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Abstract
Statistical network models such as the Gaussian Graphical Model and the Ising model have become popular tools to analyze
multivariate psychological datasets. In many applications, the goal is to compare such network models across groups. In
this paper, I introduce a method to estimate group differences in network models that is based on moderation analysis. This
method is attractive because it allows one to make comparisons across more than two groups for all parameters within a
single model and because it is implemented for all commonly used cross-sectional network models. Next to introducing the
method, I evaluate the performance of the proposed method and existing approaches in a simulation study. Finally, I provide
a fully reproducible tutorial on how to use the proposed method to compare a network model across three groups using the
R-package mgm.
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Introduction

Statistical network models such as the Gaussian Graphical
Model (GGM), the Ising model or Mixed Graphical Models
(MGMs) have become popular tools to analyze multivariate
cross-sectional datasets (Epskamp et al., 2016; Epskamp
et al., 2018; van Borkulo et al., 2014; Williams & Mulder,
2019; Haslbeck & Waldorp, 2020). In many of these
applications one is interested in comparing such network
models between two or more groups. For example, Fritz
et al. (2018) compared the relations between resilience
factors in a network model for adolescents who did or did
not experience childhood adversity; van Loo et al. (2018)
compared the relations between depression symptoms
across various environmental and genetic risk factors; and
Birkeland et al. (2091) investigated gender differences in the
relations between PTSD symptoms after terror attacks.

There are already several methods available to estimate
group differences in network models. The Network
Comparison Test (NCT; van Borkulo et al., 2017), which is
currently implemented for the GGM, the Ising model, and
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MGMs uses a permutation test to compare pairs of groups.
The Fused Graphical Lasso (FGL; Danaher et al., 2014),
which is currently available only for the GGM, compares
two or more groups by applying a penalty term to group
differences and performing model selection across different
penalties. Epskamp et al. (2020) proposed a method that is
based on iterative model search and pruning within the SEM
framework. Finally, one can compare GGMs across two or
more groups in a Bayesian framework by using a Bayes
factor or thresholding the posterior of group differences
(Williams et al., 2019).

In the present paper, I introduce a new method to
estimate group differences in network models that is
based on moderation analysis. Specifically, the grouping
variable is included as a categorical moderator variable,
and group differences are determined by estimating the
moderation effects. This method is attractive because it
allows one to make comparisons across more than two
groups for all parameters within a single model and because
it is implemented for all commonly used cross-sectional
network models. Next to introducing this method, I compare
the performance of all above-mentioned methods in a
simulation study, a comparison that is currently missing in
the literature. Finally, I provide a fully reproducible tutorial
on how to estimate group differences in network models
with the moderation method using the R-package mgm
(Haslbeck & Waldorp, 2020).
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Detecting group differences in network
models

I first review existing approaches to estimate differences in
network model parameters across groups and then introduce
the moderation approach.

Existing approaches

A popular method is the Network Comparison Test (NCT;
van Borkulo et al., 2017), which is based on a three-step
procedure: First, the network model of choice is estimated
separately on both groups A, B, and the differences between
the parameter estimates in both groups of a parameter
serve as the test statistics. Second, for each parameter
difference, a sampling distribution under the null hypothesis
that there is no difference in the population is created by
repeatedly assigning cases randomly to two groups with the
same sizes as A, B, and computing the differences in the
parameter estimates. This yields a sampling distribution that
is centered at zero, since the expected group differences
in the permuted groups are equal to zero. Finally, using a
specified significance threshold α, it is determined whether
the test statistic is significantly different from zero. An
advantage of this generic method is that it can be applied
to essentially any model. This method is implemented in
the R-package NetworkComparisonTest (van Borkulo et al.,
2017).

Epskamp et al. (2020) recently suggested a SEM-based
approach to estimating group differences that consists of
the following three steps. First, one estimates a model in
each separate dataset and removes non-significant partial
correlations. Second, a pooled model is estimated in which
each parameter is included that was included in at least one
of the individual models from the first step. Third, equality
constraints are freed in a step-wise fashion until the BIC of
the overall model does not improve any further. The model
at the end of this procedure is selected as the final model and
specifies the estimated group differences. This method is
available in the R-package psychonetrics (Epskamp, 2020).

Williams et al. (2019) proposed two Bayesian methods
to test for differences in parameters across groups. The
first method uses a Bayes factor to compare the hypothesis
that a given partial correlation is the same in all groups
vs. not. The second method computes the posterior of the
difference between partial correlations in two groups, and
uses a threshold α on the posterior to decide whether the
difference is reliably different from zero. Both methods are
implemented in the R-package BGGM (Williams &Mulder,
2019). Recently these methods have been extended to data
consisting of continuous, ordinal, and binary variables using
a semi-parametric copula model.

Yet another method is the Fused Graphical Lasso (FGL;
Danaher et al., 2014), which extends the Graphical Lasso
(Friedman et al., 2008) with an additional �1 penalty
that includes all group differences. The two penalties
are weighted by the regularization parameters λ1, λ2 and
can be selected using information criteria such as the
EBIC, or cross-validation. Thus, group differences are only
estimated to be present if they sufficiently increase model
fit relative to the additional parameters used (EBIC) or if
they increase the out-of-fold prediction error in a cross-
validation scheme. The FGL can be used for two or more
groups, and is currently implemented for GGMs. The R-
package EstimateGroupNetwork (Costantini & Epskamp,
2017) implements a grid search of λ1, λ2 values using EBIC
and cross-validation.

Finally, to test whether partial correlations in GGMs
are different across two groups, one can use traditional
frequentist methods. For example, one can obtain unbiased
estimates of partial correlations in both groups, and
transform them with Fisher’s Z-transformation to obtain
parameters that are approximately normally distributed
(Fisher, 1915). Subsequently, one can use the Z-score of
the difference together with a threshold α to test the
null hypothesis that the difference between the partial
correlations is zero. Some of the above methods are
also suited to directly test group differences in aggregate
parameters. For example, the NCT can be used to test
hypotheses about differences in density (average absolute
value of interaction parameters) across groups. In this
paper, I focus on estimating differences in individual model
parameters. However, once group differences of individual
parameters are estimated, they can always be aggregated to
evaluate hypotheses about aggregates of parameters such as
the network density.

