, F-G) 20mm.
doi:10.1371/journal.pone.0032554.g004
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proximal segment as well as ureterovesical junction defects.

Furthermore, Fstl1 deficiency also results in down-regulated

SHH signal, which in turn may affect subepithelial ureteral

mesenchymal cells differentiation through mesenchymal-epithelial

interaction (Figure. 7).

The function of FSTL1 on regulating BMP signaling may be

mediated at both receptor and ligand level. For receptors, the key

issue is that FSTL1 interacts with different targets depending on

specific cell types. In our previous paper analyzing lung phenotype

of Fstl1 gene targeting mice, the Hep3B cell line was used mostly

because of the endoderm tissue origin of lung epithelium [17]. For

Hep3B cell line, FSTL1 can pull down BMPRII, but not

BMPR1B (ALK6). In this study, we used HEK293 cell line which

is derived from human embryonic kidney cells because we focused

on ureter development. We found that only ALK6 can be co-

precipitated with FSTL1 in HEK293. When we used another

kidney derived cell line, COS7, both ALK6 and ALK3 can be co-

precipitated. Nevertheless, Alk6 is specifically expressed in the

ureteric epithelial cells in the urinary tract [12]. Consistent with

the previous studies, our results suggest that Alk6 may be potential

Fstl1 binding target in vivo that mediates its antagonizing effect

during ureter development. It will be interesting, however, to

elucidate the detailed mechanism how Fstl1 functions in vivo in

different tissues in the future.

In addition, structure prediction and previous work in zebrafish,

Xenopus and chick indicates that Fstl1 functions as a BMP

antagonist similar to follistatin [16,39,42]. Because FSTL1 also

binds to BMP(s) [17,43], it is possible that the interaction between

FSTL1 and other TGF-b superfamily members may also

contribute to the role of FSTL1 in vivo. Therefore, Fstl1 may

have a broad inhibitory effect on BMP signaling pathway by

targeting both ligands and receptors.

Our results are consistent with the previous suggestion that

BMP signaling regulates ureter development. Bmp4 heterozygous

mutants and Bmp7 mutants caused defects in urinary tract

development. Bmp7 deficiency caused renal dysplasia and hydro-

ureter phenotype [10,11],while Bmp4 heterozygous mutants

exhibit multiple defects in urinary system, which is similar with

human congenital anomalies of the kidney and urinary tract

CAKUT [12]. Indirectly, Gata2 mutant animals resemble human

congenital anomalies of the kidney and urinary tract as a result of

reduction in BMP4 abundance [27,44]. These data indicated

reduced BMP signaling is deleterious for urinary tract develop-

ment. On the other hand, genetic inactivation of the BMP

antagonist gremlin 1 (Grem1) leads to disruption of metanephric

development at the stage of ureteric bud outgrowth initiation [45],

indicating BMP antagonists play an essential role in negatively

modulating the activity of BMP signals during early kidney

development [45,46]. Our data also add more evidence that

precise BMP signaling regulation is important in ureter de-

velopment after ureteric bud initiation.

Relatively little is known about the mesenchymal-epithelial

interaction in ureter development, compared to detailed studies

that have focused on the ureteric buds interaction with its

surrounding metanephric mesenchymal cells during kidney in-

duction [4,47]. Recently, it was discovered that Fstl1 was

a diffusible mesenchymal factor that determined the epithelium

fate during oviduct development [48]. Coincidentally, both Fstl1

and Bmp4 are expressed in the ureteral mesenchyme [12]. Our

model provides genetic evidence of the existence of signals, such as

Figure 5. Subepithelial ureteral mesenchymal cells were absent in the Fstl1-/- ureter. (A-L) Immunofluorescence staining of a-SMA (green),
pan-Cytokeratin (red), and DAPI (blue) of transverse sections from WT ureters at E16.0 (A, G), E16.5 (C, I) and E18.5 (E, K), and Fstl1-/- ureters at E16.0 (B,
H), E16.5 (D, J) and E18.5 (F, L). (G-L) Enlarged views of the boxed area in (A-F). The arrows indicate subepithelial ureteral mesenchymal cells which are
negative for both markers. (M) Quantitative real-time PCR of Shh (n=5, p=0.0008) from E16.5 ureters. (N-Q) Fstl1+/- mice were crossed to Ptch-lacZ +/-

