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Abstract

Background: Implementation of multifaceted interventions typically involves many diverse elements
working together in interrelated ways, including intervention components, implementation strategies, and
features of local context. Given this real-world complexity, implementation researchers may be interested
in a new mathematical, cross-case method called Coincidence Analysis (CNA) that has been designed
explicitly to support causal inference, answer research questions about combinations of conditions that are
minimally necessary or sufficient for an outcome, and identify the possible presence of multiple causal
paths to an outcome. CNA can be applied as a standalone method or in conjunction with other
approaches and can reveal new empirical findings related to implementation that might otherwise have
gone undetected.

Methods: We applied CNA to a publicly available dataset from Sweden with county-level data on human
papillomavirus (HPV) vaccination campaigns and vaccination uptake in 2012 and 2014 and then compared
CNA results to the published regression findings.

Results: The original regression analysis found vaccination uptake was positively associated only with the
availability of vaccines in schools. CNA produced different findings and uncovered an additional solution
path: high vaccination rates were achieved by either (1) offering the vaccine in all schools or (2) a
combination of offering the vaccine in some schools and media coverage.

Conclusions: CNA offers a new comparative approach for researchers seeking to understand how
implementation conditions work together and link to outcomes.

Keywords: Coincidence analysis, Configurational comparative methods, Causal inference, Comparative
analysis
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Background
One of the basic analytic challenges within implementa-
tion science is to study and understand implementation
within real-world, dynamic settings. Implementation of
multifaceted interventions typically involves many di-
verse elements working together in interrelated ways, in-
cluding intervention components, implementation
strategies, and features of local context. Furthermore,
boundaries between an intervention, its implementation,
and its contextual features can prove difficult to discern
in practice [1, 2].
For researchers seeking to explain these complex rela-

tionships encountered in real-world settings, causal in-
ference can play an important role. Since the mid-1980s,
Configurational Comparative Methods (CCMs) have in-
creasingly been recognized as effective methods for
causal inference, especially in the social sciences. The
cumulative number of CCM-related publications listed
in the core collection of the Web of Science [3] has dra-
matically escalated in recent years, with more total pub-
lications appearing during the 3-year period from 2017
to 2019 than in the entire preceding 22-year period be-
tween 1995 and 2016.
CCMs have also started to make prominent appear-

ances within the health services research and implemen-
tation science literatures. CCMs, for example, were used
in a recent Cochrane Review to identify conditions dir-
ectly linked with successful implementation of school-
based interventions for asthma self-management [4], fea-
tured as an innovative member of the mixed-methods
repertoire in a major methodological review in public
health [5], highlighted as a central method in newly pub-
lished implementation science protocols [6, 7], and ap-
plied to determine different pathways for federally

qualified health centers to achieve patient-centered med-
ical home status [8]. CCMs were also featured in a dedi-
cated chapter in the 2020 Handbook on Implementation
Science [9].
CCMs are designed to investigate different hypotheses

and uncover different properties of causal structures
than traditional regression analytical methods (RAMs)
[10, 11]. Qualitative Comparative Analysis (QCA) is one
kind of CCM that, to date, has been most frequently ap-
plied in implementation science and health services re-
search. The purpose of this article is to introduce a new
CCM to the implementation research community: Coin-
cidence Analysis. Coincidence Analysis (CNA) is a math-
ematical, cross-case approach that can be applied as a
standalone method or in conjunction with other
methods (including RAMs) to support causal inference
and is available via the R-package cna [12–14].
CNA offers a new cross-case method for implementa-

tion and health services researchers exploring causality
when evaluating or implementing multifaceted interven-
tions in complex contexts. Investigators applying CNA
can conduct analyses across entire datasets to identify
specific combinations of components and conditions
that consistently lead to outcomes and can be applied to
large-n as well as small-n studies. Peer-reviewed,
implementation-related work specifically involving CNA
has started to emerge in implementation science, includ-
ing podium presentations at major implementation con-
ferences [15, 16], methods workshops dedicated
specifically to CNA [17], published protocols [18], and
full-length articles in established journals [19–23].
CNA is a new comparative approach that can be used by

