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Deep learning artificial 
neural network framework 
to optimize the adsorption 
capacity of 3‑nitrophenol using 
carbonaceous material obtained 
from biomass waste
Rasikh Tariq 1, Mohamed Abatal 2*, Joel Vargas 3 & Alma Yolanda Vázquez‑Sánchez 4

The presence of toxic chemicals in water, including heavy metals like mercury and lead, organic 
pollutants such as pesticides, and industrial chemicals from runoff and discharges, poses critical public 
health and environmental risks leading to severe health issues and ecosystem damage; education 
plays a crucial role in mitigating these effects by enhancing awareness, promoting sustainable 
practices, and integrating environmental science into curricula to empower individuals to address 
and advocate for effective solutions to water pollution. However, the educational transformation 
should be accompanied with a technical process which can be eventually transferred to society to 
empower environmental education. In this study, carbonaceous material derived from Haematoxylum 
campechianum (CM‑HC) was utilized for removing 3‑nitrophenol (3‑Nph) from aqueous solutions. 
The novelty of this research utilizes Haematoxylum campechianum bark and coconut shell, abundant 
agricultural wastes in Campeche, Mexico, for toxin removal, enhancing the adsorption process 
through artificial neural networks and genetic algorithms to optimize conditions and maximize 
the absorption efficiency. CM‑HC’s surface morphology was analyzed using scanning electron 
microscopy (SEM/EDS), BET method, X‑ray powder diffraction (XRD), and pHpzc. Kinetic models 
including pseudo‑first‑order (PFO), pseudo‑second‑order (PSO), and Elovich were applied to fit the 
data. Adsorption isotherms were determined at varying pH (3–8), adsorbent dosages (2–10 g/L), and 
temperatures (300.15–330.15 K), employing Langmuir, Freundlich, Temkin, and Redlich–Peterson 
models. PSO kinetics demonstrated a good fit  (R2 > 0.98) for Ci = 50–100 mg/L, indicating a chemical 
adsorption mechanism. The Langmuir isotherm model exhibited the best fit, confirming chemical 
adsorption, with a maximum adsorption capacity  (Qm) of 236.156 mg/g at T = 300.15 K, pH = 6, 
contact time = 3 h, and 2 g/L adsorbent dosage. Lower temperatures favored exothermic adsorption. 
Artificial neural networks (ANNs) were employed for deep learning, optimizing the predictive model 
for removal percentage. Correlation heat maps highlighted positive correlations between time, 
dosage, and removal percentage, emphasizing the impact of initial concentration on efficiency. ANN 
modeling, incorporating iterative optimization, yielded highly accurate predictions, aligned closely 
with experimental results. The study showcases the success of deep learning in optimizing adsorption 
processes, emphasizing the importance of diverse correlation algorithms for comprehensive insights 
into competitive adsorption dynamics. The 5‑14‑14‑1 deep learning architecture, fine‑tuned over 228 
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epochs, demonstrated strong performance with mean squared error (MSE) values of 4.07, 18.406, and 
6.2122 for training, testing, and total datasets, respectively, and high R‑squared values. Graphical 
analysis showed a solid linear correlation between experimental and simulated removal percentages, 
emphasizing the need to consider more than just testing data for optimization. Experimental 
validation confirmed a 98.77% removal efficiency, illustrating the effectiveness of combining deep 
learning with genetic algorithms, and highlighting the necessity of experimental trials to verify 
computational predictions. It is concluded that the carbonaceous material from Haematoxylum 
campechianum waste (CM‑HC) is an effective, low‑cost adsorbent for removing 3‑nitrophenol from 
aqueous solutions, achieving optimal removal at pH 6 and 300.15 K with a maximum adsorption 
capacity of 236.156 mg/g, following Langmuir model and pseudo‑second order kinetics. The validated 
ANN model offers a reliable tool for practical applications in environmental remediation, advancing 
both environmental science and educational innovation by integrating artificial neural networks and 
data science methodologies into student learning experiences.

Keywords 3-nitrophenol, Carbonaceous materials, Haematoxylum campechianum, Deep learning, Artificial 
neural network, Genetic algorithm, Educational innovation, Higher education, Computational thinking, 
Artificial intelligence

The presence of toxic chemicals in water is a critical public health and environmental issue that poses serious 
risks to ecosystems and human health. Common water pollutants include heavy metals like mercury and lead, 
organic pollutants such as pesticides and pharmaceutical residues, and other industrial chemicals that can enter 
water supplies through agricultural runoff, industrial discharges, and inadequate waste management practices. 
The effects of these contaminants range from acute poisoning to long-term health issues like cancer, reproductive 
problems, and endocrine disruption. Education plays a pivotal role in addressing the challenges of water pollution 
by raising awareness about the sources and effects of contaminants and promoting sustainable  practices1. Through 
formal and informal educational  programs2, individuals and communities can learn about the importance of 
water conservation, pollution prevention, and the steps they can take to reduce their environmental footprint. 
Schools and universities can integrate environmental science into their curricula to equip tackle environmental 
challenges  effectively3,4. By fostering a deeper understanding of the impacts of toxic chemicals in water and the 
importance of water quality,  education4 can empower individuals to participate in or advocate for conservation 
initiatives and policy changes.

In such case of nitrophenolic compounds, defined by their benzene frameworks adorned with hydroxyl and 
nitro functional groups, serve as crucial precursors across various industrial realms, including but not limited to, 
the synthesis of herbicides, pesticides, fungicides, along with the manufacture of paints, dyes, pharmaceuticals, 
and  explosives5. This advisory stems from their pronounced toxicity, diminished biodegradability, propensity 
for bioaccumulation, and oncogenic  potential6,7.

The improper release of industrial wastewaters laden with nitrophenols (NPs) and their derivatives, even in 
minimal concentrations, poses significant risks to human health, wildlife, and plant life in aquatic  ecosystems8. 
Regulation of phenolic compounds on different water matrices has been considered by several organizations. 
For example, U.S. Environmental Protection Agency establishes the maximum nitrophenol compounds level 
equal to 10 ng/L in natural  water7,9. Moreover, the World Health Organization (WHO) establish the maximum 
levels of 0.009 and 0.2 mg/L for some phenolic compounds as pentachlorophenol and 2,4,6-trichlorophenol, 
respectively, in drinking  water10.

In the case of rivers, lakes and related artificial or heavily modified water bodies, the European Union establish 
the maximum allowable concentrations of nonylphenol and pentachlorophenol equal to 0.002 and 0.001 mg/L, 
 respectively11. In Mexico, The Official Mexican Standard (NOM), regulates the phenolic compounds with a maxi-
mum allowed in drinking water of 9.0 μg/L12. Previous studies have confirmed the presence of NP compounds 
in various environmental matrices, including  groundwater13,  precipitation14,15, sediment  deposits16, as well as in 
the atmosphere and industrial  discharges17.

