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Abstract

Imaging-based quantitative measures from diffusion-weighted MRI (dMRI) offer the ability 

to non-invasively extract microscopic information from human brain tissues. Group-level 

comparisons of such measures represent an important approach to investigate abnormal brain 

conditions. These types of analyses are especially useful when the regions of abnormality spatially 

coincide across subjects. When this is not true, approaches for individualized analyses are 

necessary. Here we present a framework for single-subject multidimensional analysis based on 

the Mahalanobis distance. This is conducted along specific white matter pathways represented 
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by tractography-derived streamline bundles. A definition for abnormality was constructed from 

Wilk’s criterion, which accounts for normative sample size, number of features used in the 

Mahalanobis distance, and multiple comparisons. One example of a condition exhibiting high 

heterogeneity across subjects is traumatic brain injury (TBI). Using the Mahalanobis distance 

computed from the three eigenvalues of the diffusion tensor along the cingulum, uncinate, and 

parcellated corpus callosum tractograms, 8 severe TBI patients were individually compared to a 

normative sample of 49 healthy controls. For all TBI patients, the analyses showed statistically 

significant deviations from the normative data at one or multiple locations along the analyzed 

bundles. The detected anomalies were widespread across the analyzed tracts, consistent with the 

expected heterogeneity that is hallmark of TBI. Each of the controls subjects was also compared 

to the remaining 48 subjects in the control group in a leave-one-out fashion. Only two segments 

were identified as abnormal out of the entire analysis in the control group, thus the method also 

demonstrated good specificity.
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1. Introduction

Capturing individual variability of quantitative neuroimaging measures in meaningful ways 

is relevant for gaining insight into the pathophysiology of highly heterogeneous neurological 

conditions such as traumatic brain injury (TBI) and autism. One important example of 

single-subject analysis frameworks can be found in the work published by Kim et al. (2013) 

in the study of TBI. The authors presented a voxel-based analysis (VBA) method based on 

estimating Z-scores between the fractional anisotropy (FA) of a TBI patient and a healthy 

control group for each voxel in the brain. The method was able to find unique patterns of 

voxels with abnormally high or low FA in TBI patients. However, the method displayed 

specificity limitations since a considerable number of abnormal voxels were also flagged in 

healthy controls.

Another study by Dean et al. (2017) found a dramatic improvement in the ability to 

distinguish autistic individuals from a typically developing reference group when using a 

multivariate approach. In their work, multiple DTI parameters extracted as averages from 

white matter regions were used to compute the Mahalanobis distance between an individual 

and the typically developing group. The Mahalanobis distance (Mahalanobis, 1936) has 

often been used as a measure of class dissimilarity and as a tool for anomaly detection in 

multivariate normal data in a wide array of applications including the study of autism (Dean 

et al., 2017), TBI (Taylor et al., 2020), epilepsy (Gyebnár et al., 2019; Hong et al., 2014, 

2017; Liu et al., 2016; Morgan et al., 2021; Owen et al., 2020; Pressl et al., 2019; Weng et 

al., 2020), and others (Jin et al., 2012; Lin et al., 2010; Patil et al., 2015; Wang et al., 2013; 

Wu and Zhang, 2006; Zhang et al., 2016).

We previously introduced a voxel-wise implementation of the Mahalanobis distance (MaD-

Vox) using DTI parameters to compare an individual to a reference group (Guerrero et 
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al., 2018). This study was based on simulated data and demonstrated the ability to capture 

individual variability in DTI parameters at the voxel level with high specificity. However, 

when applied to real human brain data, the voxel-based Mahalanobis method was highly 

susceptible to inter-subject image misalignment. Also, multiple-comparisons correction 

greatly reduced the statistical power of this method as with most VBA approaches. A 

recently published description of a VBA Mahalanobis distance method in a study of epilepsy 

reported similar limitations (Gyebnár et al., 2019).

The work described here outlines a novel tractometry-based (Yeatman et al., 2012) 

multivariate computational and statistical framework for testing whether an individual 

deviates significantly from a reference group at the white matter tract level. The method 

uses the Mahalanobis distance as a multivariate metric for abnormality testing. The testing 

is performed at individual segments along specific white matter pathways. This reduces the 

number of performed tests by orders of magnitude compared to VBA but retains better 

spatial specificity than the ROI-averaging approach. Also, the requirements for spatial image 

alignment should be less stringent than required for VBA.