the implementation research community to support causal
inference, answer research questions about conditions that
are minimally necessary or sufficient, and identify multiple
causal paths to an outcome. We present this article in three
parts. In part 1, we establish the theoretical foundation for
CCMs, define CNA as a method within the CCM family,
and describe what CNA (and CCMs) uniquely offer. In part
2, we illustrate CNA by applying the method to a publicly
available dataset that was originally analyzed using RAMs.
In part 3, we offer guidance for reporting CNA design and
results, and we discuss the limitations and challenges of
CNA. In the additional files accompanying this article, we
provide detailed descriptions of the steps and coding used
to conduct the analysis (see Additional file 1) and the ana-
lytic dataset used (see Additional file 2) along with the R
script (see Additional file 3) to allow for independent repli-
cation and validation of results.

Part 1: laying the theoretical foundation for CCMs
Defining causal inference in CCMs
CNA is one method within a class of CCMs used to
model complex patterns of conditions hypothesized to

Contributions to the literature

� Coincidence Analysis (CNA) represents a new mathematical,

cross-case method for researchers evaluating the implemen-

tation of complex interventions in dynamic settings.

� CNA can address multiple dimensions of real-world complex-

ity, including conjunctivity (where several conditions must

be jointly present to bring about an outcome) and equifinal-

ity (where different paths can lead to the same outcome).

CNA can also detect causal chains, where conditions lead to

an intermediary outcome, which then leads to the final

outcome.

� Intentionally designed to investigate different hypotheses

and uncover different properties of causal structures than

more traditional approaches, CNA can identify

implementation-related findings that might otherwise go

undetected.
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contribute to an outcome within a set of data. CCMs
search for causal relations as defined by a regularity the-
ory of causality, according to which a cause is a “differ-
ence-maker” of its effect within a fixed set of
background conditions. More specifically, X is a cause of
Y if there exists a fixed configuration of background fac-
tors Φ such that, in Φ, a change in the value of X is sys-
tematically associated with a change in Y. If X does not
make a difference to Y in any Φ, X is redundant to ac-
count for Y and, thus, not a cause of Y. The most influ-
ential theory defining causation along these lines is
Mackie’s INUS-theory [24], with refinements by Graßh-
off and May [25] and Baumgartner [26]. An INUS condi-
tion of an outcome Y is an insufficient but necessary
part of a condition that is itself unnecessary but suffi-
cient for Y. To use a common example for illustrating
INUS conditions: not every fire is caused by a short cir-
cuit—fires can also be started by, for example, arson or
lightning. However, a short circuit in combination with
other conditions—e.g., presence of flammable material
and absence of a suitably placed sprinkler—is sufficient
for a fire. In this example, the short circuit is an INUS
condition: it is a necessary, but itself insufficient, part of
a sufficient, but itself unnecessary, condition for a fire.
This particular causal path to a fire includes the combin-
ation of three specific conditions: presence of a short cir-
cuit, presence of flammable material, and absence of a
sprinkler. All three of these conditions are difference-
makers, for if one of them is missing, the fire does not
occur along this causal path.
Regularity theories account for the Boolean properties

of causation, which encompass three dimensions of
complexity. The first is conjunctivity: to bring about an
outcome, several conditions must be jointly present. For
example, in a study of high-performance work practices
and frontline health care worker outcomes, Chuang and
colleagues [27] found that no single high-performance
work practice was alone sufficient to produce the out-
come of high job satisfaction. Instead, a configuration
consisting of creative input, supervisor support, and
team-based work practices together accounted for 65%
of highly satisfied frontline health care workers [27].
Chuang and colleagues identified a second configuration
that also led to high job satisfaction: supervisor support,
incentive pay, team-based work, and flexible work [27].
Both configurations resulted in high job satisfaction in-
dependently of each other. These configurations illus-
trate equifinality, a second dimension of complexity
where different paths can lead to the same outcome.
The third dimension of complexity is sequentiality: out-
comes tend to produce further outcomes, propagating
causal influence along causal chains. For instance, high
job satisfaction of health care workers may, in turn, pro-
mote patient satisfaction [28].

