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Proliferative diabetic retinopathy (PDR) involves persistent, uncontrolled formation of
premature blood vessels with reduced number of pericytes. Our previous work showed
that advanced glycation endproducts (AGEs) induced angiogenesis in human umbilical
vein endothelial cells, mouse retina, and aortic ring, which was associated with moesin
phosphorylation. Here we investigated whether moesin phosphorylation may contribute
to pericyte detachment and the development of PDR. Primary retinal microvascular
pericytes (RMPs) were isolated, purified from weanling rats, and identified by cellular
markers a-SMA, PDGFR-b, NG2, and desmin using immunofluorescence microscopy.
Effects of AGE-BSA on proliferation and migration of RMPs were examined using CCK-8,
wound healing, and transwell assays. Effects on moesin phosphorylation were examined
using western blotting. The RMP response to AGE-BSA was also examined when cells
expressed the non-phosphorylatable Thr558Ala mutant or phospho-mimicking
Thr558Asp mutant of moesin or were treated with ROCK inhibitor Y27632.
Colocalization and interaction between CD44, phospho-moesin, and F-actin were
observed. Experiments with cultured primary RMPs showed that AGE-BSA inhibited
the proliferation, enhanced the migration, and increased moesin phosphorylation in a
dose- and time-dependent manner. AGE-BSA also triggered the rearrangement of F-actin
and promoted the interaction of CD44 with phospho-moesin in RMPs. These effects were
abrogated in cells expressing the non-phosphorylatable moesin mutant and the
application of ROCK inhibitor Y27632 attenuated AGE-induced alteration in cultured
RMPs by abolishing the phosphorylation of moesin. However, those AGE-induced
pathological process occurred in RMPs expressed the phospho-mimicking moesin
without AGE-BSA treatment. It is concluded that AGEs could activate ROCK to
mediate moesin phosphorylation at Thr558, and resulting phospho-moesin interacts
with CD44 to form CD44 cluster, which might stimulate the migration of RMPs and
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subsequent RMP detachment in microvessel. This pathway may provide new drug targets
against immature neovessel formation in PDR.
Keywords: advanced glycation endproducts, rat retinal microvascular pericyte, moesin, CD44, migration,
immature neovascularization
INTRODUCTION

Diabetic retinopathy is one of the most common complications of
diabetes, affecting roughly one third of adults with diabetes and
causing a large proportion of cases of adult blindness (1–3).
Symptoms of diabetic retinopathy include blurred vision, the
appearance of dark spots, the perception of “floaters” in the field
of vision, eye pain, double vision, reduction in low-light perception,
sudden vision loss, and even complete blindness (4). The non-
proliferative form of diabetic retinopathy involves microaneurysm
formation and intraretinal hemorrhage but not abnormal retinal
neovascularization. This form can progress to proliferative diabetic
retinopathy (PDR), in which proliferation of endothelial cells leads
to uncontrolled neovascularization and sprouts in the retina. This
can lead to blood leakage from immature vessels into the vitreous,
greatly increasing the probability of vision loss (4, 5).

Pericytes help to ensheath the retinal microvasculature and
protect endothelial cells from hypoxic insults and angiogenic
stimuli (6). The early stage of PDR involves the loss of retinal
pericytes when pericytes undergo apoptosis or migrate into the
perivascular parenchyma. Pericytes are considered critical for
microvascular control (7). During normal angiogenesis, two
sprouts join and initiate blood flow in the newly formed loop,
and subsequent interactions between endothelial cells and
pericytes trigger the construction of new basement membrane,
leading to vessel maturation and stabilization (8, 9). Loss of
pericytes leads to capillary failure and chronic hypoxia, followed
by aberrant neovascularization (4, 10–12). The resulting
neovessels are malformed and show a markedly increased
permeability and propensity to rupture (13), which triggers an
even greater extent of aberrant angiogenesis in a vicious cycle.

Advanced glycation end products (AGEs), the biochemical end
products of non-enzymatic glycosylation (14), induce pericyte
loss, and up-regulate vascular endothelial growth factor (VEGF)
(15), allowing endothelial cells to proliferate and thereby
facilitating excessive angiogenesis. This may explain why AGEs
are implicated in PDR (16–18). Studies are needed to elucidate
how AGEs induce pericyte loss, which may partly involve
apoptosis (19). It is also necessary to further verify if AGEs play
a role in low pericyte coverage of immature neovessel during the
development of PDR (20, 21). Such studies might provide some
new clues for the management of PDR.