Here, the new MaD-Tract framework was demonstrated in a study of white matter 

microstructure in a cohort of children with severe traumatic brain injuries (Fig. 1). TBI 

occurs when an external force acts on the head or body leading to neuropathologic 

damage and functional impairment. TBI may cause life-long health deficits or death, 

and it represents a major public health concern involving serious socioeconomic burdens 

nationally as well as worldwide (James et al., 2019; Langlois et al., 2006; Thurman et 

al., 1999). TBI is the most common form of acquired brain injury and prevalent across 

pediatric, adult, and aging populations with leading causes being military blasts, vehicular 

accidents, falls, assaults, and sport activities (Langlois et al., 2006). Clinical manifestation 

of TBI is extremely heterogeneous depending on mechanism, location, severity, existing 

comorbidities, and time since injury.

This study evaluated the MaD-Tract framework on a subset of white mater tracts, 

specifically the cingulum bundles, uncinate fasciculi, and corpus callosum. These pathways 

are critical parts of networks that are known to be implicated in the clinical and behavioral 

outcomes following TBI (Anderson and Catroppa, 2007; Ewing-Cobbs et al., 2008; Fay 

et al., 2009; Hillary et al., 2011; Johnson et al., 2011; Juranek et al., 2012; Hillary et al., 

2011;Anderson and Catroppa, 2007; Johnson et al.,2011; Juranek et al., 2012; Fay et al., 

2009; Ewing-Cobbs et al., 2008). In particular, the cingulum bundles include important 

connections of the default mode network and hippocampal memory network. The uncinate 

fasciculus is an important pathway in the fronto-limbic network. The corpus callosum is 

responsible for interhemispheric communication and plays an important role in overall brain 

integration.

2. Methods

2.1. Participants

Imaging research participants were 11–18 years of age and enrolled in the Approaches and 

Decisions in Pediatric TBI (ADAPT) trial, which included roughly 1000 children (from birth 
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to 18 years) with severe TBI defined as a post-resuscitation Glasgow Coma Scale (GCS) 

of 8 or less (Ferrazzano et al., 2019; Sarnaik et al., 2018). A group of twenty-two ADAPT 

participants were recruited and enrolled into this MRI study ~1–2 years post injury. To best 

account for site-to-site variation in diffusion measurements, only eight participants from six 

sites with diffusion calibration phantom scans were included (4 males, 4 females) between 

the ages of 11.6 and 18.9 years (Mean 15.7 ± 2.1 years). Acute clinical scans for five out 

of the eight patients are shown in Fig. 1a and follow-up FLAIR images for all eight patients 

are shown in the Fig. 1b. A typically developing control cohort without history of TBI or 

neuropsychiatric diagnoses was also recruited for imaging and neurocognitive testing at the 

University of Wisconsin – Madison (UW). The control group consisted of 49 subjects (24 

males, 25 females) between the ages of 9.0 and 18.0 years (mean 13.45 ± 2.8) at the time of 

MRI scanning. The study was approved by the institutional review board at the University 

of Wisconsin – Madison and all participating sites. Informed consent was obtained from the 

subject or legal guardian when appropriate.

2.2. Brain imaging

Brain imaging was performed for each participant using 3T MRI standardized neuroimaging 

protocols across the sites. T1-weighted (T1w), T2-weighted (T2w), T2-weighted FLAIR, 

T2* - weighted, diffusion tensor, and resting state functional images were obtained for each 

subject. Manufacturer-specific protocols were emulated after protocols used in the multi-site 

Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) study.

Prior to subject enrollment, each site was provided with the scanner-specific protocol to be 

implemented on their system. A scanning procedure manual was developed for the study and 

disseminated to all participating sites. Prior to human data collection, sites were required 

to collect phantom data using the provided protocol, which were then sent to UW to verify 

protocol compliance. Once the site imaging protocol was approved, sites enrolled adolescent 

TBI participants for scanning. Imaging was performed 12–25.5 months post injury with a 

mean interval between injury and MRI scanning of 20 ± 4.44 months.

For this analysis, scans that were used included T1w, T2w, and DTI. Structural T1w imaging 

was performed using a 3D inversion-recovery prepared sequence with a rapid gradient echo 

readout (i.e., MP-RAGE on Siemens and Philips; BRAVO on GE). The protocol prescription 

was 3D sagittal images with a 256 × 256 matrix over a 256 mm field of view and 192 slices 

that were 1 mm thick (1 mm isotropic resolution), frequency encoding in Superior/Inferior 

direction, in-plane parallel imaging with an acceleration factor of 2. On GE scanners, the 

inversion time, TI, was set to 450 ms. For Siemens and Philips scanners the TI was 900 ms.

