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Abstract

Convolutional neural networks trained on object recognition derive inspiration from the neu-

ral architecture of the visual system in mammals, and have been used as models of the

feedforward computation performed in the primate ventral stream. In contrast to the deep

hierarchical organization of primates, the visual system of the mouse has a shallower

arrangement. Since mice and primates are both capable of visually guided behavior, this

raises questions about the role of architecture in neural computation. In this work, we intro-

duce a novel framework for building a biologically constrained convolutional neural network

model of the mouse visual cortex. The architecture and structural parameters of the network

are derived from experimental measurements, specifically the 100-micrometer resolution

interareal connectome, the estimates of numbers of neurons in each area and cortical layer,

and the statistics of connections between cortical layers. This network is constructed to sup-

port detailed task-optimized models of mouse visual cortex, with neural populations that can

be compared to specific corresponding populations in the mouse brain. Using a well-studied

image classification task as our working example, we demonstrate the computational capa-

bility of this mouse-sized network. Given its relatively small size, MouseNet achieves

roughly 2/3rds the performance level on ImageNet as VGG16. In combination with the large

scale Allen Brain Observatory Visual Coding dataset, we use representational similarity

analysis to quantify the extent to which MouseNet recapitulates the neural representation in

mouse visual cortex. Importantly, we provide evidence that optimizing for task performance

does not improve similarity to the corresponding biological system beyond a certain point.

We demonstrate that the distributions of some physiological quantities are closer to the

observed distributions in the mouse brain after task training. We encourage the use of the

MouseNet architecture by making the code freely available.
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Author summary

Task-driven deep neural networks have shown great potential in predicting functional

responses of biological neurons. Nevertheless, they are not precise biological analogues,

raising questions about how they should be interpreted. Here, we build new deep neural

network models of the mouse visual cortex (MouseNet) that are biologically constrained

in detail, not only in terms of the basic structure of their connectivity, but also in terms of

the count and hence density of neurons within each area, and the spatial extent of their

projections. Equipped with the MouseNet model, we can address key questions about

mesoscale brain architecture and its role in task learning and performance. We ask, and

provide a first set of answers, to: What is the performance of a mouse brain-sized—and

mouse brain-structured—model on benchmark image classification tasks? How does the

training of a network on this task affect the functional properties of specified layers within

the biologically constrained architecture—both overall, and in comparison with recorded

function of mouse neurons? We anticipate much future work on allied questions, and the

development of more sophisticated models in both mouse and other species, based on the

freely available MouseNet model and code which we develop and provide here.

Introduction

Convolutional neural networks (CNNs) trained on object recognition were originally inspired

by the visual processing in cats [1, 2], and have been used as models of feedforward computa-

tion performed in the primate ventral stream [3–5].

Indeed, the activity in these networks often resembles activity recorded from areas of the

primate visual system, from oriented Gabor-like features in early layers [6] to responses to

curves and more complex geometries [7] and even functional, or representational, similarity at

the population level [8, 9]. Task-trained artificial neural networks have been shown to produce

similar neural representations or develop predictive models of neural activity in visual [10–

12], auditory [13], rodent whisker areas [14], and more [15–17]. Despite these successes and

the clear power of CNNs to solve machine learning problems in the visual domain, among oth-

ers [6, 18], they are not structural or architectural analogues for the underlying biological cir-

cuits. Recent endeavors [19, 20] show that imposing brain like structure such as shallowness

and recurrence in network models can improve their functional similarity to the primate

brain. The interplay of architecture and computation remains an open problem in both

machine learning and neuroscience.

This issue is especially pronounced for studies of mouse visual cortex, a field undergoing

explosive growth. Large scale tract tracing data sets have revealed neuro-anatomical structure

in unprecedented detail [21–24]. From these efforts we have learned, in contrast to the hierar-

chical organization of primates, that the visual system of the mouse has a much more parallel

structure [25]. Since rodents are capable of visually guided behavior including invariant object

recognition [26, 27], this raises questions about the role of architecture in neural computation.

Recently, data from a large-scale physiological survey of neural activity in the mouse visual sys-

tem [28] was used to compare the representations of visual stimuli in cortex with those of

modern deep networks [29–31]. It was found that even purportedly “early” regions such as V1

in mouse cortex are more similar at the level of representation to middle layers of networks

such as VGG16, rather than to early layers that respond optimally to simple visual features and

bear more resemblance to the “simple” and “complex” cells normally supposed to describe the

early visual pathway. However, the profound difference in architecture between modern
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CNNs and the mouse cortex raises significant challenges in interpreting these findings. To

begin, many modern computational models of vision (in particular CNNs, which often have a

high input resolution) have a larger number of units than the number of neurons in mouse

visual cortex. Moreover, CNNs from computational vision are largely of feedforward type,

either purely so or with some skip connections (e.g., in ResNet architectures), which ignores

the large amount of recurrence present in real neural circuits. Furthermore, the mouse tha-

lamo-cortical system is quite shallow [25]. Most importantly, as stated above and detailed

more below, the mouse visual cortex has an intriguing parallel structure.

Here we introduce a novel framework for incorporating these data to build a biologically

constrained convolutional neural network model of the mouse visual cortex—MouseNet.

The structural parameters of MouseNet are derived from experimental measurements, spe-

cifically estimates of numbers of neurons in each area and cortical layer, the 100-micrometer

resolution interareal connectome, and the statistics of connections between cortical layers.

MouseNet is constructed to support detailed task-optimized models of mouse visual cortex,

with neural populations that can be compared to specific corresponding populations in the

mouse brain. In this work, we use a well established image classification task as a working

example to demonstrate the usage of the MouseNet and to show the combined functional

effects of adding all the currently known biological constraints to the architecture by contrast-

ing the MouseNet results with VGG16, a typical artificial neural network without any biologi-

cal constraints. We leave investigation of the specific functional effects of each single

constraint to future work.

We train MouseNet to perform classification using the ImageNet Large Scale Visual Recog-

nition Challenge 2012 (ILSVRC2012) [32] as well as the CIFAR10 [33] data sets. We find that,

although MouseNet is much smaller than a typical CNN and has specific architectural differ-

ences, it can reach above 90% validation accuracy on CIFAR10, and roughly 2/3rds of the per-

formance level of a typical CNN (VGG16) on the more challenging ImageNet classification

benchmark.

Next, using the large-scale functional data sets from the Allen Brain Observatory [28] on

visual responses of neurons across visual cortex, we investigate the functional properties of the

MouseNet architecture after training on the ImageNet dataset. We use representational simi-

larity analysis [29, 34, 35] to investigate the relative effects of task-training on the different

computational layers in the model. We see that ImageNet classification training of MouseNet

makes responses in its corresponding level of layers more similar to responses recorded from

the mouse brain.

We then contrast these results for the biologically constrained MouseNet with those for a

standard CNN network, VGG16, trained on the same task. We show that the representational

similarity of MouseNet to the mouse brain is comparable to that of VGG16, even though

VGG16 produces significantly higher task performance.

We study the training process for both networks, and find that the highest representational

similarity [29, 34] between a model neural network and the mouse brain areas are not neces-

sarily achieved by the best performing models, rather at early or intermediate points during

the training process. We take this as an indication that image classification using ImageNet is

not the appropriate task to describe the mouse visual cortex (or at least those regions measured

in the Allen Brain Observatory) rather than a failure of the task-training approach. This con-

clusion is perhaps to be expected. However, we feel that the use of object recognition is an

important baseline in comparison with established results in primate.