The urgent need for effective water purification strategies has led to the exploration of biosorbents for the 
removal of toxic contaminants from water. This approach is not only essential for protecting environmental health 
but also benefits from the integration of environmental education to enhance public awareness and involvement. 
Biosorbents, derived from biological materials, have demonstrated significant potential in adsorbing harmful sub-
stances from water. These natural adsorbents are advantageous due to their biodegradability, cost-effectiveness, 
and high efficiency in binding with various contaminants including heavy metals and dyes. Studies like those by 
Sarkar et al.18 and Tebbutt and  Woods19 highlight the effectiveness of materials like modified clays, agricultural 
by-products, and engineered biochar in capturing and isolating pollutants from water bodies. Sarkar et al.18 
specifically reviewed the water quality management in the Ganges river, emphasizing the role of biosorbents in 
mitigating heavy metal pollution. They also stressed the importance of integrating environmental education to 
improve water resource management and enhance the sustainability of such interventions.

Environmental education plays a pivotal role in enhancing the effectiveness of environmental remediation 
efforts by informing and engaging the public. For instance, Papavasileiou and  Mavrakis20 discussed projects 
implemented in Greek schools that focused on water-related issues, demonstrating how education can lead to bet-
ter understanding and more proactive attitudes towards water conservation. Similarly, the work presented at the 
International Conference on New Water Culture by Mariolakos et al.21 used mythology to make environmental 
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education more accessible and engaging for students, thus fostering a deeper understanding of water’s critical 
role in ecosystems.

Practical applications and case studies further illustrate the successful integration of biosorbents and educa-
tion. The study by Sarkar et al.18 on the Ganges river utilized educational initiatives to inform and mobilize local 
populations about pollution control and the importance of maintaining water quality. These educational efforts 
are crucial in areas where industrial and agricultural activities heavily influence water quality, as they empower 
local communities to participate in sustainable practices.

In more recent studies, like that of  Gebrekidan22, the systematic review of environmental education in Ethiopia 
revealed gaps in educational structures and emphasized the need for comprehensive educational frameworks to 
enhance environmental awareness and actions. This study highlights the necessity of embedding environmen-
tal education deeply within curriculums to cultivate a knowledgeable citizenry that can actively participate in 
environmental protection.

In order to remove NPs compounds or reduce its concentration from the wastewater, numerous research-
ers have developed various techniques such as membrane  technology23,24, chemical  redox6,24,  adsorption24–26, 
 biodegradation24,27 and  bioremediation28. From the perspectives of operation, design, straightforwardness, and 
the ease with which adsorbent materials can be reused, the adsorption method stands out as significantly supe-
rior when contrasted with alternative  approaches24. However, the use of this technique has been restricted for 
large-scale treatment due to the high cost of adsorbents.

During a last decade, a significant research have been dedicated to the improvement of diverse varieties of 
cost-effective adsorbents aimed at eliminating phenolic compounds and other pollutants from water-based 
 solutions25,29,30. These efforts have highlighted the utilization of natural materials such as  clay31,  zeolite32,33, 
and siliceous  substances34 for purification purposes. However, organic molecules removal was achieved by the 
modification of their external surface by  surfactants32,35–37.

The effectiveness of bioadsorbents, including Phanerochaete chrysosporium, the fungus Pleurotus sajor-caju, 
and Sargassum, in eliminating chlorophenols has demonstrated that the adsorption capacity is enhanced by the 
increase in the number of electronegative groups  present38,39.

The peak adsorption capability  (qm, mmol/g) for phenol, 2-chlorophenol, 4-chlorophenol, and 2,4,6-trichloro-
phenol when utilizing Pleurotus sajor-caju as the adsorbent was recorded at 0.95, 1.24, 1.47, and 1.89, respectively. 
This highlights not only the efficacy of the adsorbent but also its potential for being reused across more than five 
adsorption cycles without a significant loss in  capacity39. When treated with  CaCl2, algal biomass was evaluated 
for its efficacy in removing chlorophenols, revealing that the maximum adsorption capacities  (qm values) for 
phenol, 2-chlorophenol, and 4-chlorophenol stood at 4.6 mg/g, 79 mg/g, and 251 mg/g, respectively.

Recently, activated carbon obtained from agriculture or industry residues has become a promising adsorbent 
to eliminate phenolic compounds because of its availability and the cheapness of precursor material. In the 
literature, it was reported the use of wood-based and  lignite40, olive  stones41, apricot stone  shells42, palm seed 
 coat43 based-activated carbon is used for the elimination of phenolic mixes. The phenols uptake was found to be 
depended of various factors, such as the superficial characteristic of the activated carbon, molecular dimension, 
acidity and the solubility of adsorbate.

Several  research44–48 is now available which has focused on the usage of artificial intelligence models to 
improve the removal percentage, and it can contribute towards  sustainability49,50.

Sarang et al.51 delves into the effectiveness of a pseudo-emulsion hollow fiber strip dispersion technique in 
purifying industrial wastewater, with a particular emphasis on removing ethylparaben and diclofenac. This study 
employs an artificial neural network (ANN) as a predictive tool, estimating the success of the extraction process 
based on varied concentrations in the feed, carrier, and stripping phases, with extraction percentage being the 
key outcome measure. To assess the reliability of these models, statistical analyses such as root mean square error 
(RMSE) and mean absolute percentage error (MAPE) were utilized. The attainment of high regression values, 
0.9956 for ethylparaben and 0.97562 for diclofenac, during the model training phase highlights the precision 
of the ANN in forecasting extraction outcomes. This precision suggests the method’s applicability in the design 
and optimization of systems for treating industrial effluents.

Samadi–Maybodi et al.52 explore the removal of sarafloxacin (SRF), an antibiotic pollutant, from water bodies 
using a magnetized metal-organic framework  (Fe3O4/MIL-101(Fe)). The study applies response surface meth-
odology (RSM) to determine optimal conditions for the adsorption of SRF, pinpointing an initial concentra-
tion of 10 ppm, a neutral pH of 7.0, an adsorbent amount of 20 mg, and a contact time of 40 min as the ideal 
parameters. The adsorption phenomena were found to align more accurately with the Langmuir isotherm model. 
In addition, the research developed an artificial neural network (ANN) to predict the removal efficacy of SRF, 
utilizing the Levenberg-Marquardt algorithm for model training. This model demonstrated significant predic-
tive strength, showcased by high determination coefficients  (R2) during training (0.9995) and testing (0.9951) 
stages, alongside minimal mean squared errors (MSE), affirming its effectiveness as a predictive instrument for 
SRF adsorption rates.