Moderation approach

In this section, I show how to estimate group differences
using moderation with categorical moderators. I first
illustrate the idea with a simple regression example,
and then extend it network models. Consider the simple
regression problem:

Y = βYXX + ε, (1)

involving the variables X and Y , a parameter βYX and a
Gaussian error term ε.

I now introduce an additional categorical variable G,
which indicates group membership and can take on the
values 1, 2, and 3. We are interested in whether the
parameter βYX differs across the three groups, and therefore
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add the interaction between variables X and G to the model:

Y = βYXX + βYG2XI(G = 2)X + βYG3XI(G = 3)X + ε,

(2)

where I(G = k) is the indicator function for the group at
hand being group k. For example, if G is equal to 3, then
the terms I(G = 1) and I(G = 2) are equal to zero, and
I(G = 3) is equal to 1.

How do we obtain the main effect of X on Y in each
group from Eq. 2? In group 1, the main effect is equal
to βYX; in group 2, it is equal to βYX + βYG2X; and
in group 3, it is equal to βYX + βYG3X. We see that
by adding the grouping variable G as an interaction term
we obtained the main effect of X on Y for each group,
and therefore also the differences across groups. While
taking group 1 as the dummy category in this example
emphasizes comparisons between group 1 and the two
remaining groups, other comparisons can be computed in
a straightforward way from the estimates. For example, the
group difference between group 1 and group 2 is βYX +
βYG2X−(βYX+βYG3X) = βYG2X−βYG3X. In this example,
the grouping variable G had three categories (groups), but
the grouping variable can also be binary or have more than
three categories.

So far, I only considered group differences in main
effects. However, groups may also differ in their intercepts.
To evaluate such group differences, I include the indicator
functions also as main effects in the model. The intercept
of each group can then be obtained analogous to the effect
of X on Y in each group as shown above. Instead of
the dummy coding used here, one could also use effect
coding, which is a statistically equivalent parameterization
that allows to directly compare all groups to the grand
mean across groups (e.g., Alkharusi, 2012). This might be
desirable if the categorical variable is ordinal. However, in
that case one could also consider modeling the grouping
variable as a continuous variable, which requires less
parameters (Haslbeck et al., 2019). Note that the main
effects in regression models discussed here relate to
pairwise interactions between variables in network models.
For example, for the GGM the main effects can be
standardized to obtain partial correlations.

We now use the same principle to estimate group differ-
ences in network models. This is possible because network
models can be estimated with a pseudo-likelihood approach,
in which one estimates the conditional distribution of each
node, and then combines the estimates obtained from the
conditional distributions to the full network model (Besag,
1977; Meinshausen et al., 2006). In the case of the multivari-
ate Gaussian distribution and its implied Gaussian Graphical
Model (GGM) with p variables, estimating the conditional
distribution of a given variable Xi amounts to estimating p

multiple regression models:

Xi = βXiX1X1 + · · · + βXiXpXp + ε, (3)

in which each variable Xi, i ∈ {1, 2, . . . , p} is predicted by
all variables except itself.

Similarly to Eq. 2 in the simple linear regression
problem, we can add a grouping variable. Here we choose a
binary grouping variable G:

Xi = βXiX1X1 + βXiG1X1I(G = 1)X1 + · · · + βXiXpXp

+βXiG1Xp I(G = 1)Xp + ε. (4)

As mentioned above, in the pseudo-likelihood approach
each variable is predicted by all other variables in a multiple
regression model. This leads to two estimates for each
main effect: for example, we obtain the estimate βX1X4

from the regression on X1 and the estimate βX4X1 from
the regression on X4. These two estimates are estimates
of the same pairwise interaction between variables X1

and X4. These estimates can be standardized to obtain
the partial correlation ρ1,4 in the p-variate multivariate
Gaussian distribution (Epskamp et al. 2018). To arrive at
a single estimate, we aggregate them using the AND-rule
(take average) or the OR-rule (take average if both estimates
are nonzero, otherwise set to zero). Similarly, we obtain two
estimates for the interaction parameters which captures the
group differences.

The same procedure can be applied to the Ising model.
The only difference is that the nodewise regressions
are not linear but logistic regressions (Epskamp et al.
2016). More generally, the procedure can be applied to
Mixed Graphical Models (MGMs) (Yang et al. 2014),
which generalize both the GGM and the Ising model.
In this setting, each variable is a conditional exponential
family distribution (e.g., Gaussian, Binomial, Poisson), and
one can apply the above procedure by estimating the
appropriate regressions in the Generalized Linear Model
(GLM) framework. These models are generalized by higher-
order (or moderated) MGMs, which are described in detail
in Haslbeck and Waldorp (2020). Haslbeck et al. (2019)
introduced Moderated Network Models (MNMs) in more
detail for the special case of continuous variables. Indeed,
the model used here to estimate group differences is a
MNM with a categorical moderator. This makes the method
very flexible because it can be used within larger MNMs
that include several categorical and continuous moderators.
This can be an advantage because it potentially allows
researchers to answer several research questions by fitting
a single model instead of fitting initial network models
and evaluating group differences with separate follow-up
analyses.

When comparing the moderation approach proposed here
with the existing methods discussed in Section “Existing
approaches” in the previous section, the most similar

524 Behav Res  (2022) 54:522–540



method is the FGL, since it also uses regularization to
estimate group differences. The FGL jointly estimates sev-
eral GGMs using two penalty terms for partial correlations
and group differences in partial correlations. The moder-
ation approach proposed here uses a nodewise estimation
approach with a single �1-regularization term that includes
both main effects and interactions (which are interactions
and moderation effects, respectively, from a graph per-
spective). While joint estimation is typically preferable to
nodewise estimation, the latter selects a different regulariza-
tion parameter for each variable. This is advantageous when
variables differ a lot in how strongly connected they are and
how much those connections differ across groups.