As an important members of ezrin/radixin/moesin protein
family (ERM), moesin helps to regulate cell shape and migration
by linking filamentous actin to membrane proteins, such as
CD44, on the cell surface (22–24). ERM is of great relevance in
the organization of the cytoskeleton, serving as cross linkers
between the cytoskeleton and plasma membrane through
binding sites for membrane molecules on the N-terminal
domain (4.1 protein and ERM [FERM]) and actin-binding
n.org 2
sites on the COOH terminus (25, 26). The COOH-terminal
domain may form an intramolecular band to the NH2-terminal
4.1 ERM homology domain or may bind to F-actin, depending
on the phosphorylation state of a conserved threonine residue
(Thr567 in ezrin, Thr564 in radixin, and Thr558 in moesin) (27).
Our previous studies have indicated the role of moesin Thr558
residue (T558) phosphorylation in AGE-induced angiogenesis
and neovessel immaturation in vivo and ex vivo mouse models
and the drop out of pericytes from retinal microvessel and the
detachment of pericytes in neovessel have also been observed in
AGE-treated mice and aortic rings (28). It is interesting to
elucidate whether moesin and its phosphorylation also occur in
pericytes and play a role in AGE-induced pericyte dysfunction.

It has been revealed that a specific receptor for AGEs (RAGE) is
critical in AGE-induced cellular responses. RhoA kinase (ROCK) is
a typical upstream activator of moesin phosphorylation. Our
previous studies have also shown that AGE-induced activation of
RAGE-RhoA/ROCK signaling pathway targets moesin and plays a
important role in AGE-induced moesin T558 phosphorylation and
subsequent angiogenesis in vascular endothelial cells (24, 29). We
speculated that this ROCK-related pathway is also involved in
AGE-induced moesin phosphorylation in retinal pericytes.

CD44 is the receptor molecule of extracellular matrix protein
and polysaccharide, as well as an important regulator in the
process of angiogenesis. CD44’s functional state of scatter or
cluster in the cells might play a critical role in the formation of
heterogeneous junction between endothelial cells and pericyte
during the maturation of neovessels (30, 31). We hypothesized
that the interaction between moesin and CD44 might be
perturbed by AGE stimulation and further affects the
attachment of pericyte with endothelial cell in neovessel.
MATERIALS AND METHODS

Chemicals
Fetal bovine serum (FBS), trypsin, penicillin, streptomycin, and
Dulbecco’s modified Eagle’s medium (DMEM) were from Gibco
BRL (Grand Island, NY, USA). Rabbit antibodies against moesin
phosphorylated on Thr558, desmin, and CD44 were from Abcam
(Cambridge, UK). Mouse antibody against total moesin and the
FLAG epitope were from Cell Signaling Technology (Beverly, MA,
USA). Antibody targeting NG2-Cy3 conjugate was purchased
from Millipore (St. Louis, MO, USA). The following antibodies
were from Santa Cruz (CA, USA): rabbit anti-PDGFR-b, mouse
anti-GFAP and mouse anti-von Willebrand factor (vWF).