Structural T2w imaging was performed using a 3D fast spin-echo sequence (i.e., SPACE 

on Siemens; VISTA on Philips; CUBE on GE). The protocol prescription was 3D sagittal 

images with 2 averages, a 256 × 256 matrix over a 256 mm field of view and 192 slices 

that were 1 mm thick (1 mm isotropic resolution), frequency encoding in Superior/Inferior 

direction, in-plane parallel imaging with an acceleration factor of 2. TR/TE was 2500/95 ms 

for GE, 2500/256 ms Phillips, 2500/398 ms for Siemens.
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Diffusion tensor imaging was performed with a single-shot spin-echo echo-planar imaging 

(EPI) pulse sequence. The protocol consisted of 2D sagittal images, a 96 × 96 matrix, 

240 mm FOV, 64 slices, 2.5 mm isotropic resolution, phase encoding in Anterior/Posterior 

direction, and parallel acquisition with a geometric reduction factor of 2. Diffusion set-tings 

included diffusion encoding along 64 non-collinear directions with b-value of 1300s/mm2, 8 

vol with no diffusion weighting (b = 0 s/mm2). TR/TE was 8500/82 ms for GE, 8500/103 ms 

Phillips, 9000/82 ms for Siemens.

2.3. Data processing

Distortion, translation and rotation from bulk head motion and eddy currents were corrected 

using the eddy tool (Andersson and Sotiropoulos, 2016) in FSL (version 6.0) with outlier 

replacement enabled (Andersson et al., 2016). Gradient directions were corrected for image 

rotations from image registration (Leemans and Jones, 2009). Since field maps were not 

available, EPI-related geometric distortions were corrected using an in-house image spatial 

normalization approach, which aligned the diffusion scan images to the structural T2- 

and T1-weighted images using image co-registration constrained along the phase encoding 

direction of the diffusion images. The constrained registration in the phase encoding 

direction was enabled by the use of ‘antsRegistration’ in ANTs (Avants et al., 2011).

Diffusion tensors were estimated for each voxel using the robust estimation of tensors by 

outlier rejection (RESTORE) algorithm as part of the diffusion imaging in python (DIPY) 

software package (Garyfallidis et al., 2014). Eigenvalue maps (λ1, λ2, λ3) were generated 

from the voxel-wise estimates of the diffusion tensor.

Fiber Orientation Distribution Function (fODF) maps were estimated for individual subjects 

using the MRtrix3 software package (Tournier et al., 2019). White matter response functions 

for all control subjects were first estimated using dwi2response with the multi-tissue 

‘dhollander’ algorithm (Dhollander et al., 2016). These were then averaged across subjects 

in order to estimate a mean white matter response function. The average white matter 

response function was then utilized for estimating the fODF maps by constrained spherical 

deconvolution (CSD) for both control and TBI scans using dwi2fod with the ‘csd’ algorithm 

(Tournier et al., 2007).

Prior to segmentation of white matter streamline bundles, multi-subject spatial normalization 

of the fODF maps was performed using diffeomorphic deformations (Raffelt et al., 2011, 

2012) to a study-specific fODF template. The template was constructed from all the subjects 

in the control group using the ‘population_template’ command in Mrtrix3 (Tournier et al., 

2019). The subject-to-template transformations were also applied to the DTI scalar maps.

Delineation of white mater fiber bundles was carried out in template space using TractSeg 

(Wasserthal et al., 2018), which uses a pre-trained convolutional neural network to create 

region-specific tractograms from fODF peaks. The fODF peaks were created using the 

sh2peaks tool from MRTrix3 (Jeurissen et al., 2013; Tournier et al., 2019), using the 

spatially normalized fODF maps as input and a maximum of three peaks per voxel. TractSeg 

was then used to segment fiber-bundle regions as binary masks as well as bundle start- and 

end-regions. Tract orientation maps (TOMs) (Wasserthal et al., 2018) were also segmented 
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for each fiber-bundle region from the whole-brain peak maps. Probabilistic fiber tracking 

was then performed within each TOM using the segmented masks for seeding and the start- 

and end- regions as inclusion points in order to create bundle specific tractograms.