El-Metwally et al.53 introduce an innovative approach employing a novel fungal system for lipase biosynthesis 
with the aim of converting oily residues into biodiesel, using Aspergillus flavipes MH47297 to biosynthesize lipase 
from Nigella sativa, a by-product of agro-industrial processes. The study examines the influence of various fac-
tors such as cultural humidity, surfactant concentration, and inoculum density on lipase production, utilizing 
a Box-Behnken design (BBD) and ANNs in conjunction. This marked the inaugural application of ANNs in 
modeling the lipase biosynthesis process via semi-solid-state fermentation (SSSF). The optimized conditions 
predicted by the ANN closely matched the experimental outcomes, with the ANN model demonstrating superior 
precision over the BBD approach. Gas chromatography analyses confirmed the successful conversion of corn oil 
into biodiesel, illustrating the efficacy of the lipase produced.
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The investigation by Sathishkumar et al.54 explores the application of sophisticated machine learning tech-
niques to evaluate the process of catalytic reduction in water tainted with dangerous nitrophenols and azo 
dyes. This study makes use of a catalyst composed of palladium oxide-nickel oxide to address pollutants like 
4-nitrophenol, 2,4-dinitrophenol, 2,4,6-trinitrophenol, methylene blue, rhodamine B, and methyl orange. The 
effectiveness of this catalyst in diminishing these contaminants was scrutinized through experiments conducted 
over varying durations. To estimate the catalyst’s performance, the research applied a range of machine learn-
ing models, including linear regression, support vector machines, gradient boosted machines, random forest, 
and XGBoost. The evaluation of these models was based on statistical measures such as root mean squared 
error, mean absolute error, and mean absolute percentage error. The findings demonstrated that the model 
using XGBoost provided the most precise predictions for 4-nitrophenol and 2,4-dinitrophenol, the model using 
random forest showed the highest efficacy for 2,4,6-trinitrophenol, methylene blue, and rhodamine B, and the 
model using support vector machines was particularly effective in predicting the reduction of methyl orange. 
Notably, the catalyst achieved a 98% reduction in a mixture of azo compounds within eight minutes, indicating 
its strong potential for real-life applications in water purification.

In a comprehensive review by Georgin et al.55, the challenges and technological advancements in the remedia-
tion of 17β-estradiol (E2) through adsorption are explored. E2, a potent endocrine disruptor, has been shown 
to adversely affect aquatic biota and ecosystem health even at low concentrations. Georgin et al. identify a range 
of adsorbents such as graphene oxides, nanocomposites, and carbonaceous materials that have been effectively 
employed to remove E2 from water. The review emphasizes that the efficiency of these adsorbents is influenced 
by factors such as the pH and temperature of the medium, with acidic to neutral pH and ambient temperatures 
around 298 K being most favorable. They highlight the relevance of the Langmuir and Freundlich models 
in describing the adsorption isotherms, indicating predominantly low-energy, physical interactions during 
E2 adsorption. The review calls for the establishment of stringent national and international standards for E2 
removal, pointing out the economic and sustainability challenges in implementing these technologies at a large 
scale. Another significant study by Ahmad et al.56 focuses on the adsorption of bisphenol A (BPA), a common 
pollutant from plastic production. They introduce a novel hyper cross-linked resin, ICYN-PPA, characterized 
by its high adsorption capacity and fast kinetics, achieving equilibrium within 350 min. This resin, synthesized 
from commercially available materials, shows a remarkable adsorption capacity of 112.8 mg.g−1 for BPA. Notably, 
ICYN-PPA’s thermal stability enhances its applicability in decontaminating BPA-laden effluents. The adsorption 
process, well represented by the Koble–Corrigan model, confirms the endothermic nature of the interaction, 
suggesting physical adsorption as the predominant mechanism. Gao et al.57 investigated the removal of 4-nitro-
phenol (4-NP), a toxic byproduct of petrochemical industries, using MgCo-3D hydrotalcite nanospheres. These 
nanospheres, synthesized via the hot solvent method, displayed a maximum adsorption capacity of 131.59 mg.g−1. 
The adsorption process, which predominantly involved hydrogen bonding and electrostatic interactions, adhered 
to the Langmuir, Redlich–Peterson, and Sips models, indicating a monolayer physical adsorption. Their study 
also demonstrated the excellent regeneration performance of the nanospheres, maintaining significant adsorption 
capacity after multiple cycles. In a study by Adebayo and  Areo58, a novel composite made from coconut shell and 
clay was used for the adsorption of phenol and 4-nitrophenol from wastewater. This composite showed excep-
tionally high adsorption capacities, particularly for phenol, with a  Qmax of 1665 mg.g−1. The adsorption process, 
analyzed through various kinetic and equilibrium models, was best described by the Avrami fractional order and 
Liu isotherm. The study highlights the composite’s effectiveness, achieving over 86% removal efficiency for the 
tested effluents, underlining its potential as a low-cost and efficient solution for treating industrial wastewater.

Khan et al.59 conduct a detailed investigation into the potential of carbon material, sourced from the remnants 
of domestic fireworks, to capture Hexavalent chromium (Cr(VI)) from environments, a known toxic metal. This 
research meticulously examines how various factors, such as the length of the adsorption period, the acidity or 
alkalinity (pH) of the environment, the Cr(VI) solution’s warmth, and its initial amount, impact the material’s 
ability to adsorb the metal. To analyze, foresee, and enhance the adsorption mechanism, the study employs 
a sophisticated combination of response surface methodology and multiple regression analysis alongside an 
innovative artificial neural networks model integrated with particle swarm optimization. Findings from this 
integrated approach pinpoint the most effective adsorption scenario: a 94.7 min exposure period, with the Cr(VI) 
at 50.0 mg/L, at a temperature of 33.6 ℃, and in a highly acidic setting (pH 2). This scenario reached an apex 
adsorption rate of 1.37 mg.g−1. The study’s analytical comparison reveals artificial neural networks’ superiority 
in predicting outcomes over multiple regression analysis. Additionally, it aligns with the pseudo-first-order 
kinetic model in kinetic studies and identifies the Langmuir isotherm as the most accurate descriptor of this 
adsorption activity, indicating a primary reliance on physisorption. The thermodynamic analysis corroborates 
the adsorption’s beneficial, spontaneous, and heat-absorbing characteristics.

Alatrista and colleagues’  research60 systematically reviews 55 academic publications between 2011 and 2022, 
examining the role of metal-organic frameworks (MOFs) in phosphate adsorption processes. This comprehensive 
analysis indicates that the efficiency of MOFs in trapping phosphate relies on several critical elements, such as 
the particular variant of MOF used, its synthesis technique, any structural modifications made, and the condi-
tions applied during its operational use. Despite the high theoretical capacity of many MOFs for phosphate 
adsorption, their practical application in phosphorus recovery over extended periods might be constrained due 
to the predominance of inner sphere complexation mechanisms. To predict the phosphate adsorption capacities 
effectively, the study employed machine learning techniques, particularly the use of artificial neural network 
(ANN) models, which took into account both operational parameters and synthesis characteristics. These models 
particularly emphasized the significance of the initial phosphate concentration and the use of modulator agents 
in the synthesis of MOFs.