Secondary antibodies for immunoblotting were manufactured
by Sigma (St. Louis, MO, USA). FITC-anti-rabbit IgG second
antibody was from Molecular Probes (Life Technologies,
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Carlsbad, CA, USA) and mouse anti-a-SMA was from Sigma.
ROCK inhibitor Y27632 was from TargetMol (USA). The Cell
Counting Kit (CCK)-8 was from Dojindo Laboratories
(Kumamoto, Kyushu, Japan). Other chemicals were from Sigma
unless otherwise indicated.
Preparation of Advanced Glycation
Endproduct-Bovine Serum Albumin
AGEs in all experiments were administered in the form of AGE-
BSA, prepared in vitro as described (32) according to the
protocol (33). Briefly, bovine serum albumin (BSA; 1.75 mg/
ml, pH 7.4) was incubated in phosphate-buffered saline (PBS)
with D-glucose (100 mmol/L) at 37°C, while control albumin was
incubated without glucose. After 8 weeks of incubation, both
solutions were extensively dialyzed against PBS and purified.
Endotoxin content was less than 0.5 EU/ml in both solutions
based on a limulus amoebocyte lysate assay (Sigma). AGE
content of AGE-BSA was 72.032 U/mg protein measured by
spectrofluorometry, while AGE content of bovine serum albumin
was less than 0.9 U/mg protein.
Animals
Three-week-old male weanling rats were provided by the
Laboratory Animal Centre of Southern Medical University
(Guangzhou, China). All experimental procedures were
conducted in accordance with the ARVO Statement for the
Use of Animals in Ophthalmic and Vision Research, and were
approved by the Institutional Animal Care and Use Committee
of Southern Medical University.
Isolation and Identification of Retinal
Microvascular Pericytes
Primary retinal microvascular pericytes (RMPs) were obtained
from retinal microvessels of 3-week-old male weanling rats as
described (34). Briefly, fresh rat retinas were isolated and minced
into homogeneous fragments in precooled PBS buffer. The
homogenates were then suspended and incubated in 0.2% type
I collagenase at 37°C for 20 min. To stop digestion, DMEM
containing low glucose (5 mmol/L) and 20% FBS (L-DMEM-20)
was added, the suspension was mixed gently, then filtered
sequentially through 100-mm and 55-mm filters. The final
filtrate was collected and centrifuged at 500 g for 5 min at 4°C.
The precipitated pellets were re-suspended in DMEM containing
20 mmol/L glucose and 20% FBS, then seeded in culture dishes.
After 72 h of incubation, the dishes were rinsed to remove loosely
adherent cellular contamination, and the medium was replaced
with L-DMEM-20 on day 3–5. When cells reached 80–90%
confluence, they were digested with trypsin, and digestion was
halted after 1–2 min when contaminating cells began to detach.
The detached cells were removed by gently swirling the dish,
discarding the medium, and adding new trypsin to cells for
passage. The identity and homogeneity of RMPs were assessed
based on positive staining for antibodies against a-SMA,
PDGFR-b, NG2, and desmin. Endothelial and glial cells were
Frontiers in Endocrinology | www.frontiersin.org 3
ruled out based on negativity of vWF or GFAP, respectively.
RMPs can be successfully cryopreserved and recultured without
loss of typical features; they can be repeatedly passaged nine
times without obvious loss of characteristic phenotype.
Retinal Microvascular Pericyte Viability
Assay
Cell viability was assessed using the CCK-8 kit. RMPs in 96-well
plates were treated as described, then the medium was replaced
with 10% CCK-8 solution for 3 h at 37°C. The absorbance was
measured at 450 nm. RMP proliferation was evaluated directly
based on optical density (OD).
Retinal Microvascular Pericyte Migration
Assay
Cell migration was assessed using scratch wound healing and
transwell assays. In the scratch assay, 5 × 105 cells were cultured
in 24-well plates for 48 h in complete medium in order to form
monolayer. The monolayer was scratched using a 10-ml pipette
tip to leave a linear wound, then treated as described for 24 h at
37°C. Images were captured immediately and also at 24 h after
treatment as described. In three fields of view per slide, RMP
migration was calculated as (open image area at 24 h/initial open
image area) x 100%.