Applicability of different approaches

Table 1 provides an overview of the applicability of the
methods so far discussed. The NCT allows one to compare
pairs of GGMs, Ising models and MGMs across two groups.
The hypothesis test based on Fisher’s z-transformation of
partial correlations is only applicable to pairs of GGMs. The
FGL allows to compare two or more groups of GGMs. In
principle, it could also be implemented for other models,
however, currently no such implementation is available. The
method based on the Bayes factor compares the hypotheses
that two or more partial correlations are the same or
not. The method based on thresholding the posterior of
differences between partial correlations can compare pairs
of GGMs. Using semi-parametric copula models, these two
approaches can be extended to ordinal and binary data,
however, they cannot handle nominal categorical variables
with more than two categories. The SEM-based approach

using partial pruning can compare two or more groups
and is applicable to the Gaussian and the Ising model.
However, detecting group differences between Ising models
is only computationally feasible if the number of variables
is relatively small (up to around 10).

Finally, the moderation approach allows one to compare
MGMs (and therefore also GGMs and Ising models)
for more than two groups. Note that, in principle, the
NCT, Fisher’s method, and the posterior difference method
can be applied repeatedly to compare more than two
groups. However, they cannot compare groups in a single
application of the method like the FGL, the Bayes factor
method and the moderation method.

Another advantage of the moderation approach is that
it naturally tests for group differences in all parameters
including intercepts. While estimating group differences
in intercepts could be added to most methods, the imple-
mentation of the moderation approach in the R-package
mgm and the partial pruning method in the R-package psy-
chonetrics (Epskamp, 2020) are currently the only methods
that allow to estimate group differences in intercepts.

Comparing performance of different
approaches

In this section I compare the performance of all above
discussed approaches in scenarios that are typical for
applied research. The goal is both to compare the relative
performance of the methods and to provide a general
overview of how difficult it is to estimate group differences,
which is currently missing in the literature.

Table 1 An overview of the adaptability of the applicability of the discussed methods; NCT = Network Comparison Test, Fisher = Hypothesis
test based on Fisher’s Z transform; FGL = Fused Graphical Lasso, Post Diff = Thresholding Posterior of Differences

The asterisk for Partial Pruning indicates that the method is only feasible for relatively few variables. The asterisk for the Bayesian methods
indicates that these methods cannot handle nominal categorical variables with more than two categories
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Simulation setup

I focus on estimating differences in GGMs and Ising models
across two groups, which represents the most common data
analysis problems in applied research and allows us to
compare all above discussed approaches.

Data generation

I create group differences in the following way: I first create
a network model for group 1, and then change a number
of parameters in this model to obtain the model for group
2. I then aim to recover those differences with the above
discussed methods.

The initial network of group 1 is created such that
it resembles the network models encountered in typical
psychological applications: I choose network models with
p = 17 variables, because this is the median number
(range 6 − 63) of variables in a recent network re-
analysis (Haslbeck & Fried, 2017). In the absence of any
general knowledge about network structures in psychology
I generate the pairwise dependency structure with a random
graph. However, I would not expect the specific type of
global graph structure to impact the performance of the
moderation method, since it is estimated in a nodewise
fashion. Instead, the only graph-characteristic that can
influence the performance of the method is the number
of neighbors of a given node. I return to this issue when
discussing the results of the simulation study. The edge
probability in the random graph is set to P(edge) = 0.2.
That is, on average around 27 of the 136 possible edges
are present. In the case of the GGM I assign a draw
from a uniform distribution U(−0.2, 0.4) to each of the
edges, which results in values of partial correlations that are
commonly observed in empirical data. I set all intercepts
to zero. The interaction parameters of the Ising model are
roughly three times larger than partial correlations (see
Appendix 1), and I therefore take draws from U(−0.6, 1.2)
in the case of the Ising model. To ensure that all binary
variables have a large enough variance, I set the threshold
of each node to the negative sum of edge-weights that
are connected to it divided by 1.5. This results in largely
negative thresholds, which is what is observed empirically
when estimating the Ising model in the {0, 1} domain.

In the second step, I create the model of group 2 by
randomly picking 20 interaction parameters of the model of
group 1, and adding �θ to each of them. This means that
20 out of 136 possible edges (which can be zero or nonzero
in group 1) are different across groups, which seems a
reasonable scenario for practical applications. Note that this
is the important level of sparsity in this simulation, since
we are interested in the performance of estimating group
differences. In the GGMs, I vary �θ ∈ {0.05, 0.1, 0.2},

in the Ising models I vary �θ ∈ {0.15, 0.3, 0.6}. In the
Gaussian case, in rare occasions the partial correlation
matrices were not positive definite. In these cases, I sampled
repeatedly until the partial correlation matrices of both
groups were positive definite.

In order to study performance as a function of sample
size, I vary the sample size of each group n ∈
{20, 37, 68, 233, 431, 795, 1467, 2708, 5000}, which are on
a logarithmic scale from 20 to 500. I chose this sequence
because it both covers the full range from extremely
poor to near-perfect performance, and covers the sample
sizes that are typical in psychological applications. I use
the above-mentioned methods with a number of different
specifications. All methods include tuning parameters that
allow one to make the method more liberal/conservative,
and which exact tuning parameter is selected in a simulation
study is therefore somewhat arbitrary. Here I chose the
default values in the respective software packages that are
typically used in practice to get a rough overview of the
performance of all methods.