mice. Fstl1+/-; Ptch-lacZ
+/- and Fstl1-/-; Ptch-lacZ

+/- ureters were stained for b- galactosidase (blue) and pan-Cytokeratin (brown) at E16.5 (N, O); b-gal
(blue) and nuclear fast red (red) at E18.5 (P, Q). Note that the lacZ staining was reduced in Fstl1-/- ureters (O, Q) compared to Fstl1+/- ureters (N, P).
Scale, bar: (A-F) 50mm, and (G-L) 10mm, (N-Q) 40mm. um: ureteral mesenchyme; ue: ureteric epithelium.
doi:10.1371/journal.pone.0032554.g005
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BMP, from the ureteral mesenchymal layer that affect ureteric

epithelium function.

Hydroureter is often associated with cell proliferation and/or

apoptosis defects during ureter development in several animal

models [8,12,13,31,33]. In most of these published mouse models,

decreased ureteral mesenchymal cell proliferation causes impaired

smooth muscle differentiation, finally resulting in a functional

obstruction due to defective smooth muscle movement. Although

Fstl1 mRNA is mainly expressed in the ureteral mesenchyme,

there were no significant anomalies in proliferation, apoptosis, or

differentiation of Fstl1 null ureteral mesenchyme. On the contrary,

the impaired ureteric epithelial proliferation was observed and

considered as cause of very narrow distal segment ureters, which

makes it difficult for urine to go through, and contributes to

hydroureter/ hydronephrosis phenotype.

There is increasing evidence that BMP signaling modulates cell

proliferation during development. For instance, overexpressing

BMP4 in lung epithelium and hair follicles result in a reduction of

proliferation in lung epithelium and the outer root sheath cells in

transgenic mouse models [49,50]. Studies using in vitro models

suggest that exogenous BMP4 inhibits epithelial cell proliferation

and ductal budding in cultured urogenital sinus tissues [51].

Genetic inactivation of Fstl1 leads to an increased BMP signaling,

especially in ureteric epithelium. Consistent with BMP signaling

Fig. 6. Up-regulation of BMP signaling in the Fstl1-/- ureter and kidney. (A) Western blots of pSmad1/5/8, Smad1, pAKT (Ser473), AKT, and b-
actin from E15.5 (left panel) and E16.5 (second panel) ureter protein, E18.5 kidney protein (third panels), and HEK293 cells treated with the
conditioned media containing BMP4 (20 ng/ml) transfected either with the Fstl1 or pcDNA3.1 vector (Mock) for 30 min (right panels). (B) Quantitative
real-time PCR of Bmp2 (n= 5, p=0.35), Bmp4 (n= 4, p=0.73), Bmp5 (n= 5, p=0.63), Bmp7 (n= 5, p=0.50), TGF-b1 (n= 5, p= 0.51), Alk3 (n= 6, p=0.40),
Alk6 (n= 5, p= 0.21), Alk5 (n=4, p= 0.47), BmprII (n= 6, p=0.73), ActrIIa (n= 5, p=0.97), and ActrIIb (n= 5, p= 0.73) from E16.5 ureters. (C) Co-
immunoprecipitation of Myc-Fstl1 and HA-tagged BMP/TGF-b receptors in HEK293 cells. Myc-Fstl1 can be immunoprecipitated with the anti-c-Myc
antibody. Note that HA-ALK6 was co-immunoprecipitated by the anti-c-Myc and detected by the anti-HA antibody (lane 4). Scale bar: 40mm.
doi:10.1371/journal.pone.0032554.g006
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activation, ureteric epithelial cell proliferation was reduced in Fstl1

mutant ureters at E15.5 and E16.5. However, the detail

mechanism still needs more studies.