Aghav and colleagues’  study61 delves into predicting the adsorption competition between phenol and res-
orcinol on a variety of carbonaceous materials, including activated carbon, wood charcoal, and rice husk ash, 
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through the application of artificial neural networks. This investigation leverages a three-tiered feedforward 
neural network equipped with a backpropagation mechanism within MATLAB, aggregating data from 29 distinct 
batch experiments. Variables such as the amount of adsorbent used, initial phenol and resorcinol concentrations, 
the time span of contact, and the pH value were fed into the neural network to train it. The neural network then 
produces estimations on the efficiency of removing phenol and resorcinol. The precision of these artificial neural 
network predictions was rigorously evaluated using a suite of statistical indicators, including mean error, mean 
square error, root mean square error, and linear regression, all of which affirm the model’s reliability in foreseeing 
the adsorption dynamics of these substances based on experimental data.

The novelty of this work is to use Haematoxylum campechianum barks and coconut shell which are one 
of the most abundant agricultural wastes in Campeche State in Mexico, therefore, the work make use of local 
products for the removal of harmful toxins. The objective of this work is to improve the adsorption capacity of 
activated carbons obtained from Haematoxylum campechianum bark and coconut shell as agriculture residues 
for the removal of 3-Nph from aqueous solutions by varying pH solution, contact time, dosage of adsorbent, 
concentration of 3-Nph, and temperature. Moreover, the study is enhanced by incorporating artificial neural 
networks, employing deep learning techniques to formulate an empirical regression model. Subsequently, data 
science methodologies and genetic algorithm optimization are applied to identify the optimal variable combi-
nation for maximizing the removal percentage. This distinctive approach sets this research apart from existing 
literature in the field.

Materials and methods
Chemicals
3-NpH was purchased from Sigma Aldrich  (C5H5NO3, MW = 139.11 g/mol, purity, 99.9%, CAS: 554-84-7). The 
stock solution was prepared by dissolving 1.0 g of 3-NpH in 1000 mL of deionized water and stored in a brown 
bottle. Solutions between 25 and 1000 mg/L used for further experiments were prepared by dilution of synthetic 
stock solution. 0.1 N of HCl or 0.1 N of NaOH solutions were prepared to adjust the solution pH from 3 to 8.

Preparation of carbonaceous material
The carbonaceous material was produced from Haematoxylum campechianum waste using the method described 
by Abatal et al.62. The bark of Haematoxylum campechianum was chopped, ground and sieved. The material was 
then washed several times with deionized water at 50 °C to remove any residues and finally dried in an oven at 
70 °C for 12 h. After pre-treatment, the material was dried in a deionized water oven at 50 °C for 12 h. The mate-
rial was then washed several times with deionized water at 50 °C to remove any residues.

After pre-treatment, 50 g of Haematoxylum campechianum was placed in contact with 250 ml of H3PO4 at 
50 °C for 3 h (chemical activation), then the filtered solid was dried at 70 °C for 12 h. The heat treatment was 
carried out at 50 °C for 12 h. The heat treatment was carried out as follows: 50 g of impregnated Haematoxylum 
campechianum was introduced into a muffle at 500 °C for 60 min, at 10 °C/min. The sample was then cooled to 
25 °C. The carbonaceous material was washed with a 5%  NaHCO3 solution to remove the residual  H3PO4 and 
then with deionized water until the pH of the filtrate reached a value of 6–7. Finally, the carbonaceous material 
from Haematoxylum campechianum (CM-HC) was dried at 110 °C for 12 h and then stored in a closed glass 
bottle and placed in a desiccator.

Characterization techniques
The point zero of charge  (pHpzc) of CM-HC was determined adding 0.1 g of each adsorbent to 50 mL of NaCl 
0.01 M solution at previously adjusted pH value  (pHinitial). Solutions pH of were adjusted from 2 to 12 by add-
ing a drop of 0.1 N of HCl or 0.1 N of NaOH. The sample was agitated for 24 h at ambient temperature. Then, 
the samples were filtered and final solution pH  (pHfinal) of each solution was measured. CM-HC sample was 
characterized by X-Ray Diffraction methods. The X-ray patterns were collected on an APD-2000 diffractometer 
using CuKα radiation at room temperature in a range 2θ = 5°–70°. Surface characteristics of CM-HC sample was 
studied by scanning electron microscopy (SEM) technique was performed to study the superficial structure of 
the samples before and after adsorption.

Sorption study
In this study, removal of 3-NpH by CM-HC was carried out using batch method. For kinetic study, the experi-
ments were done by addition a mass 0.05 g of CM-HC to 10 mL of 3-NpH at different initial concentrations 
in a conical tube and agitated at 200 rpm in a multitube shaker apparatus (Model CVP-0228—Cyrlab). Initial 
concentrations of 3-NpH were 50 mg/L, 100 mg/L and 250 mg/L and contact time was varied from 5 to 1440 min. 
All tests were carried out in triplicate and the mean value was used in all cases.

After each contacted time at T = 300.15 K and pH = 6, the samples were centrifuged for 5 min at 4500 rpm 
(Centrificient CRM Globe) in order to separate the adsorbent from aqueous phase. Before to measure the final 
concentrations of 3-Nph, absorbance (Abs.) of the samples with initial concentrations (Ci) of 3-Nph from 2 
to 20 mg/L were measured using UV–visible spectrophotometer (Thermo Scientific Evolution 201/220) at λ = 
273 nm. Calibration curve was obtained by the plotting of Abs. vs. Ci which gave a good correlation coefficient 
 (R2 = 1).

The sorption capacity  (qt, mg/g) and the removal efficiency (%) were calculated using the Eqs. (1) and (2), 
respectively:
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Where  Ci (mg/L) is the initial concentration,  Ct (mg/L) is the concentration at time t (min),  qt (mg/g) is the 
adsorption capacity, V (L) is the volume and m (g) is the mass of the adsorbent.

Table 1 gives the experimental conditions used to investigate the effects of contact times, solution pH, tem-
perature, and dosage of adsorbents on the removal of 3-Nph.

Kinetic models
In order to investigate the mechanism involved in the adsorption of 3-Nph on CM-HC, experimental data were 
evaluated using four kinetic models, the pseudo-first order (PFO), pseudo-second order (PSO), and Elovich. The 
equations of PFO, PSO, and Elovich models are expressed by the Eqs. (3), (4), (5) respectively.

Where  qe (mg/g) and  qt (mg/g) are the amounts of 3-Nph adsorbed at equilibrium and at time t (min) respec-
tively. k1

(

1
min

)

 and k2(
g

mgmin ), are the rate constants of pseudo-first, pseudo-second order, and intraparticle diffu-
sion models respectively. β is the constant related to the extent of surface coverage (g/mg) and α is the theoretical 
adsorption capacity (mg/g.min).