Estimation

I run the NCT as implemented in the R-package Network-
ComparisonTest (version 2.2.1; van Borkulo et al., 2017)
with 1000 permutations (250 for the Ising model to render
the simulation feasible; see Appendix 3 for a demonstration
that this reduction does not impact performance), and I use
the EBIC for model selection with γ = 0.25 and evaluate
its performance with significance thresholds α = 0.05 and
α = 0.01. The FGL is estimated with the R-package Esti-
mateGroupNetwork (version 0.3.1; Costantini & Epskamp,
2017) using sequential search that first selects the λ for the
graphical lasso penalty, and then the λ for the fused lasso
penalty. To select regularization parameters in the FGL, I
use tenfold cross-validation and the EBIC with γ = 0.25.
The Partial Pruning method is run with α = 0.05 and α =
0.01 using the implementation in the R-package psychonet-
rics (version 0.9; Epskamp, 2020). For the two Bayesian
methods, I used the implementations in the BGGM-package
(version 2.0.3; Williams & Mulder, 2019). For the Bayes
factor method, I defined the cut-off value above which a dif-
ference is considered reliable as 1. In this method, I set the
standard deviation of the Gaussian prior distribution of the
group difference to 0.2. The second Bayesian method uses
the posterior of the differences between both groups, which
I threshold to zero if its 95% credible interval overlaps with
zero. Finally, I use the R-packagemgm version (version 1.2-
11; Haslbeck & Waldorp, 2020) for the implementation of
the moderation approach. I select the regularization param-
eter with either 10-fold cross-validation or the EBIC with
γ = 0.25. I also compare the performance of the algo-
rithm with the AND and the OR-rule. This is especially
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relevant in the implementation of the mgm-package, since
it runs a nodewise regression on each node, including the
moderator variable. This means that the regression on the
moderator variable includes many terms, which renders the
AND-rule very conservative. This design is run for 200
iterations. All simulations were performed with R version
4.0.2. The code to reproduce the simulation and all results
and figures is available on GitHub: https://github.com/jmbh/
NetworkGroupDifferences.

Evaluation

I evaluate performance with three different measures.
First, sensitivity, which is the probability that a true
group difference is recovered. Second, precision, which
is the probability that an estimated group difference is a
true group difference. These two measures capture how
well the methods estimate the presence/absence of group
differences. However, they provide a poor measure of how
close a given estimate is the true group difference. For
example, if the true group difference is 0 and we estimate
it to be 0.0001, this error will impact precision a lot,
even though the error in the parameter value is tiny, and
in practice it is unlikely that one would interpret such a
group difference. I therefore also consider the estimation
error, which I define as the average absolute value of the
difference between true group differences and estimated
group differences. For example, if there are two true
group differences �θ1,2 = 0.1, �θ6,3 = 0.3 and the
corresponding estimates are equal to 0 and 0.2, then the
estimation error is equal to (|0.1−0|+|0.3−0.2|)/2 = 0.1. I
report this estimation error separately for group differences
that are present/absent in the true model.

Simulation results

I report sensitivity (probability of estimating a true
group difference), precision (probability that an estimated
difference is a true difference) and mean absolute estimation
errors (|�θ − �θ̂ |) separately for edges that are different
or not different across groups. All methods were used in
all scenarios, except the partial pruning method was not
identified for the sample size n = 20. In addition, this
method failed to produce estimates in less than 1% of the
iterations of the simulation due to issues related with matrix
inversion.

Results Gaussian graphical model

Figure 1 displays those four performance measures for each
method for detecting group differences in GGMs, as a
function of the size of the group difference �θ and sample
size per group n.

I first focus on the estimation of true group differences
in columns one and three of Fig. 1. Sensitivity increases
for all methods, as expected, however at different rates. The
larger the true group difference �θ the quicker sensitivity
increases as a function of n, which is what one would
expect. Within each �θ -variation, the estimation methods
differ in how quickly sensitivity increases with n. That
is, the methods differ in how liberal/conservative they are.
What stands out is that the MNMwith cross-validation (CV)
and the OR-rule is most the liberal, and that the MNM with
EBIC and the AND-rule is the most conservative. Also, the
FGL approaches seem to be more liberal than the NCT,
which in turn is more liberal than the Fisher’s method.
The latter is followed by the Bayesian methods which have
a similar sensitivity as the partial pruning method. While
sensitivity tells us how well a method is performing in
determining whether a group difference is present or absent,
it does not tell us how close the estimate is to the true
difference.

The estimation error for true group differences in the
third column of Fig. 1 shows how close the estimates are to
the true group differences. We see that the methods without
regularization have a relatively large estimation error when
n is small. The regularized methods, on the other hand,
seem to never have an estimation error that is larger than
the true group difference �θ . This is because methods
without regularization can show errors both due to over-
and underestimation, while the methods with regularization
tend to show only error due to underestimation. Therefore
the largest error they can show is �θ . While the estimation
error provides additional information to sensitivity, the
two measures are of course strongly related: The higher
sensitivity, the lower the estimation error for present group
differences.

Next, we consider how well absent group differences are
estimated. We only display precision if differences were
estimated to be present in at least 90% of the iterations. This
is to avoid precision estimates that are based only on a few
iterations. I also do not show the performance of the Partial
Pruning method for n = 20, since the underlying model was
not always identified in this scenario. We see that precision
is slightly higher for larger group differences, which makes
sense because the presence of true group differences is
easier to estimate. We also see that the methods roughly
stack up in the reverse order compared to sensitivity, as one
would expect from methods that offer different trade-offs
between sensitivity and precision. The MNM methods with
AND-rule are very conservative, because they also include a
regression on the moderator variable, which includes a very
large number of terms and therefore the regularization sets
most terms to zero.

All methods seem to converge to a sensitivity of 1,
however, not all methods seem to converge to a precision
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Fig. 1 The sensitivity, precision, and estimation errors (separately
group differences that are present or absent in the true model) for
estimating differences in interaction parameters across groups, for
the compared approaches, as a function of �θ and the number of

observations n in each group. Precision is only displayed for those
scenarios in which it was possible to calculate in at least 10% of the
iterations. This occurs for scenarios with small n and conservative
approaches

of 1. This is at least the case for the FGL approaches and
some of the MNM approaches. However, precision does not
tell us how large the estimates of those false positive group
differences are. I therefore display the estimation errors for
absent group differences in the fourth column of Fig. 1.
For low n the unregularized methods show high estimation
errors, which tend to 0 as n increases. The regularized
methods show very low estimation errors for all n. This
shows that while these methods incorrectly estimate some
group difference to be present, these incorrect estimates are
extremely small. We also see that this estimation error does
not differ across �θ which makes sense, because the absent
edges do not vary across these scenarios.

While all methods are similar in that they offer different
trade-offs between correctly estimating present vs. absent

group differences and in that they are performing very
well for high n, there do exist differences in absolute
performance. To get a better picture of these, I display the
mean errors across sample sizes and �θ in Fig. 2.