In the transwell assay, 100 ml cell suspension at 5 × 105/ml was
plated in the upper chamber of a transwell plate (Corning, NY,
USA) containing a filter with 8-mm pores. Then 500 ml of fresh
medium containing 100 mg/ml BSA or AGE-BSA (25, 50, 100 mg/
ml) were added to the upper chamber medium. Culture medium
was added to the lower chamber as chemoattractant, and cells
were incubated for 24 h at 37°C. Migrating cells passed through
the polycarbonate film, while non-migrating cells were wiped
away using swabs. The migrated cells were stained with crystal
violet and then photographed and counted with a microscope.
Western Blot Analysis
Total cellular extracts were lysed with lysis buffer on ice and
sonicated briefly. Protein sample concentrations were measured
by BCA protein assay kit. Samples were separated by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
and transferred to polyvinylidene fluoride (PVDF) membranes.
Membranes were blocked with 5% BSA in TBS containing 0.5%
Tween 100 (TBS-T) for 1 h at room temperature. Incubation with
relative primary antibody was performed overnight at 4°C on a
rocker, followed by incubation with horseradish peroxidase (HRP)-
conjugated secondary antibody for 1 h at room temperature. Protein
bands were visualized by chemiluminescence. Densitometric
analysis was performed using a Kodak IS2000R Imaging Station.
Co-Immunoprecipitation of CD44 and
Phospho-Moesin
RMPs were washed three times in precooled PBS and resuspended
in lysis buffer on ice for 20 min. Lysates were centrifuged at
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12,000 g at 4°C for 15 min. Then the supernatant was incubated
with goat antibody against CD44 at 4°C overnight. Prewashed
protein A/G beads were added to the mixture and incubated for
3 h at 4°C on a rotator. After centrifugation, beads were washed
five times with lysis buffer. Isolated protein complexes were
denatured for 5 min at 95°C, subjected to SDS-PAGE and
transferred to western blotting, followed by immunoblotting
with anti-phospho-moesin or anti-CD44 antibody. The bands
were detected with HRP-based chemiluminescence.
Site-Specific Mutagenesis of Moesin and
Transfection of Plasmids Into Retinal
Microvascular Pericytes
Based on our previous analysis of moesin mutants (24, 32), we
engineered plasmids encoding a non-phosphorylatable Thr558Ala
mutant of moesin (pcDNA3/FLAG-moesinThr558Ala, T558A)
and a phospho-mimicking Thr558Asp mutant (pcDNA3/FLAG-
moesinThr558Asp, T558D). The mutations were confirmed by
nucleotide sequencing. Plasmids were purified for transfection
using an EndoFree Plasmid Midiprep Kit (Omega Bio-tek,
Norcross, GA, USA). RMPs were plated at 2×105 cells per well
in a six-well plate on the night before transfection. DNA (2 mg)
was incubated with 8 ml lipofectamine LTX and 2 ml Plus Reagent
(Invitrogen, Carlsbad, CA, USA) in 500 ml Opti-MEM at room
temperature for 30 min. The cultured cells were washed once with
Opti-MEM, incubated with the DNA-lipid complexes for 48 h,
then stimulated with AGE-BSA (100 mg/L, 24 h).
Immunofluorescence Microscopy
Gelatin-coated glass-bottomed microwell plates (MatTek, MA,
USA) were used to culture RMPs as described above. Cells were
fixed for 10 min at room temperature in PBS containing 4% (w/v)
paraformaldehyde, then permeabilized in 0.5% (w/v) Triton X-
100. The cell layers were washed in PBS twice and blocked in 5%
BSA for 1 h. After overnight incubation with 100 ml of primary
antibody against phospho-moesin (diluted 1:200) or CD44
(diluted 1:100), the cells were washed three times with PBS
before incubation with 100 ml of a 1:200 dilution of FITC- or
rhodamine-conjugated secondary antibody in PBS containing 5%
(w/v) BSA for 1 h at room temperature. In the case of F-actin
staining, rhodamine-phalloidin was used at a concentration of 2
U/ml in PBS. After 2 h of incubation, the specimens were again
washed three times with PBS. Cells were further incubated with
diamidino-2-phenylindole (DAPI, 1:1,000) for 15 min and then
washed with PBS. The staining results were imaged using a Zeiss
LSM780 laser confocal scanning microscope (Zeiss, Germany).
Statistical Analysis
Data were normalized to control values and expressed as mean ±
SD. The results were analyzed by one-way analysis of variance
(ANOVA) followed by Tukey’s test. The level of significance was
set at P < 0.05.
Frontiers in Endocrinology | www.frontiersin.org 4
RESULTS