Isotherm models
Experimental data were examined using nonlinear forms of the Langmuir, Freundlich, Temkin, and 
Redlich–Peterson isotherm models Eqs. (6), (7), (8), (9).

where qe and  qm are the solid phase sorbate concentration in equilibrium (mg/g), Ce is the equilibrium sorbate 
concentration in liquid phase (mg/L),  KF is Freundlich constant (L/g) and 1/n is the heterogeneity factor.  KRP 
(L/g), αRP (L/mg) and β are Redlich–Peterson isotherm constants. β is the exponent which lies between 1 and 
0. In this study, solver add-in of Microsoft Excel was used to optimized the variance between the experimental 
data and predicted isotherms.

Error functions
Despite the use of coefficient of determination  (R2) by many studies to provide the best fitting, the nonlinear 
fits of kinetic and isotherm models were analyzed against the experimental data using error functions in order 
to verify the suitable model for the adsorption system. In this study, six error functions including the average 
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Table 1.  Values of contact times, solution pH, temperature and adsorbent dosage parameters used for 
experimental process.

Experiments

Experimental parameters

pH Time(min) Ci(mg/L) Dosage (g/L) T (K)

Contact times 6 15–1440 50–250 5 300.15

Solution pH 3–8 1440 25–1000 5 300.15

Temperature 6 1440 25–1000 5 300.15–330.15

Dosage 6 1440 25–1000 2–10 300.15
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relative error (ARE), sum of square error (SSE), normalized standard deviation, Δq (%), Chi-square test (χ2), 
sum of absolute error (EABS), and root mean square error (RMSE) have been calculated employing the equa-
tions 10, 11, 12, 13, 14 and 15  respectively63.

where  qe,exp (mg/g) is the experimental adsorption capacity obtained from the Eq. (1) and  qe,cal (mg/g) is the 
calculated adsorption capacity obtained from the nonlinear forms of PFO and PSO kinetic models or isotherm 
models (Langmuir and Freundlich), and n is the number of experimental data points.

Adsorption and desorption study
The recovery of 3-Nph and the regeneration of the adsorbent material are very important in adsorption processes, 
sustainability and cost-effectiveness of adsorbents. For this purpose, tree adsorption/desorption cycles were 
carried out using NaOH solution as desorbing agent. For the adsorption step, 100 mg of CM-HC were mixed in 
Erlenmeyer flasks with 50 mL of 3-Nph at 100 mg/L (Ci), and stirred for 24 h at T = 300.15 K. The mixture was 
then filtered and the final concentration of 3-Nph (Cf) in the supernatant was determined by UV–vis spectro-
photometric analysis.

The quantity of 3-Nph adsorbed after contact with AB-HC was calculated using Eq. (1).
For desorption process, 50 mL of 0.2 M NaOH was added to 3-Nph-loaded CM-HC. The mixture was agi-

tated at 300.15 K for 24 h. After this time, the sample was filtered and the residual concentration of 3-Nph was 
measured.

The quantity of 3-Nph desorbed Qdes (mg/g) was calculated using this equation Eq. (16)

Where, Cdes (mg/L) is the concentration of 3-Nphafter desorption, V(L) is the volume of NaOH solution, m (g) 
is the mass 3-Nph-loaded CM-HC.

The regenerated CM-HC was rinsed for several time with deionized water and dried at 105 °C for 2 h before 
the next cycle of adsorption/desorption.

Results and discussions
Characterization of CM‑HC
Figure 1 shows that the point of zero charge of CM-HC equal to 6.5. This result is similar with those obtained 
from other precursor materials such as Dipterocarpus alatus (pHpzc = 6.3)64, rice husk (pHpzc = 6.8)65. Therefore, 
when the solution pH is above than the pHpzc (pH > pHpzc), the surface of CM-HC is negatively charged and 
the cationic species will be preferentially removed, whereas values of pH are below than pHpzc (pH < pHpzc), 
the charge of the surface of CM-HC will become positive and then anionic species are preferentially attracted 
via electrostatic  interactions66.

XRD diffraction pattern of CM-HC is presented in Fig. 2. It can be observed that HCAC has a semicrystalline 
structure related to the amorphous region between 10 and 40º corresponding to the carbonic fraction due to the 
preparation and characterization of activated carbons from different  precursors67.

Scanning electron microscope (SEM) analysis was carried out in order to investigate physical surface mor-
phology of CM-HC. The SEM micrographs of CM-HC (Fig. 3) show that the particles of the synthesized activated 
carbon have a rough surface and an irregular shape with a variety of randomly distributed cavities which can 
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Fig. 1.  pHpzc of CM-HC.

Fig. 2.  XRD pattern of CM-HC.

Fig. 3.  SEM images and EDS analysis of CM-HC.
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provide easy access transport toward the adsorption  sites68. The elemental composition of the activated carbon 
was performed by energy dispersive X-ray spectroscopy (EDS) is also shown in Fig. 3. In CM-HC, the material 
consists predominately of carbon and oxygen, the summary of these two elements to be 97.9% per weight. The 
rest of the composition (2.1%) corresponds to metallic fractions (Ca, K, Na and Mg).

The mean pore diameter of CM-HC calculated by BET equations were 2.1382, with a surface area of 
124.15  m2/g. The difference in the surface properties can be attributed to the type of biomass precursor. Beker 
et al., reported that the adsorption of phenols is carried out in ulramicropores and micropore with diameters 
between 0.7 and 2  nm69. Therefore, it is suspected that both adsorbents can be usefully used for removal of 
3-nitrophenol from aqueous solution, due to the smaller molecular diameter of 3-Nph (0.6202 nm)70.

Sorption study
Adsorption isotherms at different solution pH
The study of pH effect on the removal of 3-NpH on MC-HC was performed at ambient temperature by adjusting 
the solution pH of 3-Nph at 3, 6 and 8. For each solution, initial concentration was varied from 25 to 1000 mg/L.

Usually, at low pH values, anions are favorably adsorbed on the sorbent surface due to the presence of high 
concentration of  H+ ions, while at high pH values, cations are more adsorbed on the sorbent surface as a result 
of high concentration of  OH−  ions71. In addition, it well known that the degrees of dissociation and ionization 
of organic compounds as well as the adsorbent surface charge depended to the pH  solution72, therefore, it is 
important to study the effect of pH solution on the adsorption of 3-NpH on MC-HC.

Figure 4a–c show the adsorption isotherms of 3-Nph on MC-HC at initial pH 3, 6 and 8, respectively. It can 
be seen that the adsorption capacity increases between pH 3 and 6, and then decreases for pH 8. This suggests 
that, the interaction of 3-Nph with CM-HC is more favorable in the acid than alkaline medium. In previous 
researches, the uptake for phenols in certain pH range present a dome-shaped  curve25,73, which is attributed to 
the change in nature of adsorbent (surface charge) and adsorbate species at different  pH69.