The figure orders the methods from smallest to largest
estimation error for present group differences (black points).
When comparing these errors to the estimation errors for
absent group differences (grey points), we see that for many
methods there is a trade-off between the two estimation
errors. This is especially pronounced for the first six
methods: For example, the FGL with CV has low estimation
errors for present group differences, but high estimation
errors for absent ones. For the MNM method using CV and
the AND-rule the opposite is true. However, some methods
seem to perform worse overall, such as Fisher’s exact test,
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Fig. 2 The mean estimation errors aggregated over sample sizes and �θ , ordered from smallest to largest estimation error for present group
differences. The vertical lines indicate the 25% and 75% quantiles of the estimation errors

the Bayesian method based on thresholding the posterior of
group differences, and the partial pruning method.

Results Ising model

Figure 3 displays sensitivity, precision, and estimation
errors for each method for detecting group differences for
the Ising model, as a function of the size of the group
difference �θ and sample size n.

We again focus first on the estimation of present group
differences. Similarly to the GGM, sensitivity increases
fast with n with larger true group differences �θ . For the
estimation of group differences in the Ising model only the
NCT and the MNMmethods are applicable. Similarly to the
GGM results above, the most liberal method is the MNM
with CV and the OR-rule, and the most conservative method
is the MNM with EBIC and the AND-rule, for the same
reasons as in the GGM case. The remaining methods show
comparable sensitivity. The estimation error for present
group differences never exceeds the true group difference,
which is because both the NCT and MNM methods use
regularization which biases estimates of group differences
towards zero.

Next, we consider the estimation of absent group
differences. As expected, the precision of the methods
stacks up in reverse order compared to sensitivity. Again,
similarly to the GGM, some MNM methods do not seem to
approach 1 as n increases, but the estimation errors in the
fourth column show that these errors are very small across
all n.

Again, we inspect the estimation errors across sample
size and�θ to get a better picture of the overall performance
(see Fig. 4). Similarly to the Gaussian case, we observe a

trade-off between low estimation error in present vs. absent
group differences. For example, the MNM method with CV
and the OR-rule has the lowest error for present edges and
the highest error for absent edges, while the reverse is true
for the MNM method with the EBIC and the AND-rule.

Summary of results

To summarize, we saw that no method clearly outperforms
any other method, but that they offer different trade-
offs between correctly estimating present and absent
group differences. When considering estimation errors, no
method performs much worse than any other method,
and the method that does worse in estimating the present
differences, does best in estimating the absent ones (and
vice versa). If one is interested in estimating whether a
group difference is present or not, one needs to consider
sensitivity and precision. In that case, the considered
methods provide different trade-offs between the two error
measures, however, a few method show very low precision
(FGL, MNM methods with OR-rule).

The results above may suggest that these trade-offs are
mostly a function of the type of method. However, there
are also considerable differences within a given method,
depending on which tuning parameters are chosen. We
see this especially for the FGL and MNM methods. In
Appendix 2, I report additional simulation results for other
choices of tuning parameters of the remaining methods
(e.g., α = 0.01 vs. α = 0.05). This shows that the trade-off
between sensitivity/precision is both a function of the type
of method and the particular choice of tuning parameters.
Some methods do not seem to converge in precision;
however, the estimation errors show that the errors that lead
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Fig. 3 The sensitivity, precision, and estimation errors (separately
group differences that are present or absent in the true model) for
estimating differences in interaction parameters across groups, for
the compared approaches, as a function of �θ and the number of

observations n in each group. Precision is only displayed for those sce-
narios in which it was possible to calculate in at 10% of the iterations.
This occurs for scenarios with small n and/or conservative approaches

to low precision are very small. In general, we saw that a
considerable number of observations is necessary in each
group in order to recover small group differences. If group
differences are large, however, they can be picked up even
with small sample sizes per group around n = 100 to 200.
Finally, assuming that the relative scaling of GGM and Ising
model parameters I chose is reasonable, it is much harder to
detect group differences in the Ising model.

In this simulation, I kept the sparsity of the base-graph
constant at P(edge) = 0.2. If the estimation of group
differences is performed separately for each parameter, such
as in Fisher’s exact test, Partial pruning, and the Bayesian
methods, one would expect that the performance is largely
unaffected. However, if estimating a given parameter to be

present depends on whether other parameters are present in
the true model, such as in methods using regularization, one
would expect that the performance is affected. Specifically,
the estimation methods using regularization will become
more liberal if sparsity becomes smaller. This is because
the selected regularization parameters will be small, which
results in less parameters being shrunk to zero. These
predictions are verified in Appendix 4.

The runtime of all methods is relatively fast for the GGM,
with the exception of the FGL with cross-validation. For
the Ising model, the runtime of the NCT and the Bayesian
methods increases substantially with sample size, while the
runtime of the moderation approach remains relatively low
(for details see Appendix 5).
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Fig. 4 The mean estimation errors aggregated over sample sizes and �θ , ordered from smallest to largest estimation error for present group
differences. The vertical lines indicate the 25% and 75% quantiles of the estimation errors

Tutorial on estimating group differences in
mixed data with themoderation approach

In this section, I show how to use the R-package mgm
(Haslbeck & Waldorp, 2020) to estimate differences across
three groups in mixed data using the moderation approach.
To be able to share the data and therefore to make the tutorial
fully reproducible for the reader, I use simulated data. The
data consists of four continuous variables, two (nominal)
categorical variables with two and three categories, and a
categorical moderator with three categories, which serves
as the grouping variable. Appendix 6 describes how I
generated the dependencies between these variables.