Identification of Retinal Microvascular
Pericytes in Primary Cultures
Cells were identified as RMPs under an optical microscope based
on typical pericyte morphology of irregular shape, long
processes, and large, flat cell bodies (Figure 1A). Their
identities were confirmed based on positive immunostaining of
pericyte markers NG2 (Figures 1B-D), a-SMA, and PDGFR-b
(Figures 1E–H) as well as desmin (Figures 1I–L). The
possibilities of contaminating endothelial cells and glial cells
were ruled out by negative staining of endothelial cell marker
vWF or glial marker GFAP (Figures 1M–P). Most cells stained
positive for desmin (listed in Figure S1), confirming the purity of
RMPs in culture.
Dose- and Time-Dependent Effects of
Advanced Glycation Endproduct-Bovine
Serum Albumin on Retinal Microvascular
Pericyte Viability and Migration
Cultured RMPs were incubated with gradient concentrations of
AGE-BSA (25, 50, 100, and 200 mg/ml) for 24 h, and then assayed
for proliferation ability using CCK-8 kit. AGE-BSA reduced
RMP viability in a dose-dependent manner relative to the
viability of untreated and BSA-treated cells (Figure 2A).
Viability was then measured in cultured RMPs treated with
100 mg/ml AGE-BSA for 6, 12, or 24 h, respectively. The
results showed that RMP viability was decreased in a time-
dependent manner (Figure 2B). On the contrary, AGE-BSA
significantly increased the migration of RMPs in a dose- and
time-dependent fashion (Figure 2C).
The Application of Advanced Glycation
Endproduct-Bovine Serum Albumin
Induces Moesin Phosphorylation in Retinal
Microvascular Pericytes
The expression of moesin in RMPs was clarified by positive
staining of immunofluorent moesin or ERM protein (listed in
Figure S2) and western blotting (Figures 2D, E). The application
of AGE-BSA in gradient concentration and different timing
induced dose- and time-dependent phosphorylation of moesin
in RMPs (Figures 2D, E). Based on these studies, 100 mg/ml
AGE-BSA was chosen to treat RMPs for 24 h in all subsequent
experiments on moesin phosphorylation.
Advanced Glycation Endproduct-Induced
Migration of Retinal Microvascular
Pericytes Involves Moesin Phosphorylation
at Thr558
Our previous studied has indicated that moesin phosphorylation
on Thr558 is required for AGE-induced human umbilical vein
endothelial cell migration and tube formation (24). To examine
November 2020 | Volume 11 | Article 603450
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whether AGE-induced pericyte migration involves the same
phosphorylation event, we transfected RMPs with expression
plasmids encoding a Thr558Ala mutant of moesin that cannot be
phosphorylated, or a Thr558Asp mutant that mimics the
phosphorylated state of moesin, and then we examined how
AGE-BSA affected RMP migration in each case. To confirm that
this experimental system was working, we first verified the
successful transfection of plasmids with anti-flag band (Figure
3A) and then detected the expression and phosphorylation of
moesin after plasmid transfection (35). The results showed that,
although the basic expression of moesin was increased by wt
plasmid transfection, the level of p-moesin was not changed,
while only the application of AGE-BSA enhanced the level of p-
moesin along with the over expression of moesin (Figures 3A,
B). We further verified that cells overexpressing Thr558Ala
mutant showed lower moesin phosphorylation at Thr558
following AGE-BSA treatment, while cells overexpressing
Thr558Asp showed higher levels of moesin phosphorylation at
Frontiers in Endocrinology | www.frontiersin.org 5
Thr558 (Figures 3A, B). We further examined the effect of each
mutation on RMPmigration. The Thr558Asp mutation alone led
to similar migration area in wound healing assay and similar
proportion of migrated cells in transwell migration assay as
AGE-BSA treatment (Figures 3C, D). In contrast, the
Thr558Ala mutation attenuated AGE-induced RMP migration.
These results indicate that the Thr558 is the phosphorylation site
in AGE-induced moesin activation and Thr558 phosphorylation
results in subsequent RMP migration.
Rho-Associated Protein Kinase Is Involved
in Advanced Glycation Endproduct-
Induced Moesin Phosphorylation and
Retinal Microvascular Pericyte Migration
In human umbilical vein endothelial cells, the activation of
RhoA/ROCK pathway participated in the process of AGE-
induced moesin phosphorylation, endothelial hyperpermeability,
FIGURE 1 | Identification of retinal microvascular pericytes (RMPs) in primary culture. (A) Sparsely spreading cells had large, flat, irregularly triangular bodies with
several long processes. (B–D) Positive immunostaining for NG2. (E–H) Positive double immunostaining for a-SMA and PDGFR-b. (I–L) Positive double
immunostaining for a-SMA and desmin. (M–P) Negative staining for vWF and GFAP. Scale bar, 30 mm. Figure S1 revealed the purity of RMPs in culture with
positive staining for desmin in most cells.
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and angiogenesis (24, 29, 32, 36, 37). In present study, specific
ROCK inhibitor Y27632 was used to inhibit RhoA/ROCK activity
in RMPs. ROCK inhibition significantly attenuated AGE-induced
moesin phosphorylation (Figure 4A) and migration (Figures 4B,
C), without affecting cell viability in the presence or absence of
AGE-BSA (Figure 4D). These results suggest that activation of
RhoA/ROCK might play a critical role in AGE-induced moesin
phosphorylation and RMP migration.
Moesin Phosphorylation Triggers
Formation of Actin Stress Fibers That
Colocalize With the Phospho-Moesin
In untreated RMPs, F-actin localized mainly around the cellular
cortex and the staining of phospho-moesin was weak (Figure 5).
Stimulation with AGE-BSA led to reorganization of cortical
filaments, giving rise to elongated stress fibers and strong
staining of phospho-moesin that colocalized with the newly
formed F-actin. Similar results were obtained either by
expressing Thr558Asp mutant of moesin or by expressing the
wild-type or endogenous moesin and then stimulating with
AGE-BSA. Conversely, expression of Thr558Ala mutant of
moesin prevented these AGE-induced reorganization of F-
actin, and similar results were observed when RMPs were
Frontiers in Endocrinology | www.frontiersin.org 6
treated with ROCK inhibitor Y27632. These results suggest
that activation of RhoA/ROCK pathway and moesin
phosphorylation at Thr558 are involved in AGE-induced
pericyte mobility and subsequent migration.
Advanced Glycation Endproducts
Up-Regulate Expression of CD44
and Its Binding to Phospho-Moesin
Activated ERM proteins bind to CD44, facilitating their cross-
linking with actin filaments and the formation of heterogeneous
junctions with other cell types (26). In our unstimulated RMP
cultures, CD44 showed weak, diffuse distribution throughout the
cytoplasm (Figure 6A). Stimulation with AGE-BSA increased
CD44 expression and led to the formation of intense dots at the
cell edge. Western blots confirmed that AGE-BSA increased
CD44 expression, and this up-regulation did not require
ROCK activity (Figure 6B). The CD44 at the cell edge
colocalized with phospho-moesin (Figure 6C), and the
interaction of these two proteins was confirmed by showing
that CD44 was precipitated by an antibody against phospho-
moesin but not by an IgG control (Figure 6D). These results
suggest that AGEs trigger binding of phospho-moesin to CD44
in RMPs.
A