At pH between 3 and 6, the surface of CM-HC is positively charged  (pHpzc(CM-HC) = 6.7. Furthermore, in 
this pH range, 3-NpH mainly present as neutral species (pKa (3-Nph) = 8.3 at 298 K), however the concentration 

Fig. 4.  Plot of adsorption isotherms for 3-Nph on MC-HC at (a) pH = 3, (b) pH = 6 and (c) pH = 8.
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of its anionic form  (C6H5NO−
3) increases with increasing of solution pH and as consequently higher uptakes at 

pH = 6 compared to pH = 3, by means of electrostatic attractions between the surface charged positively and the 
anionic form of 3-NpH74,75. At pH = 8, the uptake of 3-Nph declined. This result can be attributed to the elec-
trostatic repulsion force between the surface of CM-HC negatively charged and the abundance anionic form of 
3-Nph. Previous investigations have reported similar behavior of  phenol43,69,73,76, nitrophenols (2,4-dinitrophenol, 
3-nitrophenl, 4-nitrophenol)42,76,77 and chlorophenols (2,4-dichlorophenol, 2-chlorophenol, 4-chlorophenol)42,76 
adsorption on activated carbons.

Nonlinear equations of Langmuir, Freundlich, Temkin, and Redlich-Peterson isotherm models were used to 
investigate the adsorption mechanism. Table 2 shows the equation´s parameters with their respective correla-
tion coefficients  (R2).

The results indicate that the Langmuir and Redlich-Peterson models were well described the adsorption data 
for CM-HC in the pH range studied with  R2 values between 0.9805 and 0.9985 compared to Freundlich model 
(0.9454 ≤  R2 ≤ 0.9767) and Temkin (0.9768 ≤  R2 ≤ 0.9954). This result suggests the formation of multilayers on 
the adsorbent surface where the interaction between phenols and surface of carbonaceous materials is due Van 
der Waals’ forces and π–π  interactions42. As shown in Table 2, the maximum adsorption capacities,  qmax calcu-
lated from Langmuir isotherm model were 100.523, 128.625, and 87.284 mg/g, at pH = 3, 8, and 8, respectively. 
The values of Redlich–Peterson exponential constant, β are close to unity (0.794–0.944), this indicates that the 
Redlich–Peterson model reduces to the Langmuir  model78.

As can be seen from Table 3, the calculated values of error functions APE, SSE, ∆q (%), χ2, EABS and RMSE 
from the experimental data were lowest for Langmuir and Redlich-Peterson than Temkin and Freundlich iso-
therms. This result proves the applicability of Langmuir and Redlich–Peterson isotherm models to describe the 
adsorption mechanism of 3-Nph on CM-HC.

Table 2.  Langmuir, Freundlich, Temkin, and Redlich-Peterson isotherm parameters for the adsorption of 
3-Nph on CM-HC at different solution pH.

Isotherm Model Parameters

pH

3 6 8

Langmuir

qmax (mg/g) 100.523 128.625 87.284

KL(L/mg)  (10−2) 2.222 0.018 0.022

R2 0.9805 0.9974 0.9974

N 2.738 2.393 2.806

Freundlich
KF (mg/g)(L/mg)1/n 10.487 9.945 9.255

R2 0.9767 0.9634 0.9454

Temkin

BT (L/mg) 15.966 22.476 15.636

AT (KJ/mol) 0.654 0.363 0.371

R2 0.9768 0.9865 0.9954

Redlich–Peterson

αRP (L/mg) 0.175 0.036 0.036

KRP (L/g) 4.940 2.760 2.234

β 0.794 0.916 0.944

R2 0.9958 0.9985 0.9985

Table 3.  Values of error functions of adsorption isotherm models of 3-Nph on CM-HC at different solution 
pH.

pH Model

Error functions

APE SSE ∆q(%) χ2 EABS RMSE

3

Langmuir 17.466 168.721 0.280 10.634 25.801 5.809

Freundlich 32.242 201.919 0.576 8.463 33.964 6.355

Temkin 18.970 128.320 0.317 4.894 26.796 5.066

Redlich–Peterson 9.735 36.662 0.174 1.910 13.184 2.708

6

Langmuir 8.279 33.754 0.118 1.274 12.653 2.598

Freundlich 57.478 469.224 1.052 16.197 54.511 9.687

Temkin 10.216 99.680 0.151 2.364 21.640 4.465

Redlich–Peterson 11.266 19.640 0.187 1.191 11.201 1.982

8

Langmuir 5.980 16.848 0.093 0.796 9.010 1.836

Freundlich 45.364 358.738 0.834 13.418 43.813 8.470

Temkin 14.117 29.922 0.259 4.633 12.551 2.446

Redlich–Peterson 8.078 9.938 0.136 0.713 7.716 1.410
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Effect of contact time on adsorption equilibrium
The study of adsorption kinetics was done at ambient temperature without any adjustment of solution pH. 
Figure 5a–c show respectively the adsorbed amount of 3-NpH (mg/g) by MC-HC versus contact time (min) 
with 3-Nph initial concentration (Ci) at 50, 100 and 250 mg/L. It can be seen that within 120 min, 80.1%, 81.7%, 
and 65.3% of 50, 100, and 250 mg/L of 3-NpH were removed. The higher rate of 3-Nph adsorption in this first 
stage can be attributed to the availability of adsorption site on the adsorbent  surface79. After this time, adsorp-
tion capacity was gradually increased as increase contacted time reaching equilibrium, which varied from 180 
to 360 min depending to initial 3-Nph concentration (the faster equilibrium time was found for Ci = 50 mg/L). 
This result can be attributed to the more availability of the uncovered surface area of the adsorbents at low solute 
 concentrations76,80. In this study, the equilibrium time was found to be minor compared to other equilibrium 
times reported by other studies for the removal of phenols using different carbonaceous  materials81. For Ci = 50, 
100, and 250 mg/L, the adsorption capacity reached 8.97, 17.38, and 41.37 mg/g, at equilibrium time, respectively. 
Experimental data were analyzed using nonlinearized equations of pseudo-first-order (PFO), pseudo- second-
order (PSO), and Elovich kinetic models. Table 4 displays the kinetic parameters of PFO  (k1,  qe), PSO  (k2,  qe), 
and Elovich (α,β) with their corresponding correlation coefficients  R2.

The results showed in Table 4 indicate that for Ci = 50 and 100 mg/L, pseudo-second order model displays 
higher coefficient regression  (R2 = 0.9840, 0.9892) in comparing to pseudo-first-order (0.9043, 0.8744) and 
Elovich  (R2 = 0.8182, 0.8839) models. Also, it can observe that the calculated adsorption capacities obtained for 
the PSO model  (qe,cal = 9.05 and 17.26 for  Ci = 50, 100 mg/L, respectively) are agree to experimental data  (qe,exp 
= 8.97 and 17.38, mg/g for  Ci = 50, 100 mg/L, respectively). As seen in Table 4, the rate constants  (k2) decrease 
with increasing of initial concentration confirming that the adsorption process was faster for lower initial con-
centration. For  Ci = 250 mg/L, it can be seen that the nonlinear Elovich curve pass near to experimental data 
(Fig. 5c). Also, Elovich model gives higher value of  R2 (0.9842) compared to PFO  (R2 = 0.7834) and PSO  (R2 = 
0.9349) suggesting that the adsorption process is controlled by chemisorption mechanism.