Why use CCMs in implementation research? CCMs
study different properties of causal structures than
RAMs and thus are appropriate for exploring different
types of hypotheses. RAMs examine statistical properties
characterized by probabilistic or interventionist theories
of causation. In the probabilistic framework, X is a cause
of Y if, and only if, the probability of Y given X is greater
than the probability of Y alone and there does not exist
a further factor, Z, that explains (i.e., neutralizes) the
probabilistic dependence between X and Y [29, 30]. In
the interventionist framework, X causes Y if, and only if,
there exists an intervention on X that changes the out-
come Y while causes on other paths to Y are fixed. The
interventionist theory of causation is counterfactual in
that a case cannot simultaneously “receive” and “not re-
ceive” an intervention; instead, the intervention model
maps possible values of Y onto possible values of X, fo-
cuses on how variables X and Y relate to one another,
and generates average treatment effects over a popula-
tion [11, 31].
Conversely, CCMs trace Boolean properties of causal

structures as described by regularity theories of caus-
ation, according to which X is a cause of Y if, and only
if, X is an INUS condition of Y (see INUS definition
above) [11, 24]. CCMs study implication hypotheses that
link specific values of variables as “X = χi is (non-redun-
dantly) sufficient/necessary for Y = γi” [11, 14]. In this
way, CCMs, including CNA, model the effect of condi-
tions (e.g., high degree of X) on outcomes. This is a fun-
damentally different vantage point than the one adopted
by RAMs which examine covariation hypotheses that
link variables. Further, CCMs are case-oriented methods,
in which observations consist of bounded, complex en-
tities (e.g., organizations) that are considered as a whole
[32]. A case-based unit of analysis differs from the ap-
proach taken in RAMs, where cases are deconstructed
into a series of variables, and estimates represent the net
effect of a variable for the average case. As CNA and
other CCMs employ a case-based approach and thus can
be used to identify which interventions work in an array
of contexts, they present opportunities for implementa-
tion and health services research questions in particular.

Different types of CCMs
While CCMs have a common regularity theoretic foun-
dation, different CCMs rely on different a priori concep-
tions of outcome and causal factors and build causal
models in different ways. For example, Qualitative Com-
parative Analysis (QCA), in its standard implementation
that uses the Quine-McCluskey (QMC) algorithm [33,
34] requires identification of exactly one factor as out-
come. It begins by identifying maximal sufficient and ne-
cessary conditions of the outcome, which are
subsequently minimized using standard inference rules
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from Boolean algebra to arrive at a redundancy-free so-
lution composed of INUS conditions of the outcome
[10]. However, the QMC algorithm was not originally
designed for causal inference. One consequence is that
the non-observation of cases instantiating empirically
possible configurations of the analyzed factors, also
known as limited diversity, forces QMC to draw on
counterfactual reasoning that goes beyond available data,
sometimes requires assumptions contradicting the very
causal structures under investigation [35], and regularly
fails to completely eliminate redundancies in the pres-
ence of noise [14]. Moreover, QMC has built-in proto-
cols for ambiguity reduction when multiple models fit
the data equally well. Viable models are often eliminated
to reduce ambiguity without justification, which is prob-
lematic for causal discovery [36].

Advantages of using CNA
Coincidence Analysis (CNA) is a new addition to the
family of CCMs [37, 38]. It uses an algorithm specifically
designed for causal inference, thus avoiding the prob-
lems mentioned above. In particular, it does not build
causal models by means of a top-down approach that
first searches for maximal sufficient and necessary con-
ditions and then gradually minimizes them using the
QMC algorithm. Rather, CNA employs a bottom-up ap-
proach that first tests single factor values for sufficiency
and necessity, and then tests combinations of two, three,
etc. [13, 14]. All sufficient and necessary conditions re-
vealed by this approach are automatically minimal and
redundancy-free.
Additionally, CNA is designed to treat any number of

factors as endogenous and is therefore capable of analyz-
ing causal chains, or common-cause structures [39]. For
example, Baumgartner and Epple (2014) found in a
Swiss policy analysis that certain population, economic,
or political characteristics in some areas led to a higher
rate of prejudice and, in turn, discriminatory policy [39].
Analyzing causal chains may be advantageous if, for ex-
ample, an intervention A occurs as a result of other fac-
tors but is not the ultimate outcome of interest.
Identifying the full causal model, including which factors
produce A on the path to the ultimate outcome of inter-
est, is valuable when seeking to understand causal com-
plexity. CNA is the only member of the CCM family
that builds and evaluates models representing causal
chains.