Furthermore, in addition to broad measures of representational similarity across images,

we also demonstrate the effect of image classification training on MouseNet by showing how it

affects the other functional properties such as lifetime sparseness and orientation selectivity
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index [28]. We find that training drives both of these properties to become more similar

between MouseNet and the biological mouse brain. Finally, by comparing both VGG16 and

MouseNet representations in individual layers before and after training, we find that the image

classification task makes MouseNet layers more diverse after training, a phenomenon we attri-

bute to the parallel pathways in the MouseNet architecture.

Overall, we describe an open framework for constructing MouseNet that is general and can

be easily modified to incorporate new data on the structure of the mouse brain [36] and to

study the functional significance of individual structural properties (such as connection densi-

ties) in future work. Likewise, MouseNet can be readily trained on other tasks [37], including

those corresponding more closely to natural behavior. We encourage future research along

these lines by making the Python code publicly available at https://github.com/mabuice/

Mouse_CNN/tree/v0, together with the step-by-step description of the model construction

that we present next.

Methods

In this section, we introduce our framework for constructing MouseNet. Fig 1 shows an over-

view of this framework. The basic idea is to use available sources of anatomical data (e.g. tract

tracing data, cell counts, and statistics of short-range connections) to constrain the CNN net-

work structure and architectural hyperparameters. We discuss the details of each step below.

Network architecture

MouseNet spans the dorsal lateral geniculate nucleus (dLGN) and six visual areas (Fig 2A).

Input to the network passes first through dLGN, and then to the primary visual area VISp.

After VISp, the architecture branches into five parallel pathways, representing five secondary

lateral visual areas: VISl (lateral visual area), VISal (anterolateral), VISpl (posterolateral), VISli

(laterointermediate), and VISrl (rostrolateral). Finally, the output of VISp together with all five

lateral visual areas provide input to VISpor (postrhinal). We include only the lateral areas

because they are more associated to object recognition while the medial areas are more

involved in multimodal integration [42]. The three-level architecture among the VIS areas was

derived from an analysis of the hierarchy of mouse cortical and thalamic areas (Fig 6e in [25]),

which considered feedforward and feedback connection structures in each area. In this analy-

sis, VISp was clearly low in the hierarchy, and VISpor was clearly high, but the other lateral

visual areas had similar intermediate positions.

In the MouseNet model, each VIS area is represented by three separate cortical layers: layer

4 (L4), layer 2/3 (L2/3) and layer 5 (L5). We call a specific cortical layer within a specific area a

“region”. Here we only consider the feedforward pathway, thought in primate to drive

responses within�100ms of stimulus presentation [4, 10]. Following depictions of the canoni-

cal microcircuit (e.g. as summarized in Fig 5 in [43]), we consider the feedforward pathway to

consist of laminar connections from L4 to L2/3, and from L2/3 to L5. Input from other areas

feed into L4 and all of L4, L2/3 and L5 output to downstream areas, as shown in Fig 2B. This is

consistent with broad connectivity among visual areas from each of these layers (Fig 2f of

[25]). Fig 2C shows the MouseNet architecture in full detail, including all 22 regions and asso-

ciated connections.

From architecture to convolutional neural net

Similar to the CALC model for the primate visual cortex by one of the authors [44], the general

idea is to use convolution (Conv) operations to model the projections between different

regions in the mouse visual cortex. Conv operations are linear combinations of many inputs,
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so they impose the assumption of linear synaptic integration. They are widely used in machine

learning, because they run efficiently on graphical processing units, and they share parameters

across the visual field, leading to reduced memory requirements and faster learning, relative to

general linear maps.

Each connection from source brain region i to target brain region j is modelled with a Conv

operation, Convij. The input to Convij corresponds to the neural activities in source region i,
and the output of Convij drives neural activities in the target region j. For example, as shown

in Fig 3A, the projection from Region 1 to Region 2 (Proj 1!2) is modeled by Conv12. The

neural activities in Region 1 correspond to the input to Conv12, while the neural activities in

Region 2 are a nonlinear function (ReLU, as shown in Fig 3C) of the output of Conv12. In

MouseNet, L4 of all areas except VISp receive multiple converging inputs, similar to Region 4

in Fig 3A. In this case, each projection (Proj 2!4 and Proj 3!4) is modeled by a separate

Conv layer (Conv24 and Conv34), and a nonlinear function (ReLU) is applied to the sum of the

output from both of the Conv layers, to produce the neural activities in Region 4. Note that we

do not use any pooling layers in the main architecture.

Fig 1. Modeling framework. Framework for constructing MouseNet from biological constraints on anatomy, via publicly available data from large-

scale experiments. The CNN architecture is set by the analysis of hierarchy [25] on the Allen Mouse Brain Connectivity Atlas (http://connectivity.brain-

map.org) [22]; and the meta-parameters are mostly fixed by the combination of the 100-micrometer resolution interareal connectome [23] with

detailed estimates of neuron density [38], and the statistics of connections between cortical layers from the literature [39–41].

https://doi.org/10.1371/journal.pcbi.1010427.g001
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Finding meta-parameters consistent with mouse data

After fixing the architecture, we need to determine the meta-parameters for constructing the

kernels for each Conv operation (Fig 3). The standard Conv operation is defined in terms of a

four-dimensional kernel. The output of the kernel is a three-dimensional tensor of activations

for region j, Aj, which pass through element-wise ReLU nonlinearities to produce non-nega-

tive rates. Element Aj
abg is the activation of the neuron at the αth vertical and βth horizontal

position in the visual field, in the γth channel (or feature map). The γth channel of the activation

tensor for region j, Aj
g
, depends on inbound connections as,

Aj
g
¼
X

i2Ij

X

d

Cij
gd � A

i
d
; ð1Þ

where Ij is the set of regions that provide input to region j. Note that both Cij
gd and Aj

d are two-

dimensional, and they undergo standard two-dimensional convolution. The meta-parameters

of kernel Cij are: number of input channels cijin, number of output channels cijout, stride sij, pad-

ding pij, and finally kernel size kij, i.e. the height and width (which are set equal) of Cij
gd. To

make the connections realistically sparse, we add a binary Gaussian mask on the Conv

Fig 2. Illustration of MouseNet architecture. Only feedforward connections are included. (A) High-level organization of MouseNet, based on analysis

of the hierarchy of lateral visual areas ([25]). (B) Connection patterns at the level of cortical layers. (C) Full MouseNet architecture.

https://doi.org/10.1371/journal.pcbi.1010427.g002
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operations, whose parameters are also estimated from data. See Fig 3B for an illustration of

Conv operation with Gaussian mask. We constrain these meta-parameters with quantitative

data whenever possible, and reasonable assumptions indicated by experimental observations

otherwise, as indicated below.

Cortical population constraints

Assumptions about area output size. We set the horizontal and vertical resolution of the

input (in pixels) based on mouse visual acuity. According to [45], the upper bound for visual

acuity in mice is 0.5 cycles/degree, corresponding to a Nyquist sampling rate of 2 pixels/cycle x

0.5 cycles/degree = 1.0 pixel/degree. According to retinotopic map studies [46], V1 included a

visual coverage range of� 60˚ in altitude and� 90˚ in azimuth, we further simplified this to

square input size of 64 by 64 pixels.

The resolution of the other regions depends on both the resolution of the input, and strides

of the connections. The stride of a connection is the sampling period with respect to its input.