The data are automatically loaded with the mgm-package
and can be accessed in the object dataGD. The dataset
contains 3000 observations, 1000 in each of the three groups
of the grouping variable in column 7:

library(mgm)

> dim(dataGD)

[1] 3000 7

> head(dataGD)

x1 x2 x3 x4 x5 x6 x7

[1,] 0.214 0.157 0 -0.624 1 0.105 1

[2,] 0.480 0.743 1 -0.273 1 0.428 1

[3,] 0.088 -0.129 1 1.326 0 -0.963 1

[4,] 0.444 -0.487 1 1.670 0 0.641 1

[5,] -0.363 -0.080 1 0.306 2 0.376 1

[6,] 0.123 -0.940 0 -0.605 0 1.000 1

In order to detect group differences in the Mixed
Graphical Model describing the relationships between
variables X1, X2, . . . , X6, we fit a moderated MGM with
the grouping variable X7 being specified as a categorical
moderator:

mgm_obj <- mgm(data = dataGD,

type = c("g", "g", "c", "g",

"c", "g", "c"),

level = c(1, 1, 2, 1, 3, 1, 3),

moderators = 7,

lambdaSel = "EBIC",

lambdaGam = 0.25,

ruleReg = "AND")

The argument type indicates the type of variable (“g” for
continuous Gaussian, and “c” for categorical) and level

indicates the number of categories of each variable, which
is set to 1 by convention default for continuous variables.
The moderators argument specifies that the variable in the
7th column is included as a moderator. Since we specified
via the type argument that this variable is categorical, it
will be treated as a categorical moderator. The remaining
arguments specify that the regularization parameters in
the �1-regularized nodewise regression algorithm used by
mgm are selected with the EBIC with a hyperparameter of
γ = 0.25 and that estimates are combined across nodewise
regressions using the AND-rule.

In order to inspect the MGMs in the three groups,
we need to condition the moderated MGM on the values
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of the three groups. This can be done with the function
condition(), which takes the moderated MGM object
and a list specifying on which values of which variables
the model should be conditioned on. Here we only have a
single moderator variable (X7) and we condition on each
of its values {1, 2, 3} which represent the three groups, and
save the three conditional pairwise MGMs in the list object
l_mgm_cond:

l_mgm_cond <- list()

for(g in 1:3) l_mgm_cond[[g]] <-

condition(mgm_obj, values = list("7" = g))

We can now inspect the pairwise MGM in each group
similar to when fitting a standard pairwise MGM (for
details see Haslbeck & Waldorp, 2020). Here I choose to
visualize the strength of dependencies in the three MGMs in
a network using the qgraph package (Epskamp et al., 2012).
We provide the three mgm objects as an input and set the
maximum argument in qgraph() for each visualization to
the maximum parameter across all groups to ensure that the
visualizations are comparable.

library(qgraph)

v_max <- rep(NA, 3)

for(g in 1:3) v_max[g] <-

max(l_mgm_cond[[g]]$pairwise$wadj)

par(mfrow=c(1, 3))

for(g in 1:3)

qgraph(input=l_mgm_cond[[g]]$pairwise$wadj,

edge.color = l_mgm_cond[[g]]

$pairwise$edgecolor,

layout = "circle", mar=c(2, 3, 5, 3),

maximum = max(v_max), vsize = 16,

esize = 23,

edge.labels = TRUE,

edge.label.cex = 3)

mtext(text= paste0("Group ", g), line= 2.5)

The resulting network visualization is shown in Fig. 5.
The edges represent conditional dependence relationships
and their width is proportional to their strength. The green
(red) edges indicate positive (negative) linear relationships.
The grey edges indicate relationships involving categorical
variables, for which no sign is defined (for details
see Haslbeck & Waldorp, 2020). We see that there
are conditional dependencies of equal strength between
variables X1 − X3, X3 − X4 and X4 − X6 in all three
groups. However, the linear dependency between X1 − X2

differs across groups: it is negative in group 1, positive in
group 2 and almost absent in group 3. In addition, there is
no dependency between X3 − X5 in group 1, but there is a
dependency in groups 2 and 3. Note that the equal strength
in dependencies between those two categorical variables in
groups 2 and 3 does not mean that the exact nature of these
dependencies is the same, because the edge weight is an
aggregate over a larger set of parameters specifying this
categorical-categorical interaction. In situations with many
(small) group differences a direct visualization of group
differences may be more clear. I provide such a visualization
for the present tutorial example in Appendix 7.

Alternatively to conditioning the moderated MGM one
can also inspect the parameters of the moderated MGM
directly. As with pairwise MGMs, this is possible to
inspect the (non-aggregated) parameter estimates of these
interactions with the function showInteraction(). In
this case, it is important to keep the interpretation of
pairwise and moderation effects in mind. If a given pairwise
dependency is moderated (i.e., differs across groups), then
the pairwise interaction indicates the pairwise interaction of
the reference group. The smallest value of the categorical
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Fig. 5 The conditional MGMs in the three groups obtained by condi-
tioning the moderated MGM on the values of the grouping variables.
Green edges indicate positive linear relationships, red edges indicate

negative linear relationships, grey edges indicate relationships involv-
ing categorical variables, for which no sign can be defined. The width
of edges is proportional to the strength of the dependency
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moderator variable is used as the reference category by
default.

Discussion

In this paper, I introduced a new way to estimate
group differences in statistical network models by treating
the grouping variable as a moderator. This method is
attractive because it allows to compare networks across
more than two groups, it is easy to implement for many
models, it can be used within larger MNMs, and is
very fast. In addition, I presented a simulation study that
evaluated the performance of the moderation method and
existing methods. Finally, I provided a fully reproducible
tutorial on how to compare an MGM across three
groups.

The simulation results showed that different methods
provide a different trade-off between correctly estimating
present and absent group differences. When considering
sensitivity and precision, we saw that the considered
methods showed different trade-offs between the two
measures: the higher a method scored on sensitivity, the
lower it tended to score precision. However, some methods
(FTL, MNM with OR-rule) show very low precision,
which may be unacceptable in some applications. When
considering estimation error, the methods again trade-
off between low errors for present vs. absent group
differences. Considering the estimation errors also showed
that methods with low precision can still have a very low
estimation error, because a group difference is counted as
incorrectly estimated to be present even if the estimated
group differences is extremely small. While all methods
trade-off estimation error on present vs. absent group
differences, some methods performed overall worse, such
as Fisher’s test and the Bayesian method based on
thresholding the posterior of group differences. The same
qualitative results held true for the Ising model, except
that no method showed overall poor performance in this
setting.