Part 2: demonstrating CNA using publicly
available data
Data source
In March 2016, Rehn and colleagues reported the impact
of implementation strategies on human papillomavirus
(HPV) “catch-up vaccination” uptake in Sweden among

fifth- and sixth-grade girls [40]. The purpose of the ori-
ginal study was to estimate the impact of various infor-
mation channels and delivery settings on county-level
catch-up vaccine uptake to inform future vaccination
campaigns in Sweden.
The authors obtained county-level data on catch-up

vaccinations and the eligible population from adminis-
trative data. They collected implementation strategies
from county health care offices via an open-ended ques-
tionnaire emailed in 2012 asking respondents to list and
describe “information channels” used to reach eligible
girls and the settings in which they offered the vaccine.
A subsequent phone interview was conducted in 2014 to
update the lists.
Rehn and colleagues used regression analysis to esti-

mate county-level catch-up vaccine uptake as a function
of information channels and delivery settings. The au-
thors concluded that the availability of vaccines in
schools explained differences in county-level vaccine up-
take; no information channels were found to make a dif-
ference in uptake.
Rehn and colleagues defined the outcome and pre-

dictor variables as follows:
Outcome variable: County-level catch-up vaccine up-

take was defined as the percent of eligible girls born be-
tween 1993 and 1998 who received at least one dose of
vaccine by 2014.
Predictor variables: Ten variables represented informa-

tion channels and four variables represented the delivery
settings where the vaccinations were available (some
schools, all schools, primary health care centers, and
other health care centers). All 14 factors were dichoto-
mized with values of 1 (present) or 0 (absent).
All county-level data on vaccine uptake, information

channels, and delivery settings used for the CNA illus-
tration were reported in the article.

Methods
We re-analyzed the data using CNA. A step-by-step
guide for conducting CNA, using this study as an illus-
tration, is provided in a document accompanying this
article (see Additional file 1) as well as the analytic data-
set (see Additional file 2) and the R script (see Add-
itional file 3) used in the analysis.

Step 1: define, calibrate, and select the factors (i.e.,
outcomes and conditions) to create a data set
Vaccination rate represented the outcome of interest
and ranged from 49 to 84% across the 21 counties. We
selected 65% as the threshold defining “high” catch-up
vaccination rates after conducting sensitivity analyses in
which we varied the threshold for “high-uptake,” using
two different existing break points in the data: the 65%
cut-off generated the greatest diversity among cases for
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the conditions and the outcome and yielded a suffi-
ciently high number of cases featuring the outcome. We
coded the 21 counties into a new dichotomous outcome
called HI_UPTAKE where 1 = “catch-up vaccination rate
of 65% or higher” and 0 = “catch-up vaccination rate less
than 65%” (see Additional file 1 for details on the ration-
ale for each step in the analytic process). A secondary
analysis identified conditions leading to the absence of
the outcome (HI_UPTAKE = 0) because conditions that
prevent the outcome may differ from those that contrib-
ute to the presence of the outcome.
We prepared a dataset that included the uptake rates,

delivery settings, and implementation strategies as re-
ported by Rehn and colleagues (see Additional file 2 to
view the analytic dataset used in the Coincidence Ana-
lysis). We transformed a number of factors from the ori-
ginal dataset for use with CNA because in the original
dataset these factors had characteristics unsuitable for
CCM processing. For instance, the original data set con-
tained the factor “Primary health care centre” (PHC) that
was constantly present in all 21 counties (cases). Con-
stant factors like PHC can be automatically excluded as
difference-makers. Another delivery setting, “Other
health care center” (HC) was eliminated given limited
variation across cases. We combined “All schools” (“or-
ganized delivery of the vaccine in all schools in the
county;” AS = 1) and “Some schools” (“organized deliv-
ery of the vaccine in schools in some of the municipal-
ities in the county…;” SS = 1) into a new multi-value
ordinal factor called “SCHOOLS,” where SCHOOLS = 0
if AS = 0 and SS = 0; SCHOOLS = 1 if SS = 1 and AS =
0; and SCHOOLS = 2 if AS = 1. The resulting dataset
included 12 potential explanatory factors. These factors
could be combined into 6144 logically possible configu-
rations, which could not be covered to an informative
degree by the 21 cases included. Thus, the diversity
index for the original data, i.e., the ratio of observed con-
figurations to all possible configurations, was exceedingly
small. The smaller the diversity index, the more challen-
ging it is to draw informative configurational conclu-
sions. To improve the diversity index, we included a
subset of the 12 exogenous factors in our analysis. This
is analogous to maximizing degrees of freedom in RAM.
We selected schools (SCHOOLS) and four of the ten