For example, a Conv with a stride of one samples every element of its input, whereas a Conv

Fig 3. From mouse brain to CNN model. (A) From mouse brain hierarchy to CNN architecture. (B) An example of Conv operation with Gaussian

mask. (C) ReLU operation in the CNN architecture. (D) The binary Gaussian mask is generated by a Gaussian shaped probability whose peak and

width are meta-parameters.

https://doi.org/10.1371/journal.pcbi.1010427.g003
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with a stride of two samples every other element (both horizontally and vertically), leading to

output of half the size in each dimension. Because cortical neurons are not organized into dis-

crete channels in the same way as convolutional network layers, there is no strong anatomical

constraint on the stride. However, the mean stride has to be somewhat less than two; there are

ten steps in the longest path through MouseNet, but if only six of them had a stride of two, the

64x64 input would be reduced to 1x1 in VISpor, with no remaining topography. Lacking

strong constraints, for simplicity, we first attempted to set all the strides to one, but this left

very few channels in some of the smaller regions (due to an interaction between channels and

strides that we describe below). We therefore set the strides of the connections outbound from

VISp to two, and others to one. The feature maps of dLGN and VISp were therefore 64x64

(the same as the input), and all others were 32x32.

Given the resolutions of the channels in each region, the numbers of channels are con-

strained by the number of neurons. Specifically, Let ni be the number of neurons in region i
and ðlix; l

i
yÞ be the size of the output in area i, then the number of channels in area i is deter-

mined by ci ¼ ni=ðlix � l
i
yÞ.

Estimating number of neurons in each area from data. We only model the excitatory

neural population in our model, consistent with the fact that all neurons in the model project

to other visual areas. In fact, neurons in convolutional networks are neither excitatory or

inhibitory, but have both positive and negative output weights. However, past modelling work

[47, 48] has shown that such mixed-weight projections can be transformed so that the original

neurons are all excitatory, and an additional population of inhibitory neurons recovers the

functional effects of the original weights.

According to [49], the estimated number of excitatory neurons in dLGN is 21200. For

VISp, VISal, VISl, VISpl, we use estimated density for excitatory neurons given by [38]

(https://bbp.epfl.ch/nexus/cell-atlas/), which is summarized in Table 1. Note that we use neu-

ron density instead of counts to get a more stable estimation of number of neurons out of dif-

ferent versions of brain parcellations. For the remaining areas VISrl, VISli and VISpor, we

approximate their density by taking the average across the above four areas with separated cor-

tical layers.

Combined with the number of 10μm voxels counted in the Allen Mouse Brain Common

Coordinate Framework (CCFv3) [50] (Table 2), we summarize the estimated number for all

the regions in our model in Table 3.

Cortical connection constraints

Neurons tend to receive relatively dense inputs from other neurons that are above or below

them, in other cortical layers, and the connection density decreases with increasing horizontal

distance. Similarly, inputs from other cortical areas tend to have a point of highest density,

with smoothly decreasing density around that point. We approximate such connection-density

profiles with two-dimensional Gaussian shaped functions. Specifically, the fan-in connection

Table 1. Exitatory population density [mm−3] [38].

L4 L2/3 L5

VISp 106114.7 86668.2 86643.4

VISal 93176.9 79070.6 78540.9

VISl 86559.9 73937.9 66215.6

VISpl 106783.0 87368.3 82538.1

Average 98158.6 81761.1 78484.5

https://doi.org/10.1371/journal.pcbi.1010427.t001
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probability from source region i to target region j at position (x, y) (position offset from center

in μm) is modeled as,

Pijðx; yÞ ¼ dij
p exp �

x2

2ðdij
xÞ

2
�

y2

2ðdij
y Þ

2

 !

: ð2Þ

where dij
p is the peak probability at the center and dij

x and dij
y are the widths in the x and y direc-

tions. For simplicity, we assume dij
x ¼ dij

y≜dij
w and let r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
denote the offset from the

center of the source layer, the above equation then simplifies to,

PijðrÞ ¼ dij
p exp �

r2

2ðdij
wÞ

2

 !

; ð3Þ

where dij
w (μm) is the Gaussian width.

Both dij
p and dij

w are estimated from mouse data. The parameters for interlaminar connec-

tions are estimated from statistics of connections between cortical layers in paired electrode

studies (Section Estimating dij
w, dij

p for interlaminar connections), and the parameters for inter-

areal connections are estimated from the mesoscale mouse connectome (Section Estimating

dij
w and dij

p for interareal connections).

Conv layer with Gaussian mask

To translate our Gaussian models of connection density into network meta-parameters, we

apply a binary mask to the weights of the Conv layers (Fig 3B). To do that, we first change the

unit of dij
w in Eq 3 from micrometers to source area-dependent “pixels” (unit of output size of

source area i) by multiplying it with si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlix � liyÞ=ai

q
(pixel/μm), where ai denotes the surface

Table 2. Number of 10μm voxels in each region.

L4 L2/3 L5

VISp 1023640 1999040 1552688

VISal 104152 199314 202942

VISl 179084 301588 314522

VISpl 36638 205150 242812

VISrl 146294 276390 244294

VISli 57256 117252 147946

VISpor 60632 373972 385168

https://doi.org/10.1371/journal.pcbi.1010427.t002

Table 3. Estimated number of exitatory neurons in each region.

L4 L2/3 L5 Total

dLGN 21200

VISp 108623 173253 134530

VISal 9705 15760 15939

VISl 15501 22299 20826

VISpl 3912 17924 20041

VISrl 14360 22598 19173

VISli 5620 9587 11611

VISpor 5952 30576 30230

https://doi.org/10.1371/journal.pcbi.1010427.t003
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size of area i, estimated from the voxel model (See Estimating dij
w and dij

p for interareal connec-

tions). We then have,

Pijð~rÞ ¼ dij
p exp �

~r2

2ð~dij
wÞ

2

 !

; ~dij
w ¼ sidij

w; ð4Þ

where both ~r and ~dij
w are in the “pixel” unit. The kernel size of the Conv layer is set to be

kij ¼ 2� b~dij
wc þ 1, with padding calculated by pij = (kij − sij)/2, where sij is the stride of the

Conv layer. During initialization, a mask containing zeros and ones is generated for each Conv

layer, with size ðcijout; c
ij
in; kij; kijÞ. The probability of each element being one is Pijð~rÞ, where ~r

(pixel) is the offset from the center of mask. The weights of the Conv layer are then multiplied

by the mask. This gives the connections realistic densities (or sparsities), with realistic spatial

profiles.

Estimating dij
w; d

ij
p for interlaminar connections

For the interlaminar connections, we estimate the Gaussian width dij
w from multiple experi-

mental resources. Firstly, from Table 3 in [40], we get the estimation of dij
w to be 114 microme-

ters for functional connections between pairs of L4 pyramidal cells in mouse auditory cortex.

Secondly, manually extracted from [41] Fig 8B, we obtain the variation of the Gaussian width

depending on source and target layer from cat V1. Finally, we use this variation to scale the L4

to L4 width of 114 μm to other layers in the mouse cortex. We summarize the Gaussian widths

from cat cortex, along with corresponding scaled estimates for mouse cortex, in Table 4. Note

that in the current model, we only use the values for connections from L4 to L2/3 and from

L2/3 to L5 (Fig 2B).

To estimate the Gaussian peak probability dij
p , we first collect the connection probability

between excitatory populations offset at 75 micrometer dij
75 (Fig 4A in [39]). We then get the

peak probability dij
p by the relation

dij
p ¼ dij

75=exp �
752

2ðdij
wÞ

2

 !

ð5Þ

We summarize the probability at 75 micrometers dij
75 along with the peak probability dij

p in

Table 5.