All reconstructed tracts were inspected visually for defects. However, upon inspection, it 

was found that TBI subjects S and D with lesions affecting large portions of the left 

hemisphere did not have any streamlines for the left uncinate bundles. Patient S also 

had failed reconstructions for CC_1, CC_3, CC_4. Additionally, Patient D had failed 

reconstruction of CC_4. As a result, these tracts were not included in the analyses.

Finally, tractometry (Yeatman et al., 2012) was conducted on the de-lineated tracts using the 

algorithm described by Chandio et al. (2019) to generate DTI parameter tract profiles. Tract 

profiles are represented by vector of mean DTI parameter values sampled from 20 equally 

distanced segments across the tract, excluding the distal ends of the tracts as these are more 

likely to be poorly registered across subjects (Yeatman et al., 2012).

2.4. The mahalanobis distance

For a multivariate normal random vector X = (x1, x2, x3, … , xp) of dimension p (also 

referred to as the feature vector) the multivariate normal probability density function is given 

by

P (X) = 1
(2π)p ∕ 2 ∣ Σ ∣

e− 1
2(X − μ)TΣ−1(X − μ)

(1)

where μ is the means vector of the distribution, Σ is the distribution covariance matrix, and T 
denotes vector transpose. The sample means vector and covariance matrix for a single group 

of individuals may be estimated, respectively, as

μ = 1
N ∑

n = 1

N
Xn (2)

and

Σ = 1
N − 1 ∑

n = 1

N
Xn − μ Xn − μ T

(3)

where ^ represents an estimated value and N is the number of samples. As a general 

rule-of-thumb, reliable estimations of the inverse covariance matrix require at least 10 

observations per dimension of the feature vector. After substituting the sample means vector 

and covariance matrix estimates, Eq. (1) becomes

P (X) = 1
(2π)p ∕ 2 Σ

e− 1
2(X − μ)tΣ−1(X − μ)

(4)

The squared Mahalanobis distance, (MaD)2, is equal to
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(MaD)2 = (X − μ)tΣ−1(X − μ) (5)

MaD encodes information about the separation of a measurement from the population means 

relative to the spread of the distribution about the mean. MaD values reflect the degree 

that a measurement is deviant relative to a defined normative distribution. An estimate for 

MaD can be obtained from a population sample by using estimates of the means vector and 

covariance matrix as

MaD ∼ (X − μ)tΣ−1(X − μ) (6)

The distribution of (MaD)2 may be approximated by the Chi-squared distribution, but is 

better approximated by the F distribution for small samples sizes (Penny, 1996). The critical 

value of MaD for detection of abnormalities may be defined using Wilk’s criterion (Penny, 

1996; Wilks, 1963) as

MaDcrit = N p(N − 2)Fp, N − p − 1; α
(N − 1)(N − p − 1) (7)

which uses an F statistic at a Bonferroni corrected α and degrees of freedom determined by 

reference sample size N and size of feature vector p, and makes it possible to correct for N 
and p.

2.5. MaD-Tract

In the MaD-Tract ([Ma]halanobis [D]istance [Tract]ometry) framework, MaD is computed 

along a specific white matter pathway as depicted in the flow chart in Fig. 2. The first 

step of this framework is to conduct DTI tractometry (Yeatman et al., 2012), which, as 

previously discussed, consists of mapping DTI parameters along specific streamline bundles, 

partitioning the bundle into several segments guided by a centroid streamline, and extracting 

average parameter values from each segment in order to create a vector of segment-averages. 

In the MaD-Tract framework, multiple quantitative imaging measures are profiled along a 

tract for a reference group as well as for the individual to be analyzed. The reference group 

measures are used to define the normative mean and covariance for each tract partition of 

the tract. For the subject being evaluated, the MaD is calculated using Eq. (6) at each tract 

partition. A tract partition is considered abnormal if MaD exceeds the critical value in Eq. 

(7).