information channels to include school-based informa-
tion (SBI), media coverage (MC), social media (SM), and
Cinema commercial/YouTube (CCY). Our rationale for
choosing these four implementation strategies was that
they were directly linked to school and digital media,
two immersive domains that are dynamic and interactive
where students and their parents commonly encounter
new information, and thus likely to be effective channels
for conveying information about why, where, how, and
when to access vaccinations

In our initial analysis plan, three of the seven cases
(counties) exhibiting the outcome (high uptake) instanti-
ated exactly the same configuration of conditions, leav-
ing only five observed configurations featuring HI_
UPTAKE = 1 out of a total of 48 logically possible con-
figurations. As we could not justify removing one of the
four selected information channels on a theoretical basis
alone, but still wanted to decrease the number of overall
factors in the analytic dataset (and thus increase the di-
versity index), we decided to assess if we could combine
two of the information channels into a single “meta-fac-
tor”—a common approach in CCMs to reduce the num-
ber of conditions without eliminating either of the
properties represented by these conditions from the ana-
lysis. There are six possible ways to pair four different
information channels. Accordingly, we created six differ-
ent datasets (i.e., analytic samples), each representing a
different pairing of two channels, the two remaining
channels and the outcome HI_UPTAKE. We coded the
new meta-factor in each analytic sample with the value 1
if, and only if, at least one of the two aggregated chan-
nels was present in a county (to view these six datasets,
see Additional file 2).

Step 2: perform CNA using the cna package in R [13]
Two parameters of fit—consistency and coverage—pro-
vide insight into the strength of the dependence between
conditions and the outcome. Consistency, with a score
ranging from 0 to 1, measures the degree to which the
cases that instantiate a configuration or a whole model
also instantiate the outcome [10]. Low-consistency
values indicate that the dependence between conditions
or models and the outcome is far away from a strict
Boolean (deterministic) dependence. Coverage scores
range from 0 to 1 and represent the proportion of cases
with the outcome that also instantiate a particular con-
figuration or whole model. Coverage measures a given
configuration’s or model’s empirical importance based
on the available data [10]. When applying CNA to the
dataset, we set our minimum consistency and coverage
scores to 1.0 [10]. However, it is important to note that
CNA, and CCMs generally, risk overfitting model solu-
tions when searching for maximal consistency and
coverage thresholds, which can lead to false positives
[41]. For this reason, consistency and coverage thresh-
olds should only be set to 1 if researchers have strong
reasons to assume that the data quality is very high (i.e.,
low levels of noise and measurement error); if that can-
not be assumed, then researchers can apply a search
strategy that systematically varies consistency and cover-
age thresholds to measure fit-robustness, or the degree
to which a model solution agrees with other models
identified at different consistency and coverage thresh-
olds in the same dataset [42].
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Results
Step 3: interpret results and refine model inputs if
necessary
Like QCA, CNA encourages an iterative approach where
researchers can run analyses, interpret results, and re-
define model inputs before finalizing a model set [32].
As such, we discuss our interpretation of the findings as
our iterative analyses progress.
Our analyses produced model ambiguity, meaning that

the data were insufficient to determine exactly which
causal structure was operative. Of the six analytic sam-
ples, three datasets yielded a total of five causal models
for HI_UPTAKE = 1, all of which featured maximal
consistency and coverage scores (see the R replication
script for a complete list of models). All models had the
following identical terms as part of their solution, where
“+” symbolizes the Boolean operator OR, “*” symbolizes
AND, and “↔” expresses sufficiency and necessity:

SCHOOLS ¼ 2þ SCHOOLS ¼ 1�MC
¼ 1↔HI UPTAKE ¼ 1 ð1Þ

The above expression (1) translates to “counties had
high catch-up vaccination rates if, and only if they of-
fered vaccination in all schools OR offered vaccination
in some (but not all) schools AND used a media cover-
age implementation strategy.” All five causal models
resulting from our analysis were supersets of (1), so we
concluded that the factor values contained in (1) were
causally relevant for high uptake. However, (1) was not a
complete model because it only achieved a consistency
score of 0.875 (i.e., only 87.5% of counties with this con-
figuration were high-uptake counties). Expression (1)
covers a county, Skåne, that exhibited the configuration
SCHOOLS = 1 * MC = 1 but was not a high uptake.
The other counties with this configuration, SCHOOLS =
1 * MC = 1, were always associated with high uptake of
vaccines. Thus, other factors unique to Skåne must be
missing from expression (1).
While our data were insufficient to identify the factors

that distinguished Skåne from other counties with the
same configuration, the five complete models inferred by
CNA provided five possible explanations. Interestingly,
all five of these solution models combined SCHOOLS =
1 * MC = 1 with the absence of other information chan-
nels. Only when SCHOOLS = 1 * MC = 1 was accom-
panied by SM = 0 or SBI = 0 or CCY = 0 was it
associated with high uptake with 100% consistency,
which could indicate these other information channels
produced a “backfiring” effect.
After further reviewing data for each county, we deter-

mined that the most plausible implementation strategy
to backfire was cinema commercials and/or YouTube.
Online media like YouTube can backfire because these

open-source platforms contain unvalidated content that
can appear automatically through newsfeeds or adver-
tisements, potentially overriding legitimate health-
related information [43]. Furthermore, we observed a
negative relationship between the presence of CCY and
the vaccination rate outcome in the underlying dataset.
As Fig. 1 shows, the presence of CCY was relatively
well-represented in the overall dataset: 8 of the 21 cases
had CCY = 1. In 7 of these 8 cases, HI_UPTAKE = 0.
The lone exception was the county of Jonkoping, where
the sufficient condition of SCHOOLS = 2 was also
present. For these reasons, we deemed the following
complete model to be the most plausible:

SCHOOLS ¼ 2þ SCHOOLS ¼ 1�MC
¼ 1�CCY ¼ 0↔HI UPTAKE ¼ 1 ð2Þ

Expression (2) translates to “counties had high catch-
up vaccination rates if, and only if they offered vaccin-
ation in all schools OR offered vaccination in some (but
not all) schools AND used a media coverage implemen-
tation strategy but not cinema commercials/YouTube.”
Expression (2) had perfect consistency and coverage
scores (1.0, respectively) and differentiated Skåne (a
county without high uptake) from high-uptake counties
that also had vaccinations available at some schools and
used media coverage. Figure 1 highlights the configura-
tions instantiating this model in the data.
Applying the same analytic approach to model the ab-

sence of the outcome yielded seven models for HI_UP-
TAKE = 0 such that six of these seven models had a
common core that corresponded exactly to the negation
of the core of the positive models:

SCHOOLS ¼ 0þ SCHOOLS ¼ 1�MC
¼ 0↔HI UPTAKE ¼ 0 ð3Þ

Expression (3) translates to “counties had no high
catch-up vaccination rates if, and only if they did not
offer vaccination in all schools OR offered vaccination in
some (but not all) schools AND did not use a media
coverage implementation strategy.” Expression 3 exhib-
ited 1.0 consistency and 0.93 coverage. Taken together,
these results provide substantive evidence that media
coverage is relevant for differentiating counties with and
without high vaccination uptake, adding additional infor-
mation to the regression results of the original study.