B

D E

C

FIGURE 2 | The dose- and time-dependent effects of advanced glycation-bovine serum albumin (AGE-BSA) treatment on retinal microvascular pericyte (RMP)
viability, moesin phosphorylation. (A, B) The effects of AGE-BSA treatment on RMP viability. (C) The effects of AGE-BSA treatment on RMP migration. (D, E) The
effects of AGE-BSA treatment on moesin phosphorylation in RMPs. Data shown are representative of experimental and quantitative results. N = 3 independent
experiments. *p < 0.05 vs. control, #p < 0.05 vs. BSA. Figure S2 confirmed the expression of moesin and ERM proteins in RMPs by positive staining of
immunofluorent moesin or ERM protein in most cells.
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DISCUSSION

We have previously demonstrated (28), in vivo and ex vivo, that
AGEs promoted immature neovascularization in the mouse
retina and aortic ring, as well as induced RMP loss and
detachment from microvessels. Based on it, we have shown
here in further, that this RMP detachment involves
phosphorylation of moesin at Thr558. AGE initiates a series of
steps that lead to the interaction of phospho-moesin not only
with F-actin but also CD44, the formation of stress fiber and the
migration of RMP. This series of steps requires the activation
of ROCK.

Various stress inducers, such as ischemia, hypoxia, injury,
and AGE exposure, cause pericytes to detach and migrate from
vessels into the perivascular parenchyma (38, 39). In a rat
Frontiers in Endocrinology | www.frontiersin.org 7
model of middle cerebral artery occlusion, pericytes were
found to detach from basal lamina within 1 h after stroke,
then migrate toward the hypoperfusion lesion (40). During
traumatic spinal cord injury in mice, pericytes detach from the
basal lamina of the cerebrovasculature and migrate through
the extracellular matrix to the area surrounding the site of
injury (41). In ischemic retinopathy, high PDGF-b level in
RMPs leads to NCK1/2-dependent pericyte migration, which
promotes abnormal angiogenesis and inhibits retinal
revascularization. Inhibition of PDGF-b or downstream
NCK1/2 s igna l ing b locks per i cy te migra t ion and
pathological neovascular tufts, stabilizing retinal vessels (42).
AGE promotes not only pericyte migration but also their loss
through apoptosis (43–46). Both processes are implicated in
diabetic retinopathy. Pericyte loss is already detectable after 3
A B