MaD-Tract was used to evaluate each of the selected tractograms for the 8 severe TBI 

patients in comparison to the reference control group of 49 subjects. Additionally, in a leave-

one-out fashion, each of the controls was compared to the rest of the group by removing 

it before estimating the mean vector and covariance matrix. The principal diffusivities 

(eigenvalues: λ1, λ2, λ3) of the diffusion tensors were used for Mahalanobis distance 

evaluations. Data structuring and estimation of the Mahalanobis distance (including means 

vectors and inverse covariance matrices) was conducted with in-house developed scripts 

in the MAT-LAB computer language (Mathworks, Inc). Here testing was performed at a 
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significance level of 0.05 (Bonferroni corrected α = 3.7 × 10−6 for 8 TBI patients, 49 

controls, 11 streamline bundles with 18 segments per bundle, n = 49, and p = 3 (the number 

of features for 3 eigenvalues), resulting in a critical MaD > 6.38.

2.6. Multi-site data harmonization

In order to account for potential systematic effects related to site on the estimated tensor 

eigenvalues, we collected diffusion phantom scans at the 6 sites. The scanned phantom was 

the Diffusion Phantom Model 128 (High Precision Devices, Inc, Boulder, CO) developed 

by the National Institute of Standards and Technology (NIST) and the Radiological Society 

of North America (RSNA)’s Quantitative Imaging Biomarker Alliance (QIBA). As shown 

in Fig. 3, the phantom contains 13 vials, two for each of 5 concentrations (10, 20, 30, 40, 

50%) of polyvinylpyrrolidone (PVP) in an aqueous solution for modulating the isotropic 

diffusivity of water protons, plus three vials with no PVP (i.e. 0% concentration) (Boss et 

al., 2015). One of the 0% PVP vials is at the center of the housing and one at each of two 

concentric rings.

The phantom was scanned at 0 °C, which enabled direct comparison of estimated diffusion 

measurements to standardized diffusion coefficient values and also between sites. This 

wa achieved by placing the phantom in an ice-water bath for a minimum of 2.5 h. 

Temperature recordings from each site of the phantom before and after scanning were 

recorded. Preparation instructions were developed at UW-Madison and distributed to the 

other sites. Phantom measurements were obtained from each scanner vendor (GE, Phillips, 

Siemens). The human study DTI protocol was used for the phantom studies and data was 

processed the same as the human brain scans. Regions defined as cross sections near the 

center of each vial were used to extract average diffusion values.

The diffusion phantom data collected across sites was used to estimate harmonization 

relationships with respect to the control group site. These are shown in Fig. 3. These 

site-to-site linear relationships were derived from using the multiple PVP concentration 

vials and their estimated tensor diagonal diffusivities and fitting a linear model that predicts 

the diffusivity of a given site as a function of the diffusivity estimated in the reference 

site. Given that these are isotropic media and all three tensor diagonal elements (e.g. 

Dxx, Dyy, Dzz) appear to follow similar trends, a single linear regression was estimated 

for each site. These relationships demonstrate remarkable consistency of the diffusion 

measurements across sites. Nonetheless, before computing the Mahalanobis distance, these 

linear regression relationships were used to harmonize the eigenvalue parameter profiles of 

each site and the control group.

3. Results

The MaD-Tract results for the two patients scanned at the same site as the control subjects 

are presented in Figs. 4-6. More specifically, Fig. 4 displays for patient A all the 8 

skeletonized and partitioned tracts with detected anomalies shown in red. The white matter 

tracts where anomalies were detected are CC_4 and CC_5. The profiles along these two 

tracts for Mahalanobis distance as well as for the eigen values are also shown. These plots 

contain the profiles of both the patient and the control subjects. For this specific case, the 
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profiles shown in these plots are helpful in conveying the potential for the multivariate 

approach to increase the ability to detect deviations from normal. The univariate profiles 

do not seem to provide enough information by themselves for classifying certain segments 

as abnormal. On the other hand, the Mahalanobis distance profiles show some of tract 

partitions are clearly deviant. These are the segments that exceed the threshold calculated 

using Eq. (7), shown in the profile plots as the shaded rectangular area.

In Fig. 5 the abnormal tract partitions are displayed on the T1w anatomical image. 

Visualization of the anomalies on anatomy facilitates further examination of where MaD-

tract detected abnormalities are found with respect to, the location of the original injury. 

It is worth noting that these are the partitions of the centroid or skeletonized tract and 

only represent a general trajectory of the tract. Thus, the location of a given MaD-Tract 

anomaly with respect to a specific anatomical feature is approximate. This is similar to 

how tract-based spatial statistics (Smith et al., 2006) are typically displayed, except here the 

skeleton is specific to a white matter tract instead of the whole brain.