Discussion
The results of this CNA indicate that, under specific
conditions, information channels made a difference for
high vaccination uptake. This contrasts with the results
of the regression analysis from the original study, which
concluded that information channels made no difference
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in increasing vaccination uptake. Our results imply that
the availability of vaccination in some schools is only
sufficient for high vaccination rates if media coverage is
employed and certain other communication channels
are not used. In other words, the data contain enough
evidence to infer that when vaccination is available at
some but not all schools, availability must be comple-
mented by media coverage to achieve high uptake. The
data do not contain enough evidence, however, to have
absolute certainty which communication channels
should be avoided. Even so, cinema commercials and/or
YouTube might be the most plausible information chan-
nel to avoid; YouTube in particular might backfire and
reduce vaccination rates as a result of unsolicited con-
tent that undermines county-sanctioned media coverage
on vaccines.
Closely examining data from individual cases (coun-

ties) corroborate the theory of some conditions backfir-
ing with respect to producing high vaccination uptake.
Jonkoping provided vaccination in all schools, but only
achieved vaccination uptake among 65% of eligible girls,
as opposed to over 80% uptake achieved in the three
other counties with vaccination availability at all schools.
Notably, Jonkoping used two communication channels
(CCY = 1 and SM = 1) that were absent in the other
three counties (CCY = 0 and SM = 0).

In sum, the CNA results indicate that whenever vac-
cination is available at only some schools, media cover-
age make a difference for high uptake. Furthermore, the
common core of the resulting CNA models for HI_UP-
TAKE = 0 indicate that a lack of media coverage when
vaccinations are provided only in some schools make a
difference for lower vaccine uptake. By systematically
scrutinizing the configurations of implementation strat-
egies associated with high-uptake and low-uptake coun-
ties, CNA extends the conclusions drawn from Rehn
and colleagues’ regression model.
The data on vaccination uptake in Sweden do not

comprise multiple outcomes, and hence, CNA’s capacity
to uncover multi-outcome structures cannot be show-
cased with this example. Readers interested in multi-
outcome discovery with CNA are, instead, referred to
[39, 44], the first of which finds a causal chain and the
second a common-cause structure.
Our approach to setting consistency and coverage

thresholds in this study is consistent with the extant
CNA literature. Of note, however, is that ensemble strat-
egies have been newly proposed where consistency and
coverage thresholds are systematically varied across a
series of thresholds in order to measure “fit-robustness,”
the degree to which a specific model agrees with other
models identified at different consistency and coverage

Fig. 1 Overall model identified by Coincidence Analysis with 100% consistency and 100% coverage. *HI_UPTAKE = vaccination uptake > = 65%;
SCHOOLS = all schools (2) some schools (1) no schools (0). MC media coverage, CCY cinema commercial/YouTube, TI targeted information, SP
smart phone app, CW county website, SBI school-based information, LI letter/invitation, AD advertisement, SM social media, OHC online health
care consulting, HC health care center, PHC primary health care center
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thresholds in the same dataset [42]. While ensemble ap-
proaches to setting consistency and coverage thresholds
are still nascent, they appear highly promising as analytic
strategies that can help mitigate the risk of overfitting
models [41].

Part 3: tips for practitioners
Recommendations for reporting analyses and results for
CCMs
Variation in reporting study design, analysis, and results
exists in previously published peer-reviewed CCM litera-
ture. To advance the methodological rigor with which
CCMs are applied, we offer recommendations for de-
scribing design, analysis, and results for CCMs. We also
provide additional material in Additional files 1 and 2
accompanying this article to allow for independent repli-
cation of these analyses and findings.
We suggest that future studies and publications apply-

ing CCMs (1) describe the rationale for using the CCM
(e.g., CNA), (2) describe the rationale for selecting which
factors (outcomes and conditions) to include in the ana-
lysis, (3) describe the process used to assign cases to fac-
tor values [45, 46] (e.g., high vaccination uptake), (4)
specify the software (and version) used for analysis; (5)
describe the iterative analyses used to refine factors (e.g.,
different approaches to calibration) and models (e.g.,
adding/dropping factors), (6) list the number of models
generated in each iteration of the analysis and identify
commonalities across models, (7) report consistency and
coverage thresholds for final models along with ranges
for models not part of the final model(s), and (8) de-
scribe the rationale for selecting the final model(s).
In this article, we used conceptual knowledge of HPV