Estimating dij
w and dij

p for interareal connections

To estimate interareal connection strengths and spatial profiles, we use the mesoscale model of

the mouse connectome [23, 24]. This model estimates connection strengths between 100

Table 4. Estimated Gaussian width dij
w for interlaminar excitatory connections. The values outside of the parenthesis

are extracted from [41]; the values inside the parenthesis are scaled to mouse cortex, using the width 114 μm for L4-to-

L4 connections in mouse auditory cortex [40]. Units are micrometers (μm).

Target

L2/3 (scaled) L4 (scaled) L5 (scaled)

Source L2/3 225 (142.5) 50 (31.67) 100 (63.33)

L4 220 (139.33) 180 (114) 140 (88.67)

L5 150 (95) 100 (63.33) 210 (133)

https://doi.org/10.1371/journal.pcbi.1010427.t004
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micrometer resolution voxels, based on 428 individual anterograde tracing experiments map-

ping fluorescent labeled neuronal projections in wild type C57BL/6J mice.

Flat map. The voxel model is in 3 dimensional space. For the purpose of our analysis, we

need to map the 3 dimensional structure into 2 dimensions. First, we fit the visual area posi-

tions by a sphere with center c 2 R3
and radius r. Each position x 2 R3

is then mapped to �x 2
R2

with relation

�x1 ¼ v � r � arctan
x1 � c1

x2 � c2

� �

; ð6Þ

�x2 ¼ v � r � arctan
x3 � c3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � c1Þ
2
þ ðx2 � c2Þ

2

q

0

B
@

1

C
A ð7Þ

where v = 100μm is the size of the voxel.

Area size. Approximations of the surface area for each brain region are needed to convert

the widths of connection profiles (see Conv layer with Gaussian mask) from voxels in the

mesoscale model to convolutional-layer pixels in MouseNet. For this purpose, each region’s

surface area size is approximated by the area of a convex hull of its mapped two-dimensional

positions. These estimates are summarized in Table 6.

Estimating dij
w. For each connection from source region i to target region j, we estimate

dij
w from the mesoscale model. The first step is to estimate the widths of connections to individ-

ual voxels in j. The incoming width dij
k for target voxel k in j is estimated by the standard devia-

tion of the connection strength about its center of mass. Specifically, dij
k ¼ ð

P
lwlkd2

l =
P

lwlkÞ
1=2

,

where l indexes the voxels in source region j, wlk is the connection weight between source and

target voxels l and k in the mesoscale model, and dl is the distance from voxel l to the center of

mass of these connection weights. We then estimate dij
w as the average of these widths over the

voxels in j. We omit from this average any target voxels that have multi-modal input profiles.

This procedure provides an upper bound for dij
w, because a target voxel may include multiple

neurons with partially overlapping input areas.

Estimating dij
p . The mesoscale model provides estimates of relative densities of connec-

tions between pairs of voxels. But an additional factor is needed to convert these relative

Table 5. The connection probability between excitatory populations offset at 75 micrometer dij
75. The numbers are

from Fig 4A in [39]). The calculated Gaussian peak probability dij
p are given in parenthesis.

Target

L2/3 (peak) L4 (peak) L5 (peak)

Source L2/3 0.160 (0.184) 0.016 (0.264) 0.083 (0.167)

L4 0.140 (0.162) 0.243 (0.302) 0.104 (0.149)

L5 0.021 (0.029) 0.007 (0.014) 0.116 (0.136)

https://doi.org/10.1371/journal.pcbi.1010427.t005

Table 6. Area size (mm2) estimated from the voxel model.

VISp VISal VISl VISli VISpl VISrl VISpor

L4 4.3271 0.4909 0.8793 0.3355 0.2865 0.6182 0.5264

L2/3 4.7406 0.5477 0.9279 0.4356 0.6659 0.6980 1.3937

L5 4.2511 0.4972 0.8651 0.4039 0.6785 0.6748 1.2445

https://doi.org/10.1371/journal.pcbi.1010427.t006
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densities into neuron-to-neuron connection probabilities. For this purpose, we assumed that

each neuron received inputs from 1000 neurons in other areas (we call this number the extrin-

sic in-degree, e). This is on the order of the estimate from Fig S9 M in [51]. Given this assump-

tion, we calculated dij
p by the relation,

e �
wij
P

iwij
¼ 2pð~dij

wÞ
2
� dij

p � c
i; ð8Þ

where wij is the connection strength from source area i to target area j, estimated from integrat-

ing the connection weights of the corresponding areas in the mesoscale model. The estimated

values for dij
w and dij

p are given in S1 Table. Note that the Gaussian peak values dij
p we get for

VISal2/3!VISpor4 and VISal5!VISpor4 for the current model are greater than 1. This is

because the number of channels in VISal is too small, i.e. inconsistent with the other parame-

ters we have chosen. In our current model, the probabilities that are greater than one are

rounded down to one when we generate the binary mask. This is an interesting limitation in

our current model, which suggests further assumptions about the architecture that can reduce

the number of channels in VISal can be meaningful.

Conv kernel size for dLGN

The above methods allowed us to set kernel sizes for intracortical connections, but not subcor-

tical ones. We set the kernel sizes for inputs to dLGN and VISp L4 according to receptive field

sizes in these regions. Receptive fields are about 9 degrees in dLGN and 11 degrees in VISp

[52]. As mentioned in Section Cortical population constraints, mouse visual acuity is approxi-

mately 1 pixel/degree, therefore we set kernel size of the connection from input to dLGN to

9x9. We then set the kernel size of the connection from dLGN to VISp to 3x3, such that the

receptive field size for VISp is 11x11 pixels.

Summary tables

In Table 7, we summarize the calculated number of channels in each area (in parenthesis) and

the kernel size for each Conv layer.

The parameters used in the model based on biological sources and assumptions are summa-

rized in Table 8 and the formulae for calculating the Conv layer meta-parameters are sumar-

ized in Table 9.

Results

In this section, we use a well established image classification task as a working example to dem-

onstrate the usage of MouseNet and to show the effect of adding biological constraints to the

architecture by contrasting the MouseNet results with VGG16, a typical artificial neural net-

work without any biological constraints. We first assess the computational performance of this

mouse-architecture network on an image classification task. Then, through systematic com-

parisons with the large scale Allen Brain Observatory dataset, we show how MouseNet can be

used to probe the effect of a CNN’s specific task training and architecture on its similarities

and differences with responses in the biological brain.

Implementation of MouseNet

To enable training of MouseNet on a standard image classification task, we implemented the

MouseNet structure in PyTorch [53]. Each Conv layer was followed by a batch normalization

layer and a ReLU non-linearity. For regions such as VISpor L4 that receive input from multiple
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Table 7. The calculated meta-parameters for the Conv layers.