The results for patient B are summarized in Fig. 6. This shows only the tracts with detected 

abnormalities: CC_1, CC_3, CC_5, CC_6, CC_7, and right UF. Compared to patient A, the 

number of detected abnormal tract partitions is larger and more widespread for patient B. 

Overlaying the abnormal segments on the T1w image shows some of them occur near areas 

of atrophied tissue such as in the right uncinate as well as in right hemispheric deep white 

matter near CC_3. However, some anomalies occur in the absence of visibly abnormal tissue 

intensities on the T1w image. For example, the segment identified as abnormal in CC_1 of 

the corpus callosum.

The results corresponding to the multi-site component patients are displayed in Figs. 7 

and 8. More specifically, these figures show the Mahalanobis distance parameter profiles 

for patients and controls. For patients having tract partitions identified as abnormal, the 

entire profile is highlighted in order to differentiate from those whose all tract partitions are 

normal. For example, in CC_2 patients C, D, S, and V were found to have abnormalities, 

but patients R and M did not have any detected. For reference, the Mahalanobis distance for 

each control subject as well as the group average are also plotted. Figures for these patients 

and their detected anomalies as overlays on T1w images are provided in the Supplement. 

The group level display of results in Figs. 7, 8 as well as the figures in the Supplement, 

reveal the individual variability of abnormalities captured by MaD-Tract. The occurrence of 

anomalies is both widespread and mostly inconsistent across tracts and participants.

Finally, a summary of the results for all patients is included in Table 1. While all tracts were 

flagged, Table 1 shows that the corpus callosum as a whole had the highest frequency of 

detected anomalies.

4. Discussion

4.1. MaD-Tract

In this work we present a multivariate framework for single subject analysis of dMRI 

measures within a specific white matter tract. The computational and statistical approach 

Guerrero-Gonzalez et al. Page 9

Neuroimage. Author manuscript; available in PMC 2022 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



captures individual variability by estimating the Mahalanobis distance of multiple variables 

between a subject and a reference group. Abnormal Mahalanobis distance values are 

determined according to Wilk’s criterion, which enables the ability to correct for number 

of dimensions as well as reference group size. Multiple comparisons are addressed by 

Bonferroni correction of the desired significance level and feeding the result to Wilk’s test 

for computing a critical Mahalanobis distance value. We refer to the framework as MaD-

Tract. The Mahalanobis distance as estimated here exploits existing correlations between 

the tensor diffusivities through the estimation of their covariance matrix, which may work 

as an additional source of information and may in turn lead to improved detection of 

alterations in the diffusional processes measured with DTI. Additionally, the Mahalanobis 

distance may incorporate other microstructure metrics derived from non-diffusion data such 

as relaxometry parameters (e.g. R1, R2) or other modalities such as quantitative PET.

4.2. MaD-Tract in severe TBI

Implementation of MaD-tract on eight severe TBI cases highlighted individual variability 

of detected abnormalities. The investigated tracts included the cingulum, uncinate, and 

corpus callosum, which are expected to be implicated in chronic neurologic deficits in 

severe TBI. While MaD-Tract detected abnormalities in all cases, their number and location 

varied across subjects and were more widespread in some cases compared to others. These 

findings reflect the expected heterogeneity of TBI and highlight the value of single-subject 

investigation strategies. Nonetheless, in this small severe TBI group the most affected tract 

in terms of number of detected abnormalities was the corpus callosum, which has been 

shown to result in global neurologic disfunction when damaged. This finding is consistent 

with other TBI studies that have also found alterations in FA and MD in the corpus callosum 

(Rutgers et al., 2008; Wang et al., 2008). Additionally, findings that the corpus callosum 

undergoes greater shear forces after trauma have been reported in a computer model of fall-

induced TBI (Ghajari et al., 2017). Moreover, chronic moderate to severe TBI sequelae have 

been related to atrophy in the corpus callosum (Kraus et al., 2007). Alterations in FA, MD, 

or the Mahalanobis distance as estimated here, point to changes in the individual diffusivity 

values of the diffusion tensor. Though the pathophysiology of TBI at the neuronal level is 

complex, a growing body of studies have demonstrated that changes at the cellular level 

induce changes in the magnitude of water diffusion detectable with dMRI. For example, 

changes in radial diffusivities are thought to be related to changes in myelination, while 

increases in axial diffusivity are hypothesized to reflect pathology in the axon itself (Kraus 

et al., 2007). Both types of alterations are involved in diffuse axonal injury (Maxwell et 

al., 1999; Smith et al., 2003). MaD itself is more agnostic to mechanistic changes and is 

potentially sensitivity to changes in any of the eigenvalues or combinations of those values.