vaccination uptake and the existence of variability across
cases to select the factors to include in the initial ana-
lysis. Given the structure of the data, we relied on the
original binary factor calibration for all but one factor
(SCHOOLS), which was calibrated as a multi-value or-
dinal factor. Moreover, to improve the diversity index,
we explored all mutually exclusive combinations of two
factors representing information channels into a single
factor. We analyzed six datasets using the cna package
in R [13]. Five models reached perfect consistency and
coverage and, thus, fit the data equally well. All models
exhibited a common core, which we reported as deter-
minate causal inference supported by our data. At the
same time, we acknowledge that the common core did
not amount to a complete causal model. Based on theor-
etical considerations, which we explicitly described, we
then selected one of five viable completions as the most
plausible overall model. We reported all relevant model
fit scores for our preferred model and provide additional
files with detailed descriptions of each step in the ana-
lytic process (see Additional file 1), the analytic dataset

(see Additional file 2), and the R script (see Additional
file 3) to allow for independent replication and verifica-
tion of our results.

Limitations of CNA
CNA has several limitations of which implementation
researchers should be aware. First, although CNA sup-
ports causal inference, there are limitations to the extent
to which results may be generalized. Results can be con-
founded by unmeasured causes that are located on
causal paths to outcomes that do not go through any
measured factors. If the data cannot be assumed to be
homogenous in confounder distributions—meaning that
unmeasured factors do not affect all cases/configurations
equally—generalization becomes problematic given the
risk of over-interpreting the data or incorrectly inferring
a causal relationship. As with other CCMs, familiarity
with cases helps to evaluate generalizability—by, for ex-
ample, justifying that cases included in the analysis are
homogeneous with respect to potential confounders—
and to interpret solutions generated by mathematical
modeling. In the example dataset from Rehn and col-
leagues, it is possible a third factor may explain the
negative relationship between cinema commercials and/
or YouTube, for example. In this instance, researchers
can further explore the relationship between these fac-
tors and HPV vaccination uptake through qualitative in-
terviews or other methods to confirm findings.
Second, CCMs rarely uncover the data-generating

causal structures in full. Configurational data analyzed in
observational studies tend to be fragmented (i.e., exhibit
low diversity), so most logically possible combinations of
conditions are not present in the observed cases. Under
these circumstances, CCMs may reveal only portions of
the underlying causal structures. Thus, the fact that
some factor X is not contained in a CCM model must
not be taken to mean that X is causally irrelevant. Unless
there is reason to assume that the data are non-
fragmented, the absence of X from a model can only
mean that the data do not contain evidence for X’s rele-
vance (which is not the same as X’s irrelevance).

Conclusions
CNA offers new insights of potential high interest to im-
plementation researchers. We demonstrated the utility
of CNA using data previously analyzed with RAMs. The
authors of the original, RAM-based analysis indicated
that offering vaccination in schools increased county-
level vaccination uptake while no information channels
significantly increased vaccination uptake [40]. By con-
trast, CNA results indicated that under specific condi-
tions, information channels did make a difference for
high vaccination uptake. Specifically, our results imply
that higher vaccination rates are achieved by either (1)
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offering the vaccine in all schools or (2) offering the vac-
cine in some schools and using media coverage but not
certain other communication channels.
Compared to RAMs, CCMs have fundamentally differ-

ent methodological goals and search for different prop-
erties of causal structures. CCMs and RAMs answer
distinct types of questions. RAMs are useful for estimat-
ing the average influence of a specific variable on an out-
come while holding other variables constant. CCMs are
useful for identifying combinations of specific conditions
that may be on the same or different causal paths (i.e.,
are minimally necessary or sufficient) to an outcome. Of
the two CCMs, CNA was built expressly for causal infer-
ence and can be used to uncover causal chains under-
lying the data [13, 14, 39].
CNA has the potential to offer implementation re-

searchers alternative and more nuanced knowledge
about causal relationships when examining complex in-
terventions in settings with interdependent or interre-
lated factors. In particular, CCMs are well-suited for
implementation and health services research questions
regarding the implementation of multifaceted interven-
tions in complex, real-world settings, the dynamics of
which can be influenced by many factors acting in
combination.
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