Source(#channel) Target kernel size

input(3) LGNv 9 × 9

dLGN(5) VISp4 3 × 3

VISp4(26) VISp2/3 9 × 9

VISal4 17 × 17

VISl4 19 × 19

VISli4 19 × 19

VISpl4 19 × 19

VISrl4 19 × 19

VISpor4 17 × 17

VISp2/3(42) VISp5 3 × 3

VISal4 15 × 15

VISl4 19 × 19

VISli4 17 × 17

VISpl4 17 × 17

VISrl4 21 × 21

VISpor4 19 × 19

VISp5(32) VISal4 15 × 15

VISl4 19 × 19

VISli4 19 × 19

VISpl4 17 × 17

VISrl4 19 × 19

VISpor4 19 × 19

VISpor4(5) VISpor2/3 13 × 13

VISpor2/3(29) VISpor5(29) 3 × 3

VISal4(9) VISal2/3 13 × 13

VISpor4 3 × 3

VISal2/3(15) VISal5 5 × 5

VISpor4 1 × 1

VISal5(15) VISpor4 1 × 1

VISl4(15) VISl2/3 9 × 9

VISpor4 15 × 15

VISl2/3(21) VISl5 5 × 5

VISpor4 15 × 15

VISl5(20) VISpor4 15 × 15

VISli4(5) VISli2/3 17 × 17

VISpor4 17 × 17

VISli2/3(9) VISli5 7 × 7

VISpor4 17 × 17

VISli5(11) VISpor4 15 × 15

VISpl4(3) VISpl2/3 19 × 19

VISpor4 3 × 3

VISpl2/3(17) VISpl5 5 × 5

VISpor4 5 × 5

VISpl5(19) VISpor4 5 × 5

VISrl4(14) VISrl2/3 11 × 11

VISpor4 7 × 7

(Continued)
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Conv layers, the outputs of the Conv layers are summed before being fed into the batch nor-

malization layer and ReLU non-linearity.

To train the MouseNet model on an image classification task, we added a simple classifier.

Specifically, in order to include the final processing output from each individual area such that

the information is not bottlenecked by the relatively small VISpor area, we took the L5 output

from all seven areas and reduce them to 4x4 by an average pooling layer. We then flattened,

concatenated, and fed this to a linear fully-connected layer, which reduced the dimension to

the number of classes of the task. The outputs were then transformed to probabilities by the

softmax function, and the cross-entropy loss of the predicted probabilities (determined from

the categorical distribution where individual class probabilities are from the output of the soft-

max) relative to the ground truth labels was used to train on the image classification task.

Computational performance of MouseNet on image classification

We trained MouseNet end-to-end using stochastic gradient decent with momentum, adapting

the training script from the imagenet example script from the PyTorch examples github repos-

itory. Full training details and scripts are available on the MouseNet github repo: https://

github.com/mabuice/Mouse_CNN.

Since there is currently no known behavior experiments in the literature testing mouse

doing invariant object recognition with natural images, our results provide a first guess of how

a mouse sized architecture may potentially perform on such tasks. We first found that Mouse-

Net achieved above 90% validation accuracy on CIFAR10 [33], a simple classification of 32x32

images into 10 categories. Note that the input to the MouseNet is always resized to 64x64. To

make fair comparison with MouseNet, the input to VGG16 is also resized to 64x64. Interest-

ingly, this is close to state of the art performance of modern networks, suggesting that mouse

sized networks are fully capable of performing this simple task.

We then moved to the more challenging image classification benchmark of ImageNet [54],

which requires classification of higher resolution images into 1000 categories. We found that,

even for input images downsampled to a resolution of (64x64), MouseNet can still be trained

Table 7. (Continued)

Source(#channel) Target kernel size

VISrl2/3(22) VISrl5 5 × 5

VISpor4 9 × 9

VISrl5(18) VISpor4 9 × 9

https://doi.org/10.1371/journal.pcbi.1010427.t007

Table 8. Parameters from data or assumptions.

Notation CNN parameter Biological source or assumptions

ni Number of neurons in area i Based on [38] combined with the voxel model [23]

ai Two dimensional area size for area i Estimated from voxel model data [23]

e Total fan-in connections for all areas Set to be 1000 based on [51]

ðl0x ; l
0
yÞ Input size to the model Set to be 64x64 based on mouse visual acuity [45]

ðlix; liyÞ Output size of area i Set to be 64x64 up to VISp, 32x32 after VISp (Assumption)

dij
w Gaussian width (interlaminar) Estimated from mouse [40] and cat [41] cortical properties

Gaussian width (interareal) Estimated from voxel model [23]

dij
p Guassian peak (interlaminar) Based on statistics of connections in paired electrode studies [39]

Gaussian peak (interareal) Estimated from voxel model [23]

https://doi.org/10.1371/journal.pcbi.1010427.t008
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to perform above 37% top-1 validation accuracy on ImageNet. Below, we contrast representa-

tions in MouseNet to those in VGG16 trained with the same downsampled input size (64x64),

which achieved above 60% top-1 validation accuracy on ImageNet. We contrast the number of

parameters in MouseNet and VGG16 in Table 10. Note that the number of parameters of

MouseNet Conv layers without the Gaussian masks is about 14% of that for VGG16, while the

number of parameters of MouseNet Conv layers with Gaussian masks is less than 1% of that

for VGG16. Our simulation results are all based on MouseNet models with Gaussian masks.

The effects of task training on functional properties

To examine the effect of the image classification task training on the functional similarity of

the MouseNet and the biological mouse brain, we make use of the large-scale, publicly avail-

able Allen Brain Observatory dataset [28]. We study representational similarity of MouseNet

and the biological mouse brain across a set of natural images, along with the basic functional

properties of sparsity and orientation selectivity.

The Allen Brain Observatory data set. The Allen Brain Observatory data set is a large-

scale standardized in vivo survey of physiological activity in the mouse visual cortex, featuring

representations of visually evoked calcium responses from GCaMP6f-expressing neurons. In

this work, we use the population neural responses to a set of 118 natural image stimuli, each

presented 50 times. The images were presented for 250ms each, with no inter-image delay or

intervening “gray” image. The neural responses we use are events detected from fluorescence

traces using an L0 regularized deconvolution algorithm, which deconvolves pointwise events

assuming a linear calcium response for each event and penalizes the total number of events

included in the trace. Full information about the experiment is and database given in [28].

The Allen Brain Observatory includes data from six different brain areas, namely VISp,

VISal, VISl, VISpm, VISam and VISrl. The number of neurons in the dataset, for each of the

regions we use, is summarized in Table 11.

The Similarity of Similarity Matrices metric (SSM). To compare functional similarity

between two representations—in MouseNet, and in the biological mouse brain—of a set of

images, we use the Similarity of Similarity matrices (SSM) [29, 34] metric. We begin with a

matrix of neural activities, in which each row contains the population activities for a certain

image. We calculate the Pearson correlation coefficient between every pair of rows within one

Table 9. Meta-parameters for Conv layer connecting source area i to target area j.

Notation CNN parameter Formula

ci number of channels in area i ci ¼ ni=ðlix � l
i
yÞ

kij kernel size kij ¼ 2� b~dij
wc þ 1

sij stride sij ¼ lix=ljx ¼ liy=ljy
pij padding pij = (kij − sij)/2
~dij
w

Gaussian width ~dij
w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlix � liyÞ=ai

q
� dij

w

dij
p Gaussian peak dij

p

https://doi.org/10.1371/journal.pcbi.1010427.t009

Table 10. Number of parameters for MouseNet and VGG16 for 1000-class ImageNet classification task.

Conv layers Conv with mask Classifier

VGG16 14.7M 14.7M 123M

MouseNet 2.1M 87K 2.3M

https://doi.org/10.1371/journal.pcbi.1010427.t010
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representation matrix, to form an n by n “similarity matrix” for this representation, where

each entry describes the similarity of the population response to a pair of images. Next, to com-

pare two similarity matrices, we flatten the matrices to vectors and compute the Spearman

rank correlation between these vectors. Like the Pearson correlation coefficient, the rank cor-

relation lies in the range [−1, 1] indicating how similar (close to 1) or dissimilar (close to -1)

the two representations are. Rather than examining one neuron at a time [55, 56], this metric

compares representations based on activities of the whole populations of artificial and biologi-

cal neurons, revealing functional similarity at the population level. Another choice of such

population similarity metrics is Singular Vector Canonical Correlation Analysis (SVCCA) [29,

57]. An excellent review of such similarity metrics and their properties can be found in [58].