DC

FIGURE 3 | Advanced glycation-bovine serum albumin (AGE-BSA)-induced migration of retinal microvascular pericytes (RMPs) involves moesin phosphorylation at
Thr558. RMPs were transfected with empty vector (em), wild type (wt) moesin plasmid, pcDNA3/FLAG-moesinThr558Ala (T558A), respectively, for 24 h with or
without AGE-BSA (100 mg/ml), treatment. pcDNA3/FLAG-moesinThr558Asp (T558D) was transfected into RMPs without AGE-BSA treatment. (A) The moesin
phosphorylation and expression of anti-flag in RMPs were detected using western blotting. *p < 0.05 vs. control, #p < 0.05 vs. empty vector, △p < 0.05 vs. AGE-
BSA. (B) Total moesin expression and moesin phosphorylation in RMPs were detected using western blotting. *p < 0.05 vs. control, #p < 0.05 vs. wt+AGE-BSA.
The cropped images represent blotting experiments that were performed under the same experimental conditions. (C, D) Cell migration was detected using scratch
wound healing and transwell assays. N = 3 independent experiments. *p < 0.05 vs. control, #p < 0.05 vs. AGE-BSA, △p < 0.05 vs. wt+AGE-BSA.
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months of diabetes in experimental models (47), while
pericyte apoptosis usually becomes detectable at later
stages (48).

The two processes of apoptosis and migration may involve
different subpopulations of RMPs, which have diverse origins
in the neural crest, hematopoietic cells, and endothelial cells
(49). The presence of different RMP subpopulations may
explain, for example, why hyperglycemia-induced pericyte
migration in a mouse model of diabetes is restricted to
straight capillaries of the retinal microvasculature (21). The
diversity of RMPs is the likely reason why no pan-pericyte
marker has been identified. We identified RMPs using a panel
of markers (a-SMA, desmin, NG2, PDGFR-b), since none of
the markers on its own is sufficient to recognize all pericytes (6,
50–52). For instance, NG2 proteoglycan can be expressed in
macrophages (53) and is not expressed by all pericytes (54),
while PDGFR-b is a known marker of fibroblasts (55). The
Frontiers in Endocrinology | www.frontiersin.org 8
diversity of RMPs implies that they respond differently to
chronic hyperglycemia in different patients. Further
experiments are needed to address what proportions of
pericyte loss are due to migration or apoptosis, and to track
the fate of pericytes that migrate away.

Our finding that AGEs triggers pericyte detachment and
migration from microvasculature is consistent with previous
studies (20, 21) examining AGE-induced pericyte migration,
while the mechanism is not fully understood. The Ang-2/Tie-2
signaling pathway has been illustrated on RMP migration in the
diabetic retina in XLacZ mice (21), and the absence of Ang-2
restores vessel integrity and recruits pericytes to vessels (56, 57).
In another study, AGE-BSA appears to promote the migration of
bovine RMPs via the RAGE-Src-ERK1/2-FAK-1-paxillin
signaling pathway (20). It has been revealed that the
intracellular molecular complex FERM (protein 4.1, ezrin/
radixin/moesin) participates in the retina lamination, and
A B

DC

FIGURE 4 | Advanced glycation-bovine serum albumin (AGE-BSA)-induced moesin phosphorylation and RMP migration involve Rho-associated protein kinase
(ROCK). Y27632, specific inhibitor of ROCK (10 mmol/L), was pre-incubated 1 h before AGE-BSA (100 mg/ml, 24 h) application. (A) Moesin phosphorylation and total
moesin expression in RMPs were detected using immunoblotting. The cropped images represent blotting experiments that were performed under the same
experimental conditions. (B, C) Cell migration was detected using scratch wound healing and transwell assays. (D) Cell viability. Results shown are representative
experiment and quantitative results. N = 3 independent experiments. *p < 0.05 vs. control, #p < 0.05 vs. AGE-BSA.
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particularly, in the formation of tight junction of retinal
pigmented epithelium in zebrafish, demonstrating the
involvement of ERM protein in retina structure and function
(58). Our results indicate that the T558 phosphorylation of
moesin and the subsequent clustering of membrane protein
CD44 are involved in AGE-induced RMP migration, resulting
in the detachment of pericyte from microvessel and the damage
of vessel integrity.

The signaling pathways for AGE-induced cellular responses
have been explored in our serious studies. Using RAGE
antibody (29), dominant mutant RAGE (59), and RAGE
knockout mice (28, 60), respectively, we have demonstrated
that AGEs exert the effects on inducing microvascular
hyperpermeability and immature angiogenesis by binding
with RAGE, which results in subsequent activation of RhoA-
ROCK pathway. Activated ROCK could interact with moesin
and enhance AGE-induced moesinT558 phosphorylation (32).
While the express of RAGE has been confirmed in RMPs (61),
this AGE/RAGE binding is postulated in pericytes too. It have
Frontiers in Endocrinology | www.frontiersin.org 9
been reported that ROCK regulates moesin function (62) and
actin cytoskeleton organization (63). Inhibition of ROCK
signaling inhibits actin remodeling and ERM phosphorylation
in human colonic epithelial cells (64). The results in present
study indicate that AGEs induce RMP migration by triggering
the interaction between phospho-moesin and CD44 in a
process that also requires ROCK activity for moesin Thr558
phosphorylation. Taken together, these findings suggest that
AGE-induced RMP migration is related to decreasing cell-
cell contacts and increasing cell motility, which requires
cytoskeletal reorganization.