Fig. 5.  Variation of adsorption capacity of MC-HC against contact time (min) at (a) Ci = 50 mg/L, (b) 
100 mg/L and (c) 250 mg/L.
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Elsayed et al.82 developed a biocomposite aerogel (Amf-CNF/LS) and investigated its efficacy in removing 
methylene blue (MB), rhodamine B (RhB), and cadmium ions  (Cd2+) from synthetic wastewater. The study spe-
cifically explored the influence of contact time and stirring speed on the adsorption process. The results showed 
that contact time significantly impacts the adsorption capacity, with rapid increases observed within the initial 
minutes of exposure, suggesting a high affinity between the aerogel and contaminants. The equilibrium was 
quickly reached, indicating the aerogel’s efficiency in fast contaminant uptake, which is beneficial for practical 
wastewater treatment applications where quick removal is necessary. Stirring speed was another critical factor 
that influenced the adsorption efficiency. Higher stirring speeds improved the mass transfer of the adsorbate 
molecules to the aerogel’s surface, enhancing the adsorption rate. This adjustment helped to minimize the bound-
ary layer around the adsorbent, facilitating faster adsorbate uptake.

As shown in Table 5, the values obtained from the six error equations considered in this study (Eq X to Eq 
X) are minor for PSO (for Ci = 50 and 100 mg/L) than PFO and Elovich models, while for Ci = 250 mg/L, the 
error function values were lower for Elovich than for PFO and PSO models. This confirms the results obtained 
from the nonlinear of PSO, PFO and Elovich models  (R2), and agree the feasibility of PSO model (for Ci = 50 
and 100 mg/L) and Elovich model (for Ci = 250 mg/L).

Adsorption isotherms at different adsorbent dosage
The effect of adsorbent dosage on the adsorption capacity of 3-NpH was investigated at ambient temperature 
using isotherm experiments without modifying solution pH. In this study, dosages of adsorbent were 2, 4, 8 and 
10 g/L, and initial concentrations of 3-Nph were varying from 25 to 1000 mg/L. Figure 6a–d show the equilibrium 
relationships between the 3-Nph concentrations in solution  Ce(mg/L) and the adsorptive capacities at different 
dosages of CM-HC. It can be seen that for all adsorbent dose, the adsorption capacities of 3-Nph  (qe (mg/g)) 
increase with the increasing of  Ce (mg/L).

The experimental adsorption isotherms data were analyzed using nonlinear equations of Langmuir, Freun-
dlich, Temkin, and Redlich–Peterson isotherm models. Table 6 presents the isotherm parameters with adsorbent 
dose from 2 to 10 g/L. The results indicate that the adsorption isotherm was depended of adsorbent dosage. 
According to correlation coefficients showing in Table 6, Freundlich and Redlich–Peterson isotherm models were 
best described to the sorption data for 2 g/L of adsorbent dose, whereas, for CM-HC dosage between 4 to 10 g/L, 
Langmuir and Redlich-Peterson isotherm models were well to describe the adsorption process. As seen in Table 6, 
it was found that the Langmuir constants  KL increased from 0.309 ×  10−2 to 3.9217 ×  10−2 L/mg with increasing 
of adsorbent dosage from 2 to 10 g/L, which indicates the high affinity at low dosage of CM-HC. Additionally, 
it can be noted that the value of Freundlich constant 1/n (adsorption intensity) correspond to 2 g/L was lower 
compared than adsorbent dosages between 4 and 10 g/L, which means that the adsorption of 3-Nph is more 
favorably at lower adsorbent dosage. The Redlich–Peterson parameters presented in Table 6, show that for all 
values of adsorbent dosage, the exponent constant β is between 0 and 1, which indicates a good  adsorption78. In 
addition, for dosage 4, 8 and 10 g/L, the values of β were close to unity (β = 1.003, 0.878, and1.0267), therefore, the 
Redlich–Peterson model reduces to the Langmuir model to describe the 3-Nph adsorption, whereas for dosage 

Table 4.  PFO, PSO, and Elovich kinetic parameters for different initial concentrations of 3-Nph.

Ci (mg/L)

Pseudo-First order Pseudo-second order Elovich

qe, cal (mg/g) k1.10−2 (1/min) R2 qe, cal (mg/g) k2.  10−2 g/mg.min R2 α g/mg.min β (g/mg) R2

50 8.677 6.859 0.9043 9.054 1.417 0.9892 1.617 22.147 0.8182

100 16.443 6.398 0.8744 17.262 0.648 0.9840 0.750 1.316 0.8839

250 36.244 3.625 0.7834 39.266 0.128 0.9349 0.206 0.215 0.9842

Table 5.  Values of error functions of PFO, PSO and Elovich kinetic models of 3-Nph (Ci = 50, 100 and 
250 mg/L) on CM-HC.

Ci (mg/L) Model

Error functions

ARE SSE ∆q (%) χ2 EABS RMSE

50

PFO 4.668 1.395 0.063 0.192 2.796 0.482

PSO 1.799 0.158 0.026 0.023 0.769 0.162

Elovich 6.743 1.456 0.070 0.183 3.198 0.493

100

PFO 6.090 7.255 0.073 0.512 7.040 1.100

PSO 2.184 0.925 0.027 0.069 2.479 0.393

Elovich 4.281 4.007 0.051 0.265 5.124 0.817

250

PFO 11.307 110.394 0.139 4.026 27.161 4.289

PSO 6.036 33.167 0.080 1.249 14.123 2.351

Elovich 2.438 6.573 0.031 0.200 5.966 1.047
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Fig. 6.  Adsorption isotherms of 3-Nph on CM-HC with dosage (a) 2 g/L, (b) 4 g/L, (c) 8 g/L and (d) 10 g/L.

Table 6.  Langmuir and Freundlich isotherm parameters for the adsorption of 3-Nph on CM-HC at different 
dosages.

Isotherm Models Parameters

Dosage (g/L)

2 4 8 10

Langmuir

Qmax (mg/g) 236.156 101.302 86.224 79.441

KL(L/mg)×10-2 0.309 1.906 3.405 3.9217

R2 0.9880 0.9956 0.9945 0.9973

n 1.689 2.639 2.415 2.357

Freundlich
KF (mg/g)(L/mg)1/n 3.705 9.711 9.083 8.719

R2 0.9967 0.9547 0.9726 0.9569

Temkin

BT (L/mg) 27.858 16.788 13.212 11.349

AT (KJ/mol) 0.169 0.466 1.126 1.547

R2 0.8624 0.9622 0.9515 0.9115

Redlich–Peterson

αRP (L/mg) 4.604 0.018 0.086 0.033

KRP (L/g) 18.794 1.916 3.843 2.985

β 0.421 1.003 0.878 1.0267

R2 0.9966 0.9956 0.9966 0.9974
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2 g/L, β < 1 (β = 0.421) and αRP,  KRP >> 1 (αRP = 4.604 and  KRP = 18.794), then the isotherm was approaching 
the Freundlich form, where  KRP/αRP and (1- β) are related to  KF and n Freundlich parameters,  respectively83.