Following the procedures in [29], we construct the representation matrix for a certain

mouse visual cortex region by taking the trial-averaged mean responses of the neurons in the

250ms during the image presentation. Activities of neurons in different experiments for the

same brain area are grouped together to construct the representation matrix, whose dimension

is number of images by number of neurons. The representation matrices for MouseNet layers

are obtained from feeding the same set of 118 images (resized to 64x64) to MouseNet and col-

lecting all the activations from a certain layer of the model.

Neural reliability and SSM noise ceiling. We next compute the SSM noise ceiling from

the Allen Brain Observatory data. We use split half reliability to quantify the reliability of a sin-

gle neuron from the Allen Brain Observatory. This is done by separating the 50 trials into two

non-overlapping 25 trial sets, and taking the correlation of trial-averaged responses between

the two. We make ten random splits, and take the mean of the ten correlations to represent the

reliability of each neuron. The reliability distributions of the neural populations are shown in

Fig 4 (left). VISp, VISl and VISal are most reliable areas and VISpm, VISam and VISrl are less

reliable areas.

To estimate the noise ceiling of the SSM metric, we compare the mouse data representation

matrices with themselves. Specifically, we split the 50 trials in the dataset into two non-overlap-

ping sets and calculate the trial averaged representation matrices for each set. The SSM

between these two representation matrices are the noise ceiling of the SSM metric. Ten splits

of the dataset are computed for estimating the mean and standard deviation of the noise

ceilings.

To examine how the noise ceiling changes with the reliability of the neural population, we

calculate the noise ceilings by selecting neurons that surpass different levels of thresholds, as

shown in Fig 4 (right). We see that for some regions, if we select a group of neurons using a

certain reliability threshold, the noise ceiling becomes higher than without this selection. Thus

we first order the neurons in each region according to their reliability. We calculate the noise

ceiling using only higher-reliability neurons, above a certain threshold of reliability. We choose

the threshold that results in the highest noise ceiling to be the “best noise ceiling” for that

region. We summarize the reliability and best noise ceiling for each area in Fig 5. In this paper,

we will concentrate our discussions on the most reliable areas, VISp, VISl and VISal, which are

Table 11. Number of neurons recorded from each mouse brain region.

VISp VISal VISl VISpm VISam VISrl

Total 14173 4396 8748 4771 2040 5189

L2/3 4079 1042 2259 1544 610 1168

L4 6735 2967 4163 1905 1179 3626

L5 3003 387 1874 973 251 395

https://doi.org/10.1371/journal.pcbi.1010427.t011
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included in the MouseNet model. We will use the best noise ceiling to compare with the

models.

Task training improves the similarity between MouseNet and the Allen Brain Observa-

tory. To examine the effect of training to perform an image classification task on the func-

tional similarity of MouseNet to the brain, we compute the SSM value between each layer of

MouseNet with data from a brain region recorded in the Allen Brain Observatory. To account

for the randomness due to initialization, we train four instances of MouseNet on ImageNet

starting with different weights and look at their mean statistics. Fig 6 shows the SSM values

between each of the MouseNet layers with data from L2/3 of VISp, VISl and VISal. Layers 4

and 5 are shown in S1 Fig. Note that training has changed the similarity values to the data for

most of layers in the model. The first important observation is that regions in the model do

not necessarily best match to the corresponding functional area recorded in the Allen Brain

Fig 4. Selecting reliable neurons improves noise ceilings. (Left) Reliability distribution of neural populations. Each row shows all

the brain areas at a specific cortical layer. The dotted lines indicate the median reliability of each neural population. (Right) The

noise ceilings change with variation of the threshold for selecting reliable neurons. The higher the threshold, the fewer neurons are

selected. For some populations, selecting a certain portion of reliable neurons gives best noise ceiling. Error bars are from different

draws of non-overlapping trials.

https://doi.org/10.1371/journal.pcbi.1010427.g004
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Observatory. We see that for layer 2/3, area VISp in the Allen Brain Observatory, five different

model areas show significant change in SSM value from the untrained model. In the following,

we will add prefix “m” in front of the modeled areas from the MouseNet to contrast with the

ones from the real brain. One of these is an early layer, mVISp5, while the others are in the par-

allel pathway portion of the architecture. Of the others, mVISl4 shows an increase in similarity

with VISp_layer23, while three other model regions show a decrease in similarity. For the

other two regions in Fig 6, mVISp5 shows a significant increase in similarity. For VISl_layer23,

there are six other model regions that all show an increase in similarity. These statements hold

specifically when comparing model regions to each other for the same area in the Brain Obser-

vatory. Comparing areas of the Brain Observatory to each other requires a different adjust-

ment for the number of comparison (see black vs. red stars in Fig 6). These results are

consistent with the idea from Shi, et al [29] that VISp is a lower order area than VISl and VISal

(VISp maps to lower “pseudo-depth” in comparing to a CNN than both VISl and VISal). Lay-

ers 4 and 5 show results that are similar, but not identical to, layer 2/3. (S1 Fig). VISal in Layer

4 and VISl and VISal in Layer 5 show improved similarity after training for many of the

mVISp model regions. Similarly, VISp in layer 4 and 5 shows decreased similarity after train-

ing in some of regions in the parallel portion of the architecture.

Note that, although training on ImageNet improves the corresponding level of model

regions’ similarity to the brain, the highest SSM value does not always occur in the model layer

Fig 5. Summary plot of median reliability and best noise ceiling for each brain area. Each color represents a different brain

area, and shades from light to dark indicate different cortical layers L2/3, L4 and L5. The circle size is proportional to the size of

the population in the dataset.

https://doi.org/10.1371/journal.pcbi.1010427.g005
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corresponding to the specific region considered in the Brain Observatory. For example, the

SSM value for mVISp regions are higher than the mVISl regions when comparing to the brain

area VISl L2/3. This is possibly because the visual areas are more similar to each other than

they are to the MouseNet regions (see S2 Table for the SSM values between the brain areas

themselves), such that improving the similarity to one brain region can possibly lead to

improving the similarity to some other regions. Nevertheless, by looking at all the layers glob-

ally, we see that for the earliest visual area VISp, the ImageNet classification training promotes

the SSM values of the mVISp layers in the MouseNet while suppress the values for the later lay-

ers; whereas for secondary visual areas VISl, the training promotes both earlier layers and later

layers in the parallel pathways, suggesting a higher place in the functional hierarchy (cf. with

the results of [29]).

Higher task performance on image classification does not guarantee higher similarity

to the mouse brain. To examine how performance on the ImageNet classification task affects

the functional similarity to the brain, we contrast the SSM values for MouseNet with another

network that can perform this task, the VGG16 network discussed above. We use the same

input resolution, on the same task (see Section Computational performance of MouseNet on

Fig 6. SSM between mouse data in VISp(top)/VISl(middle)/VISal(bottom) L2/3 and all layers in the MouseNet before (blue) and after training

(red). Each line corresponds to the mean of four different MouseNet instances trained from different initialization weights (dots). The x axis includes

all the layers in the model in a serial way. The five parallel secondary visual area pathways in the model are in shaded grey background. Black stars

denote the the pvalues of two-sample t-test with Benjamini/Hochberg correction of 22 comparisons within one brain area is less than 0.05; Red stars

denote the pvalues of two-sample t-test with Benjamini/Hochberg correction of all 9x22 comparisons across all 9 brain areas is less than 0.05.

https://doi.org/10.1371/journal.pcbi.1010427.g006
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image classification). Similarly as for MouseNet, we calculate the SSM values between each

layer in VGG16 and the regions in the mouse visual cortex. VGG16 does not have a “corre-

sponding layer” for each region; we choose the VGG layer that has the highest SSM with each

mouse brain region. For this comparison, we do the same for MouseNet, so that for each

region, we compare this ‘best layer’ SSM value with the best layer SSM value for MouseNet.