Besides impaired epithelial cell proliferation, Fstl1-/- ureter also

displays defects in subepithelial ureteral mesenchymal cell

differentiation. The absence of subepithelial ureteral mesenchymal

cells in the Fstl1-/- ureter is similar with the phenotype in Shh

mutant ureter. Deletion of Shh in the urothelium results in

congenital obstructive phenotypes and the subepithelial ureteral

mesenchymal cells is missing in this mouse model, suggesting SHH

signal plays crucial role in inducing subepithelial ureteral

mesenchymal cells differentiation [8]. In Dlgh1 mutant ureter,

the subepithelial ureteral mesenchymal cells which are referred as

Raldh2 positive ureteric stromal cells, are also absent. The authors

further speculate that this population of cells might provide

flexibility during the contraction and relaxation phases of

peristalsis, so the missing of these cells might contribute to the

hydroureter phenotype [37]. In our study, the time point that

subepithelial ureteral mesenchymal cells differentiated and the

time point of hydroureter phenotype in Fstl1-/- to display are also

concomitant. Consistent with previous reports suggesting that

SHH signaling is crucial for subepithelial ureteral mesenchymal

cells differentiation [8], we also observed a down-regulation of

SHH signaling in the Fstl1-/- ureter. Our results indicate that Fstl1

is required to maintain or establish the subepithelial ureteral

mesenchymal cells through at least in part of SHH signal.

However, the origin of this cell population is still largely unknown.

One possible model is this cell population is derived from the

ureteral mesenchymal cells. However, more studies are needed to

elucidate the origin and the function of this specific ureteral cell

population.

Although we observed that SHH signal is down-regulated in

Fstl1-/- ureter, the hydroureter phenotype of Fstl1 ureter is more

severe than Shh conditional mutant in ureteric epithelium. Fstl1

deficiency caused a down-regulated SHH signal as well as up-

regulated BMP signal in urinary tract. Both signals play important

regulatory roles in ureter development. The interactions between

BMP and SHH signaling are important regulatory mechanisms in

multiple developmental processes, including the neural tube

patterning, tooth morphogenesis, hair follicle growth induction,

limb bud formation, gut development, and left-right determination

[52,53,54,55,56,57,58]. Many BMP antagonists regulate the

interaction between these two signals [52,54,57]. During ureter

development, previous reports indicate that SHH signaling could

induce Bmp4 activation and promote ureteral mesenchyme

proliferation [8]. Our results provide hints that BMP signal could

negatively regulate SHH signal, and Fstl1 plays important roles to

maintain the balance between these two signaling pathways.

Fig. 7. A model for Fstl1 function in urinary tract development. Fstl1 is mainly expressed in ureteral mesenchymal cells, secreted to the
ureteric epithelial layer, and functions as an antagonist regulating BMP signaling. When Fstl1 is disrupted, ureteric epithelium and mesenchymal-
epithelial interaction defects down-regulate SHH signaling, interfering with subepithelial mesenchymal cells differentiation and together leading to
the hydroureter phenotype.
doi:10.1371/journal.pone.0032554.g007
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However, detailed studies are required to elucidate the exact way

that Fstl1 regulates SHH signal. Anyway, Fstl1 mutant mice

provide a good model to study the mechanisms of the interaction

between SHH and BMP signaling pathways to regulate cell

proliferation and differentiation during ureter development and in

congenital malformations of the urinary tract.

Supporting Information

Figure S1 Fstl1 mRNA expression in developing murine
ureter. Fstl1 whole mount in situ hybridization of kidney and

ureter at E13.5 (A, B) and E15.5 (C, D). In the cross sections of

proximal segments of ureter (B, D), Fstl1 transcript was detected in

ureteral mesenchymal cells (B, D, um), but not in ureteric

epithelium at E15.5 (B, D, ue).

(TIF)

Figure S2 Fstl1-/- embryos developed congenital hydro-
nephrosis. (A-F) Immunohistochemistry of Pax2 in wild-type (A,

C, E) and Fstl1-/- (B, D, F) kidneys at stages of E15.5 (A, B), E16.5

(C, D) and E17.5 (E, F). Note that the size and the collecting duct

system of Fstl1-/- kidneys were not affected at E15.5 and E16.5

compared to those of the wild-types (A-D), whereas Fstl1-/- kidney

at E17.5 showed hydronephrosis and reduced size (F) compared to

wild-type (E). Scale bar: (A-F) 400 mm.