Now, which method should researchers use in practice?
I have shown that some methods have a somewhat
lower overall performance in the Gaussian setting, which
should consequently be avoided if the applied setting
resembles the one of the simulation in this paper. The
remaining methods offer different trade-offs between
correctly estimating present vs. absent group differences.
Which trade-off is more appropriate has to be decided
based on the research goals of the study at hand. For
example, in an exploratory study, it might be acceptable to

trade some precision for more sensitivity to detect group
differences. In addition, I showed in the simulations in
the appendix that the regularized methods are sensitive
to the sparsity of the networks: if a network is highly
connected, the regularization-based estimators become
more liberal. The running time was low in the Gaussian
case for all methods except the FGL method with cross-
validation. For the Ising model, the NCT and the Bayesian
methods took considerably longer to run than the MNM
methods for large n. However, if one analyzes only a
few data sets the running time is likely to be a minor
consideration.

There are several limitations about the reported simu-
lation study that require discussion. First, the group sizes
are equal, which is typically not the case in practice. I
assumed that the data is Gaussian, however in practice data
are often skewed. Similarly, in the Ising model I gener-
ated the true models such that all variables have reasonably
large variance, which is often not the case in empirical data.
The performance reported in the simulation study should
therefore be interpreted as the best-case scenario. Also, I
only considered comparisons between pairs of groups, in
order to be able to compare most of the currently used
methods. However, I expect that the performance is sim-
ilar for three or more groups, as long as the sample size
in each group remains constant. The effect sizes for group
differences (or moderation effects) are typically small in
observational behavioral datasets (e.g., Sherman & Pashler,
2019; Chaplin, 1997; McClelland & Judd, 1993). The true
effect sizes are therefore likely to be close to �θ = 0.05
or �θ = 0.15 for Gaussian and Ising models, respectively.
This suggests that one needs a relatively large sample size
to estimate group differences reliably in observational data.
Throughout the simulation study I focused on the com-
parison of interaction parameters. However, one could also
be interested in group differences in the intercepts. Such
differences are likely easier to estimate since they involve
lower-order interactions. While group differences can in
principle estimated for most of the methods considered in
this paper, implementations are currently only available for
the MNM methods and the partial pruning method. In the
implementation of the moderation approach used in this
paper, group differences were estimated regularized GLMs
with interaction terms. This means that one does not have
a theoretically guaranteed false positive rate α or confi-
dence intervals. However, one could also perform hypothe-
sis tests on the interaction parameters, or one could use the
desparsified LASSO (van de Geer et al., 2014) to obtain
unbiased sampling distributions to construct confidence
intervals.

533Behav Res  (2022) 54:522–540



An avenue for future research would be to find a
more elegant way to combine nodewise regressions in
the moderation approach. Currently, the AND-rule is
extremely conservative, because it includes the regression
on the grouping variable, which has a huge number of
parameters compared to the other two regressions. On
the other hand, the OR-rule is very liberal, since one
nonzero estimate out of three is sufficient to estimate a
group difference to be present. A better aggregation rule
could be to use an AND-rule only on the regressions that
do not predict the grouping variable. Another interesting
question is how the different methods compare on graph
structures that are different from random networks. While
methods such as Fisher’s test, partial pruning and the
Bayesian methods are likely to be affected relatively
little, there could be differences between the regularized
methods using nodewise (NCT, MNM) and global (FGL)
estimation.

To summarize, I introduced a newmethod to detect group
differences between network models based on moderation
analysis, which goes beyond existing methods in that
it allows one to compare all parameters in networks
across several groups and grouping variables, and is
available for the GGMs, the Ising models, and MGMs.
In addition, I provided the first comprehensive simulation
study comparing the performance of existing methods to
estimate group differences in network models. I hope that
these results help applied researchers to choose the best
method in a given situation and to better plan studies that
involve investigating group differences.

Appendix 1: Relative scaling of parameters
in GGM and Isingmodel

In order to make the simulation results for the GGM and
the Ising model somewhat comparable, I conducted the
following small simulation to gauge the relative size of
parameters in the two models. To do so, I simulate from
multivariate Gaussian distributions with five dimensions
that have a single nonzero correlation, and I vary the value
of this correlation between 0.05 and 0.80. Then I binarize
the data at the median and obtain unbiased estimates
for the Ising model in the {0, 1} domain. The simulation
is repeated 50 times. Figure 6 displays the relationship
between correlations in GGMs and parameters in the Ising
model.

We see that the relationship can be reasonably well
approximated with a linear function. The parameters of the
best fitting regression line are β0 = −0.16 and β1 = 3.3
(red line). I therefore choose the parameters and group
differences in the Ising model to be three times larger than
in the GGM.
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Fig. 6 The relative scaling of correlations in GGMs and parameters in
the Ising model. The red line indicates the best fitting regression line

Appendix 2: Additional GGM simulation
results

In Fig. 7 we present the results of additional variations of
the algorithms shown in Fig. 1. We show the performance
of the NCT, the Fisher’s method, and the Partial Pruning
method also for α = 0.01 instead of α = 0.05.We also show
the analytic solution of the Bayesian posterior difference
method. The key observation is that the sensitivity/precision
trade-off differs also considerably within methods, depend-
ing on the particular choice of hyperparameters.

Appendix 3: Performance of NCT as function
of number of iterations

In the simulation on estimating group differences in the
Ising model, we reduced the number of iterations of the
NCT from the default of 1000 in the NetworkComparison-
Test package (version 2.2.1; van Borkulo et al., 2017) to 250
in order to render the simulation feasible. This reduction
might negatively impact the performance of the NCT, which
would mean that we underestimate the performance of NCT
as it is commonly used for estimating group differences in
the Ising model.

I therefore performed a simulation study to determine the
effect of the number of iterations on the NCT performance.
To render the simulation feasible, I pick a single condition
(n = 500, �θ = 0.3) from the simulation study reported
in the main text, and vary the number of iterations in
eleven steps from 50 to 1000. Figure 8 displays the
four performance measures, averaged over 50 simulation
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Fig. 7 The sensitivity, precision, and estimation errors (separately group differences that are present or absent in the true model) for estimating
differences in interaction parameters across groups, for the compared approaches, as a function of �θ and the number of observations n in each
group
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Fig. 8 The sensitivity, precision, and estimation errors (separately group differences that are present or absent in the true model) for n = 500 (per
group) and �θ = 0.3. All other model specifications are as described in Section “Simulation setup”
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iterations, separately for the four performance measures as
a function of the number of iterations in NCT. We see that
the performance of the NCT is unaffected by the number
of iterations in the considered range. This means that the
reduction of the iterations from 1000 to 250 in the main
simulation does not lead to an underestimation of the NCT
performance in detecting group differences in the Ising
model.