The profound injuries in the severe TBI study almost guarantees that differences will be 

found when compared with the healthy group. In some cases, anatomical images such 

as T1w are able to show focal lesions, particularly in severe cases with gross visible 

injuries, and the univariate tract profiles in those cases show obvious deviation from the 

control group. With MaD-tract, abnormalities were found both near and far from visibly 

atrophied tissue, indicating the method has the ability to detect not only obvious damage 

but also deviations in regions that may otherwise appear normal. Moreover, when comparing 

Guerrero-Gonzalez et al. Page 10

Neuroimage. Author manuscript; available in PMC 2022 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



each of the control participants to the other controls in the leave-one-out analysis, only 

two individual tract sections were flagged as abnormal, demonstrating high specificity of 

MaD-Tract to severe TBI. It is envisioned and expected that this multivariate framework will 

prove useful in detecting abnormalities that are more subtle in conditions such as in mild 

TBI autism or Alzheimer’s disease.

4.3. Normative group modeling

The approach described in this work bears similarities to new normative modeling 

approaches as those presented in Marquand et al. (2016). Such methods model variation 

either across a study population that includes both healthy and pathological cohorts or across 

a single large healthy group. In Marquand et al. (2016), Gaussian process regression is 

utilized to estimate a normative model over a large population sample that links biological 

variables (as those derived from neuroimaging) to clinically relevant measures (such as 

trait scores). Along the trajectory defined by the model, confidence centiles are estimated 

for quantifying ranges of goodness-of-fit between an observation and the normative model. 

For each observation in the normative population, variation from normal is captured by 

a Z-score calculated using the estimated centiles. Given the model and its characterized 

variation, a new observation can be fit to the model and its Z-score with respect to the 

normal trajectory can be calculated. Extreme value statistics are then used to quantify the 

magnitude of deviation from the normative model using a distribution of extreme Z-scores. 

Then, deviations falling within a specified range (e.g. in the top or bottom 1%) of the 

extreme Z-score distribution are to be considered abnormal relative to the normative model.

Here abnormality was defined by a critical Mahalanobis distance value computed from 

Wilk’s criterion based on conservative pre-defined confidence level. Given the nature of 

the injuries this approach is appropriate since expected magnitude of changes is large 

in the patients that were studied. However, there may be other conditions, such as mild 

TBI or autism, where individual variations may be more subtle. Thus, depending on the 

application, a reduced penalization for multiple comparisons may be desired so that the 

threshold for abnormality could be made less conservative. In that case, an approach such as 

that in Marquand et al. (2016) may be adopted for empirical determination of a subjectlevel 

abnormality index if there are enough participants in the reference group. For example, a 

normal range for the Mahalanobis distance could be defined as the 90–95% confidence 

interval based on the distribution of the control data.

4.4. Limitations and future work

This study has a number of limitations that should be considered when interpreting the 

results. First, it is well known that the interpretation of DTI is ambiguous in crossing fiber 

regions. The MaD-Tract method itself is agnostic to crossing fibers since it focuses on 

developing a distribution of eigenvalues at each location along a tract and, if significantly 

different from the normative distribution, distributions are flagged as abnormal. Nonetheless, 

the technique could certainly be less sensitive to changes in areas of crossing fibers or 

complex fiber organization and that warrants further exploration. In future work, the nique 

could be extended to include higher order models like NODDI, which directly address fibers 

dispersion within a voxel. Second, measurement variation across scanners and sites cannot 
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be entirely ruled out as a contributing factor in this study. Normative control data and/or 

human traveling phantoms at each site would have been ideal, but unfortunately were not 

feasible. However, measurements with a standardized PVP diffusion phantom across several 

of the sites revealed remarkably consistent diffusion estimates across those sites, particularly 

with respect to Site I where the control participants were scanned. Model-based correction 

of the estimated eigenvalues using the phantom data did not alter the abnormal findings of 

those cases. Third, while the selection of a critical MaD value for abnormality accounts for 

the reference sample size, the method’s performance should improve with better estimates 

of the covariance matrix from increased size of the normative control group. Further, in 

this application, age effects in the DTI eigenvalues were not accounted for as these were 

observed to be small effects. Nonetheless, age dependence does impact the characteristics of 

the normative group distribution by adding to the variance and modeling out those effects 

may improve the sensitivity of the method. Additionally, this method is currently limited to 

white matter regions, but, as is the case with other neurological conditions, traumatic lesions 

in TBI include both white and gray matter (Avants et al., 2008; Kurča et al., 2006). Finally, 