(TIF)

Figure S3 Defects of UV orifice in Fstl1-/- embryo. (A-D)

Fstl1+/- mice were crossed to Ptch-lacZ +/- mice. Fstl1+/-; Ptch-lacZ +/-

and Fstl1-/-; Ptch-lacZ +/-ureters were stained for b-galactosidase at
E15.5 and E16.5. After sectioned and stained with hematoxylin,

histological analysis of the ureterovesical orifice was performed at

E15.5 (A, B) and E16.5 (C, D). Note that the distance between the

left and right orifices (asterisk) is shorter in the Fstl1-/- embryo (B,

D), compared with the wild-type embryo (A, C). (E-H) At E12.5,

when the ureter still binds to WD, the length of the CND is similar

in both wild-type (E) and Fstl1-/- (F) embryos. At E12.5, wild-type

(G) and Fstl1-/- (H) CND showed no obvious differences in

apoptosis detected by TUNEL assay. (I) Quantification of distance

between two ureteral orifices at E15.5 (p,0.001, n=7). (J)

Quantification of cell apoptosis in CND by TUNEL assay

(p=0.29, n=7). Scale bar: (A-D) 100 mm, (E-H) 20 mm. CND:

common nephric duct.

(TIF)

Figure S4 Apoptosis in E15.5 and E16.5 ureter. Wild-type

(A, C) and Fstl1-/- (B, D) ureters at E15.5 (A, B) and E16.5 (C, D)

showed no difference in apoptosis detected by TUNEL assay.

Arrows point to representative cells positive for apoptosis. Scale

bar: 20 mm.

(TIF)

Figure S5 Expression of Upk3a was down-regulated in
Fstl1-/- ureter. Quantitative real-time PCR of Upk3a of E15.5

(n = 6, p= 0.04) and E16.5 (n = 4, p=0.01) ureter.

(TIF)

Figure S6 Normal ureteral mesenchymal cell differen-
tiation in Fstl1-/- ureter. (A-F) Expression of smooth muscle

differentiation markers, a-SMA (A, B), a-SM22 (C, D) and

smMHC (E, F) in transverse sections of Fstl1-/- ureters (B, D, F)

shows no obvious difference compared with wild-type ureters (A,

C, E) at E15.5. (G) Western blot analysis of smooth muscle

differentiation markers. The expression of a-SMA, SM22a and

smMHC were not altered in Fstl1-/- ureters at E16.5 compared to

Wild-type control. Scale bar: (A-F) 20 mm.

(TIF)

Figure S7 Subepithelial mesenchymal cells are not
detectable at E15.5. Co-Immunofluorescence staining of a-
SMA (green), pan-Cytokeratin (red), and DAPI (blue) in transverse

sections of WT ureters (A, C) and Fstl1-/- ureters at E15.5 (B, D).

(C, D) Enlarged views of the boxed area in (A, B). Scale bar: (A, B)

50 mm, (C, D) 10 mm. um: ureteral mesenchyme; ue: ureteric

epithelium.

(TIF)

Figure S8 Upregulation of phosphorylated Smad1/5/8
level in Fstl1-/- ureter. pSmad1/5/8 immunohistochemistry

on transverse sections from WT (A, C, E) and Fstl1-/- (B, D, F)

ureters at E15.5 (A, B), E16.5 (C, D) and E18.5 (E, F). Note that

pSmad1/5/8 staining was stronger in the Fstl1-/- ureter (B, D, F).

Scale bar: 40 mm.

(TIF)

Figure S9 Normal TGF-b signal in Fstl1-/- kidney and
ureter. Western blots of pSmad2 for E18.5 kidney protein (left

panels), and E15.5 ureter protein (right panels).

(TIF)

Figure S10 Fstl1 can antagonize BMP4/BMP2-induced
stimulation in vitro. (A) Western blots of pSmad1/5/8,

Smad1, pAKT (Ser473), AKT, GAPDH of HEK293 cells treated

by adding BMP4 (20 ng/ml) and BMP2 (10 ng/ml) the conditional

media transfected either by Fstl1 or pcDNA3.1 vector (Mock) for

30min. (B) Co-immunoprecipitation of Myc-Fstl1 and HA-tagged

BMP type I receptors in COS7 cells. Myc-Fstl1 can be

immunoprecipitated with the anti-c-Myc antibody. Note that

both HA-ALK6 and HA-ALK3 were co-immunoprecipitated by

the anti-c-Myc and detected by the anti-HA antibody (lane 4, 6).

(TIF)

Table S1 primers for in situ probe and real time PCR.

(DOC)

Movie S1 Ureteral peristalsis in a wild-type ureter.

(MP4)

Movie S2 Ureteral peristalsis in an Fstl1-/- ureter.

(MP4)
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