The best layer’s SSM values for both VGG16 and MouseNet, for each mouse cortical layer

in VISp, VISl, and VISal, are summarized in Fig 7. As we can see in the figure, although

VGG16 has much higher performance on the ImageNet task (about 60% vs 40%), it does not

have much higher SSM values to the brain for most regions. The saturation of functional simi-

larity between the brain and models in terms of image classification performance is also

observed in primates, albeit at a much higher performance level [59].

To further grasp the limited relationship between a model’s task performance and its func-

tional similarity to the mouse brain, we look at how the models’ functional similarity to brain

data changes during training. As shown in Fig 8, the highest SSM values between a model neu-

ral network and the mouse brain areas are not necessarily achieved by the best performing

models, rather at early or intermediate points during the training process. See S2 Fig for more

instances of MouseNet during training, also showing this effect. See S3 Table for a summary of

the best models which achieved the highest SSM values for each brain region. These results

show that optimizing performance on this particular task, at least beyond an early or interme-

diate level of performance, does not necessarily improve the model’s similarity to the biological

brain. If the approach of building models for neural responses via task training of artificial net-

works is broadly correct, then we take this as an indication that ImageNet is not the correct

task to consider for the representations in the mouse brain.

Task training with the MouseNet architecture increases the similarity of other func-

tional properties to the mouse brain. As mentioned above, the SSM metric compares func-

tional representations, based on activities of the whole neural population in a given model

layer and a set of recordings from a given brain area. For a complementary view of the effect of

task training on MouseNet representations, and of the role of its architecture, we can also

study the statistical distributions of single neuron functional properties, such as orientation

selectivity and lifetime sparseness [28].

Fig 7. SSM between best layer in trained VGG16/MouseNet and mouse brain regions. The plot shows results of 3 instances of VGG16 (with

validation accuracy 60.46, 60.72, 60.93) and 4 instances of MouseNet (with validation accuracy 37.46, 37.95, 37.52, 37.49) trained from different

initialization weights. Yellow lines denote the best noise ceiling; their widths are standard deviations calculated from multiple draws of non-overlapping

trials as in Fig 4. Dotted black lines are the SSM values between the 64x64 pixel input and the corresponding regions. Black stars denote the statistical

significance of two-sample t-test between the mean of the trained VGG16 and the trained MouseNet instances (one star: p< 0.05, two stars: p< 0.01,

three stars: p< 0.001).

https://doi.org/10.1371/journal.pcbi.1010427.g007
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Lifetime sparseness measures the selectivity of a neuron’s mean response to different stimu-

lus condition, defined as [28, 60]

SL ¼ 1 �
1

N
ð
P

iriÞ
2

P
ir2
i

� ��

1 �
1

N

� �

ð9Þ

where N is the number of stimulus conditions and ri is the response of the neuron to stimulus

condition i averaged across trials. A neuron that responds strongly to only a few stimuli will

have a lifetime sparseness close to 1, whereas a neuron that responds broadly to many stimuli

will have a lower lifetime sparseness. The statistical distribution of lifetime sparseness for the

mouse data on natural scene stimuli and for all the units in trained/untrained MouseNet and

VGG16 models, responding to the same natural scene stimuli as in the Allen Brain Observa-

tory, are shown in Fig 9 (top row). This demonstrates clearly that training on the image

Fig 8. Functional similarity and validation accuracy during the training process. Each row compares models with a

different brain area. We show one instance of MouseNet and VGG16 during their training process, where each dot

represents the best layer’s SSM of one model at a certain epoch to the specified brain area. The clear jumps of

validation accuracy occurred when the learning rate is reduced.

https://doi.org/10.1371/journal.pcbi.1010427.g008
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classification task makes the distribution of lifetime sparseness values much closer to the

mouse brain data for MouseNet, but not as much for VGG16.

Similarly, we can study the orientation selectivity of individual neurons by using the static

grating stimuli in the Allen Brain Observatory dataset. Specifically, we calculate the circular

selectivity index (which is one minus the circular variance defined in [61]), defined as

SO ¼
X

k

rke
i2yk
.X

k

rk ð10Þ

where rk is the response of the neuron to a grating with angle θk averaged across trials. A neu-

ron that responds strongly to only one direction will have circular selectivity index close to 1,

whereas a neuron that responds broadly to many directions will have lower circular selectivity

index. The statistical distributions of the circular selectivity index, for the mouse data with

static grating stimuli and for trained/untrained MouseNet and VGG16 models with the same

stimuli, are shown in Fig 9 (bottom row). As for the case of lifetime sparsity above, task train-

ing changes the distribution of selectivity values. These distributions, after training, are closer

to the mouse brain data for the MouseNet networks than for the VGG, once again showing

how the more specifically matched architecture of MouseNet can lead to more similar model

responses to the biological brain. Note that the spikier distributions of the models result from

the deterministic nature of the models in contrast to the noisier brain data in response to the

(only) six total static grating directions. If we were to simulate neural noise in the model

responses, it would smooth the distributions, resulting in closer approximation of the data, as

we show in S3 Fig.

Taken together, these results show how the MouseNet model can be used to explore the

impact of task training on a variety of response statistics that are commonly computed in

Fig 9. Distributions of lifetime sparseness (top row) and circular selectivity index (bottom row) for all the units in the models and all the neurons

in the mouse data. The distributions of all units in one instance of trained/untrained MouseNet (first column) and VGG16 (second column) are

plotted along with mouse data, with the Jensen-Shannon distances between the models and the data annotated. The Jensen-Shannon distances between

multiple instances of models and the mouse data are summarized in the third column. Black stars denote the statistical significance of two-sample t-test

between the mean of the model instances (one star: p< 0.05, two stars: p< 0.01, three stars: p< 0.001).

https://doi.org/10.1371/journal.pcbi.1010427.g009
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physiology studies, and that those defined on individual neurons can demonstrate comple-

mentary and in some cases more dramatic changes with training than those averaged over

entire populations. It is interesting to note that building in anatomical constraints into the

architecture increases its similarity to physiological data on these single neuron metrics, but

not on population representational similarity—an important divergence that could be of inter-

est for future study.

Task training diversifies functional representation among MouseNet layers. Finally,

we study how task training and network architecture affect the general ‘geometric’ layout of

models’ representations, separately from their similarity to representations in the mouse brain

data. To do this, we calculate the SSM values between every pair of layers from both trained/

untrained MouseNet and VGG16, and visualize them in two dimensional space via the metric

multidimensional scaling algorithm implemented in scikit-learn [62, 63]. The results are

shown in Fig 10. Table 12 summarizes the diversity index for each model defined as the prod-

uct of the singular values of principal component analysis for the corresponding cluster. For

VGG16, we see that representations in layers are clustered together both before and after train-

ing. By contrast, for MouseNet the representations become much more diversified after train-

ing. We hypothesize that it is the parallel architecture of MouseNet that leads it to learn this

more diversified representation as it solves the image classification task. Further examinations

of the various pathways and model instances show that different pathways are learning quite

different representations (S4 Fig), and that these qualitative results are consistent across multi-

ple instances of MouseNet models (S5 Fig). It is interesting to note that although the only dif-

ference between different pathways are the number of channels and the meta-parameters of

Fig 10. Visualization of all layers from one instance (left) and three instances (right) of trained/untrained MouseNet and VGG16. Each dot

represents a layer from a certain model instance. The position of the dots are the two-dimensional projection from the multidimensional scaling

algorithm, with the distance measure defined as one minus the SSM value.

https://doi.org/10.1371/journal.pcbi.1010427.g010

Table 12. Diversity index of model layers.