Our results implicating the interaction between phospho-
moesin and CD44 in pericyte loss extend the list of processes in
which interactions between phosphorylated ERM proteins and
CD44 drive changes in cell-cell contacts. These interactions, for
example, lead to loss of cell-cell contacts in epithelial-
mesenchymal transition of retinal pigment epithelial cells (65)
and during the generation of myofibroblasts (66). Glioma
progression involves the interaction of phospho-moesin with
FIGURE 5 | Moesin phosphorylation triggers formation of actin stress fibers that colocalizes with the phospho-moesin. Phospho-moesin was identified by
immunostaining with a primary antibody, followed by FITC-conjugated secondary antibody (green). Rhodamine-phalloidin and DAPI were used to stain F-actin (red)
and nuclear DNA (blue), respectively. Results shown are representative images in at least three experiments. Scale bar, 30 mm.
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A B
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FIGURE 6 | Advanced glycation-bovine serum albumin (AGE-BSA) up-regulates the expression of CD44 and its binding to phospho-moesin. (A) Cultured retinal
microvascular pericytes (RMPs) were treated with AGE-BSA (100 mg/ml, 24 h) and subjected to immunostaining with antibodies to CD44 (green). (B, C) Cultured RMPs
were treated with AGE-BSA or Y27632 + AGE-BSA and the expression of CD44 was detected using immunoblotting. CLSM colocalization studies were performed for
phospho-moesin (red) and CD44 (green). (D) RMPs treated with or without AGE-BSA were lysed and subjected to immunoprecipitation (IP) with antibodies against CD44
or with control IgG. The resulting precipitates as well as the cell lysates were subjected to immunoblot analysis with antibodies against phospho-moesin or CD44. Results
shown are representative experiment and quantitative results. N = 3 independent experiments. *p < 0.05 vs. control. Scale bar, 30 mm.
FIGURE 7 | Proposed mechanism of advanced glycation endproduct (AGE)-induced pericyte detachment. AGE triggers moesin phosphorylation at Thr558 via a
ROCK-mediated pathway, which promotes interaction between the phospho-moesin and CD44, leading to reorganization of the actin cytoskeleton, ultimately
resulting in AGE-induced pericyte drop out. The resulting reduction in contact between endothelium and pericytes and reduced recruitment of pericytes may
contribute to aberrant angiogenesis in proliferative diabetic retinopathy (PDR).
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CD44 and the Wnt-b-catenin pathway (67). Phospho-ERM
binds to CD44 in a single pseudopod in myeloid cells (68), and
the CD44 binds in turn to hyaluronan in the extracellular matrix
(69, 70). Interaction between hyaluronan and CD44 in cancer
decreases endothelial cell-cell contacts (71), leading to
endothelial cells barrier disruption, which is an initial event of
aberrant angiogenesis in tumor. Future studies should co-culture
pericytes and endothelial cells in order to examine the role of
phospho-moesin/CD44 complexes in the recruitment of
pericytes to endothelial cells. Another interesting result is the
enhancement of CD44 expression by AGE-BSA treatment,
which deserves to be further explored.

The present study was motivated in large part by our previous
observation that AGE-induced moesin phosphorylation
promotes proliferation, migration, and tube formation by
human umbilical vein endothelial cells, leading to excessive
angiogenesis (24). Recently, we also demonstrated AGE-
induced moesin phosphorylation induces immature
angiogenesis in vivo and ex vivo mouse models (28).
Our present results suggest a new mechanism of AGE-induced
pericyte migration through moesin phosphorylation (Figure 7),
resulting in less pericyte coverage and disruption of vessel
integrity. AGE triggers moesin phosphorylation at Thr558 via
a ROCK-mediated pathway, which promotes interaction
between the phospho-moesin and CD44, leading to
reorganization of the actin cytoskeleton. The resulting
reduction in contact between endothelia and pericytes and
reduced recruitment of pericytes may contribute to aberrant
angiogenesis in PDR. These insights might establish a new target
for the management of immature vessel formation during the
development of diabetic retinopathy.
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