Mad-Tract results are not discussed in the context of clinical outcomes of severe pediatric 

TBI. While the purpose of this work was to stablish the framework, the relations that may 

exist between this multivariate score and the development of longer-term complications 

needs to be investigated. The analyzed tracts were selected to ultimately relate brain injuries 

to clinical impairment and global cognitive function (corpus callosum), executive function 

(cingulum bundles), and mood and affective function (uncinate fasciculus). This is the 

subject of ongoing work.
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Fig. 1. 
(a) Acute anatomical brain scans for 5 of the 8 patients included in this study reveal severe 

traumatic brain injuries. Scanning during the acute phase following injury was not available 

for the three additional patients (A, B, and R). (b) Follow-up FLAIR images for all 8 

patients in this study acquired 1–2 years post injury.
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Fig. 2. 
Steps of the MaD-Tract framework. A. Tractometry: a streamline bundle is partitioned into a 

number of segments guided by a centroid streamline; DTI eigenvalue maps are also mapped 

onto the streamline bundle; the partitioned bundle and parameters are combined to create 

parameter profiles. B. Data from the profiles is structured into a reference group and a 

single subject profiles. C. At each individual partition (or segment) the Mahalanobis distance 

between the individual and the group is computed. A Mahalanobis distance profile along the 

tract is produced.
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Fig. 3. 
Harmonization relationships. These plots show linear regressions estimated between 

measurements of diffusion coefficient for the 5 PVP concentrations between Site I and 

each of the other 5 sites in which the phantom was scanned. Also shown is a picture of the 

NIST PVP diffusion phantom with varying PVP concentration vials. Note there are two vials 

per concentration, each placed in one of two concentric circles (except for the 0%, which has 

3 vials, one in the center and one in each of the circles).
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Fig. 4. 
Patient-specific microstructural anomaly detection with MaD-Tract. These results show 

skeletonized tracts for patient A in the top panel with abnormalities shown in red. The 

segments flagged as abnormal exceed a predetermined abnormality index depicted as the 

shaded gray area in the MaD plots (lower panel). The distribution of MaD as well as the 

univariate parameter profiles for the reference group are also shown. For reference, the 

skeletonized tracts color coded by direction embedded in the T1w volume are shown in the 

top left and right corners.
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Fig. 5. 
Anomalous tract segments on T1w. The segments flagged as significantly deviant in 

CC_4 and CC_5 for patient A are shown here overlaid on the subject T1w volume. 

Though ventricles are abnormally enlarged, no visibly atrophied areas are observable in 

the anatomical scan obtained approximately 1year after the sustained severe brain injuries.
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Fig. 6. 
Anomalous tract segments on T1w for patient B. The segments flagged as significantly 

deviant in several tracts for patient B are shown here overlaid or embedded in the subject 

T1w volume. Visibly atrophied areas (yellow arrows) are observable in the anatomical scan 

obtained approximately 1year after the sustained severe brain injuries. Some of the detected 

abnormalities are in the vicinity of these regions. However, anomalies also occur in the 

absence atrophy observable on the T1w contrast(For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.).
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Fig. 7. 
Plots of MaD profiles for the cingulum and uncinate bundles. The profiles of tracts 

with abnormalities are highlighted in subject-specific colors, those who do not present 

abnormalities are represented by dots (black: control; subject-specific color: TBI) in the 

shaded region. The shaded region represents the region of normalcy, where the upper 

bound is set by the critical MaD value of 6.38. Subject-specific coloring of profiles with 

abnormality facilitates the traceability of the profiles.
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Fig. 8. 
Plots of MaD profiles for the corpus callosum bundles. The profiles of tracts with 

abnormalities are highlighted in subject-specific colors, those who do not present 

abnormalities are represented by dots (black: control; subject-specific color: TBI) in the 

shaded region. The shaded region represents the region of normalcy, where the upper 

bound is set by the critical MaD value of 6.38. Subject-specific coloring of profiles with 

abnormality facilitates the traceability of the profiles.
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