One instance Three instances

Untrained VGG16 0.12 0.32

Untrained MouseNet 0.18 0.98

Trained VGG16 0.36 1.02

Trained MouseNet 1.57 5.06

https://doi.org/10.1371/journal.pcbi.1010427.t012
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the Conv layers, those pathways do learn very different representations. This specialization of

representations for different parallel pathways is consistent with what is observed in the litera-

ture [64] and a follow up theoretical study (see [65] chapter 4). Unraveling any specific func-

tions of each pathway, in this task or in others, is an opportunity left for future studies.

Discussion

Task-optimized deep networks show promise for brain modelling, because they are function-

ally sophisticated, and they often develop internal representations that overlap strongly with

representations in the brain [10–17]. Convolutional neural networks share weights across the

visual field, and thus form an approximation of the functional properties that may be imposed

by translation invariance of natural stimuli leading to equivariant representations in neural

systems [3–5]. This weight sharing makes them much easier to train, which is an important

practical consideration for model development. Although the it requires non-local weight

updates, it can be made more biologically plausible by a dynamical weight sharing mechanism

[66].

While deep network architectures are originally loosely inspired by the brain, there has

been an extensive empirical exploration of the effects of architectural features in machine

learning, in directions often independent from neuroscience. In parallel, however, a great deal

more has been learned about the architecture of the biological brain, with that of the mouse

brain having been particularly well characterized.

We have developed MouseNet, a deep network architecture that is consistent with a wide

range of data on mouse visual cortex, including data from tract-tracing studies and studies of

local connection statistics. We constrain the architecture with mouse data whenever possible,

and borrow data from other species or make reasonable assumptions indicated by experimen-

tal observations otherwise. The framework introduced here is flexible enough to incorporate

new data and connections once they are available. While standard deep networks have pro-

vided useful points of comparison with neurobiological systems, in the long term more biolog-

ically realistic deep networks may enable more specific comparisons with the brain, including

comparisons between homologous groups of neurons, modeling of specific lesions, and analy-

sis of functional differences between brain areas and pathways.

Using image classification as a working example, we use MouseNet to investigate using the

task-training approach to model the functional representations in the mouse brain. An aspect

of special interest is whether training on this task drives the representations in the model to be

closer to those recorded from the real mouse brain, in comparison to representations in

untrained versions of the MouseNet model or in generic deep networks. Using recordings

from the large-scale Allen Brain Observatory survey, we find—consistent with the literature

[10, 11] for other model species and systems—that training on an image classification task

does drive MouseNet representations to better resemble those of the real data. However, this

increase of functional similarity is not necessarily strictly monotonic with task performance.

In our experiments we see the SSM correlation with the Brain Observatory responses saturat-

ing or even maximizing well before we achieve maximum accuracy on task performance. This

is true for both MouseNet and VGG16.

Within the task-training paradigm, these results suggest that the specific image classifica-

tion task we used, and perhaps image classification overall, is not the appropriate task for

describing what the mouse visual cortex has learned and developed to compute. Nonetheless,

MouseNet is an important reference to studies in more established species, which rely on com-

parisons of the ventral stream with architectures designed for object recognition. Although we

know rodents are capable of performing tasks that require visual object discrimination, mouse
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ethology suggests that alternate computations are more important for the mouse visual system,

such as motion tracking, predation, and predator avoidance. A promising future direction is

to use task-training of the MouseNet model, together with the metrics tested here, to develop

more realistic tasks and stimuli that may lead to more closely matched representations.

In sum this work links anatomical and physiological data to task-driven CNN models, pro-

viding a road map for developing better task-driven models of the biological brain. It opens

the door to building more detailed structures into the model, such as adding further brain

areas as well as adding recurrence and using different inputs and readouts for different path-

ways. Incorporating new anatomical data is also easy within this framework. By making our

code publicly available, and illustrating the model’s success and failures in matching represen-

tations using well-studied metrics and tasks, we hope to facilitate future research along these

lines.

Supporting information

S1 Table. The estimated dij
w (μm) and dij

p for interareal connections.

(TIF)

S2 Table. SSM values between mouse visual cortex areas. Note that even with the neural sub-

sampling issue [29], the similarity values between VISp, VISl, and VISal are much higher than

they are with the CNN models.

(TIF)

S3 Table. Model layer that achieved the highest SSM during training for each brain region.

(TIF)

S1 Fig. SSM between data in VISp(top)/VISl(middle)/VISal(bottom) L4 and L5 and all lay-

ers in the MouseNet before(blue) and after training(red). Each line corresponds to the mean

of 4 different MouseNet instances trained from different initialization weights (dots). The x

axis includes all the layers in the model in a serial way. The five parallel secondary visual area

pathways in the model are in shaded grey background. Black stars denote the the pvalues of

two-sample t-test with Benjamini/Hochberg correction of 22 comparisons within one brain

area is less than 0.05; Red stars denote the pvalues of two-sample t-test with Benjamini/Hoch-

berg correction of all 9x22 comparisons across all 9 brain areas is less than 0.05.).

(TIF)

S2 Fig. Functional similarity and validation accuracy during the training process for multi-

ple MouseNet instances. Each row compares models with a different brain area. We show

three instances of MouseNet during their training process. Each dot represents the best layer’s

SSM of one instance at a certain epoch to the specified brain area, with each instance’s highest

achieved SSM during training process marked by a cross. The clear jumps of validation accu-

racy occurred when we reduced the learning rate.

(TIF)

S3 Fig. Distribution of circular selectivity index for all the units in trained MouseNet with

different levels of noise added. The noise is added to the activations of each layer as a half-

normal distribution with a standard deviation of the specified noise level multiplied by the

mean activation across all units for that layer. This results shows that circular selectivity index

distribution can be smoothed out by adding noise to the deterministic MouseNet model.

(TIF)

PLOS COMPUTATIONAL BIOLOGY MouseNet: A convolutional neural network model for the mouse visual cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010427 September 6, 2022 25 / 30

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010427.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010427.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010427.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010427.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010427.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010427.s006
https://doi.org/10.1371/journal.pcbi.1010427


S4 Fig. Visualization of all layers of trained/untrained MouseNet and VGG16, for three

instances (colored coded by areas). Each dot represents a layer from a certain model instance.

The position of the dots are the two-dimensional projection from the multidimensional scaling

algorithm, with the distance measure defined as one minus the SSM value. The layers from

three instances of trained MouseNet are color coded by their area names, and annotated with

their region names. This result shows that different pathways in the MouseNet have learned

distinct representations after training.

(TIF)

S5 Fig. Visualization of all layers of trained/untrained MouseNet and VGG16, for three

instances (colored coded by instance). Each dot represents a layer from a certain model

instance. The position of the dots are the two-dimensional projection from the multidimen-

sional scaling algorithm, with the distance measure defined as one minus the SSM value. The

layers from three instances of trained MouseNet are color coded by their corresponding model

instance. This result shows that training diversified the representations of all the three

instances of MouseNet starting from different initialization states.

(TIF)
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