Appendix 4: Performance of methods with
different sparsity

In the simulation study reported in the main text, we
fixed the sparsity of the base network of group 1 to
P(edge) = 0.2. Here we discuss how the sparsity of the
model influences the different methods for estimating group
differences. We would expect that methods that determine
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Fig. 9 The sensitivity, precision, and estimation errors of all methods for different levels of sparsity of the base graph and different sample sizes
per group, for a fixed �θ = 0.1
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group differences locally are not affected by sparsity. For
example, Fisher’s exact test considers partial correlations
separately, and hence it is not directly influenced by how
many other partial correlations are nonzero. Similarly,
the Bayesian methods using the Bayes factor and the
thresholding of the posteriors of the differences, and the
partial pruning method determine group differences locally.

In contrast, the FGL- and the MNM-based methods are
determining group differences by estimating the complete
model. Here sparsity matters for the following reason:
The lower sparsity, the more parameters are nonzero,
which means that those methods will select a smaller
regularization parameter. This results in higher sensitivity
for pairwise interactions (see Appendix F in Haslbeck et al.,
2019 for an illustration of the same effect). The same
holds for moderation effects (i.e., group differences), which
are parameters in the same model. Of course, this higher
sensitivity comes at the cost of lower precision. The NCT is
an in-between case. It tests group differences locally, but it
uses regularization. If sparsity is high and most parameters
are zero, the regularization parameters are high, and many
parameters get set to zero. This reduces sensitivity, because
group differences of parameters close to zero are not being
detected. One would therefore expect that NCT is more
affected by varying sparsity than the local methods, but less
than the FGL- and MNM-based methods. In addition, one
would expect that the biggest differences are for small n.

To evaluate these theoretical expectations empirically,
I ran another simulation study for the Gaussian case in
which I held �θ constant at 0.1 and varied P(edge) ∈
{0.05, 0.40, 0.60}. In all other aspects the simulation is the
same as the one reported in the main text, except that the
simulation was run for 100 iterations instead of 200. I then
combined the results with the ones from the main text where
�θ = 0.1 in Fig. 9.

As expected from theory, the performance of the local
methods is largely unchanged by the variation of sparsity,
while the global methods become more liberal with
increasing sparsity. Note that we could also vary another
type of sparsity, which is the sparsity of group differences.
Since these are referring to moderation effects instead of
pairwise interactions in the overall model, varying this type
of sparsity would have the same effect as the sparsity of the
base-graph explored here.

Appendix 5: Runtime of different methods
as function of sample size

Figure 10 displays the runtime of all methods in minutes as
a function of sample size per group for the GGM.
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Fig. 11 The runtime (minutes) of all methods as a function of sample
size per group for the GGM
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Fig. 10 The runtime (minutes) of all methods as a function of sample size per group for the GGM. Left panel: all methods; right panel: all methods
except the FGL with CV
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We see that all methods run fairly quickly below
one minute. The only exception is the FGL with cross-
validation. The reason is that searching the grid over two
regularization parameters is computational very expensive,
even using the sequential search used in our simulation.

Figure 11 displays the runtime of all methods in minutes
as a function of sample size per group for the Ising model.
We see that the runtime of the NCT and the Bayesian
methods increase substantially with sample size. In contrast,
the runtime of the moderated regression-based approach
grows only slowly with sample size.

Appendix 6: Generation of data used in
tutorial

This appendix describes how I generated the data used in the
tutorial. To generate the data in group 1, we used the DAG
shown in Fig. 12 for mixed variables.

To generate data for group 2, I changed the linear effect
of X1 on X2 from −0.5 to 0.5, and I changed the probability
table for the relationship between X3 and X5 to

In order to generate data for group 3, I adapted the model
of group 1 by removing the linear effect of X1 on X2 and by

changing the probability table for the relationship between
X3 and X5 to

Thus in the population model there are two dependencies
that differ across groups. The dependency between the
continuous variables X1 and X2 is negative in group 1,
positive in group 2 and absent in group 3. The dependency
between the categorical variables X3 and X5 is present
in different forms in groups 2 and 3, and it is absent
in group 1 (all six cells have the same probability of
1
6 ≈ 0.166).

I sampled 1000 observations from each DAG and
combined them into the dataset used in the tutorial. The
code to generate this dataset with the model described
above is available on GitHub: https://github.com/jmbh/
NetworkGroupDifferences.

Appendix 7: Visualization of group
differences in networks

In the tutorial I displayed group differences by showing the
parameters in each group next to each other in a network
visualization. However, when there are many and many
small differences, it might be better to instead display the

1

2 3

4 5

6

Fig. 12 The definition of the mixed DAG used to generate the data for group 1
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Fig. 13 An alternative visualization of group differences in edge-weights: Networks of the differences in edge-weights between group 1 - group
2, group 2 - group 3, and group 2 - group 3 (clockwise)

differences in parameters across pairs of groups. We provide
such a visualization in Fig. 13.
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Meinshausen, N., Bühlmann, P., & et al. (2006). High-dimensional
graphs and variable selection with the lasso. The Annals of
Statistics, 34(3), 1436–1462.

Sherman, R., & Pashler, H. (2019). Powerful moderator variables in
behavioral science? Don’t bet on them (version 3).

van Borkulo, C. D., Borsboom, D., Epskamp, S., Blanken, T. F.,
Boschloo, L., Schoevers, R. A., & et al. (2014). A new method for
constructing networks from binary data. Scientific Reports, 4(1),
1–10.

van Borkulo, C. D., Boschloo, L., Kossakowski, J., Tio, P., Schoevers,
R. A., Borsboom, D., & et al. (2017). Comparing network
structures on three aspects: A permutation test. Manuscript
submitted for publication.
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