Based on the values of error functions obtained by Eqs. (7), (8), (9), (10), (11), (12), it can observed from 
Table 7, that for adsorbent dosage 2 g/L, the Freundlich and Redlich–Peterson show the lowest values of APE, SSE, 
∆q (%), χ2, EABS, and RMSE. In the case of adsorbent dosages from 4 to 10 g/L, Langmuir and Redlich–Peterson 
present the less values of error functions compared to Freundlich and Temkin isotherm models. These results 
were in agreement with the finding correlation coefficients and validate the studied isotherm models.

As seen in Fig. 7a, it was found that as the amount of 3-NpH (mg/g) decrease from 236.156 to 79.441 mg/g 
when the adsorbent dose increases from 2 to 10 g/L. This result can be attributed to the split in the flux or the 
concentration gradient between solute concentration in the solution and the  solute84. Figure 7b, shows that the 
removal percentage of 3-NpH increase by the increasing of the sorbents dosage, this result can be attribute to the 
increase of the number of sorption site available, thus allow the increasing of removal percentage of 3-NpH85.

Adsorption isotherms at different temperatures
Adsorption isotherms of 3-NpH at temperatures 300.15, 313.15 and 330.15 K on CM-HC are shown in Fig. 8a–c, 
respectively. It can be seen that the temperature has a significant effect on the removal of 3-Nph. As shown in 
these figures, it can observe that the adsorption capacity of CM-HC decreases with increasing of temperature 
confirming that the adsorption process of 3-NpH on CM-HC is controlled by an exothermic reaction. Previous 

Table 7.  Values of error functions of adsorption isotherm models of 3-Nph on CM-HC at different dosage.

Dose
(g/L) Model

Error functions

APE SSE ∆q (%) χ2 EABS RMSE

2

Langmuir 20.157 202.234 0.331 17.856 33.444 6.360

Freundlich 9.897 60.271 0.171 3.483 18.477 3.472

Temkin 36.529 1712.042 0.490 24.908 95.565 18.504

Redlich–Peterson 10.139 62.045 0.179 3.945 18.330 3.523

4

Langmuir 11.994 34.540 0.225 4.320 12.810 2.628

Freundlich 28.452 353.942 0.429 9.463 43.842 8.414

Temkin 21.776 216.007 0.320 9.897 32.619 6.573

Redlich–Peterson 12.127 34.528 0.227 4.415 12.869 2.628

8

Langmuir 15.593 29.566 0.273 4.621 11.721 2.432

Freundlich 34.850 147.949 0.584 6.908 27.085 5.440

Temkin 27.778 218.128 0.434 13.598 30.095 6.605

Redlich–Peterson 12.387 18.150 0.199 2.170 10.333 1.905

Langmuir 17.941 10.984 0.313 4.535 7.285 1.482

10

Freundlich 39.794 176.909 0.582 7.917 31.924 5.948

Temkin 48.302 285.026 0.801 12.386 36.244 7.550

Redlich–Peterson 18.146 10.637 0.320 4.941 7.014 1.459

Fig. 7.  Effect of sorbents dosage (g/L), on the (a) amount of 3-NpH sorbed, qm (mg/g) and (b) percentage of 
3-NpH removal; solution pH: 5.6.00; temperature: 297 K, agitation speed: 150 rpm; contact time: 24 h.
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studies of adsorption of phenolic compounds showed an exothermic process using oil palm shell activated 
 carbon86, carbon  black87, cattail fiber-based activated  carbon88, and anaerobic granular  sludge89 as adsorbents. In 
these studies, it was suggested that the increase of temperature may cause a breaking of attraction force between 
the adsorbate molecules and the active sites on the surface of carbonaceous materials leading to decrease of 
adsorption  capacity90. The equilibrium data at temperature 300.15, 313.15 and 330.15 K were fitted using non-
linear equations of Langmuir, Freundlich, Temkin and Redlich–Peterson isotherm models. Table 8 shows the 
isotherm parameters with their correlation coefficients  R2. It was found that for all temperatures studied, the 
 R2 for Langmuir and Redlich-Peterson isotherm models are higher than Freundlich, Temkin isotherm models.

The maximum adsorption capacities of 3-Nph on CH-HC were 128.625 107.704, and 105.441 mg/g at 300.15, 
313.15 and 330.15 K, respectively. Likewise, the values of Langmuir constant  KL decrease with increasing of tem-
perature, which indicate the higher affinity at lower temperature and confirming that the adsorption of 3-Nph is 
an exothermic nature. Furthermore, it can be noted that the values of parameter β are close to unity, confirming 
that the adsorption isotherms are best approaching to Langmuir model than Freundlich model. Table 9 presents 
the values of error functions. It can be observed that among four studied isotherm models, the Langmuir and 
Redlich–Peterson isotherm showed less values, confirming that the Langmuir model is the best fitted model for 
the range temperature studied.

Adsorption mechanisms
The proposed adsorption mechanisms of 3-Nph on CM-HC depended to the functional groups present on the 
surface on the adsorbent. In the recent study, we have found that the surface of CM-HC exhibits the following 
functional groups: OH, C=O, C–O, and C=C (aromatic ring)91. Therefore, electrostatic interaction can be carried 
out between the negative charge of OH, C=O, C–O groups with the positive charge of the nitrogen from 3-Nph. 
Also, the OH functional group may interact with the oxygen from phenol group by hydrogen bonding. Other 
interaction between the C=C group with the benzene from 3-nitrophenol by π–π interactions. Additionally, 

Fig. 8.  Adsorption isotherms of MC-HC at temperature (a) 300.15, (b) 313.15 and (c) 330.15 K.
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CM-HC has pores that may allow the 3-Nph molecules. Figure 9 shows the electrostatic interactions, hydrogen 
bonding, π–π interactions, and porous adsorption as a possible adsorption mechanism of 3-Nph onto CM-HC.

Adsorption and desorption cycles
Figure 10 shows the adsorption and desorption cycles of 3-Nph onto AB-HC. It can be seen that adsorption and 
desorption capacities  (qads and  qdes) of 3-Nph has decreased. The decrease in adsorption capacity can be attributed 
to the possible remnant of 3-Nph on the surface of the CM-HC due to the strong interaction between adsorb-
ate and adsorbent, and incomplete desorption of 3-Nph using NaOH. In other studies, moderate adsorption of 
nitrophenols was observed after the first cycle, which is attributed to the destruction of the porous structure of 
the activated biochar under alkaline experimental conditions. To improve the reusability of CM-HC, it is sug-
gested to use other eluents or even temperature of aqueous solution.

Deep learning artificial intelligence framework to optimize the adsorption capacity of carbo‑
naceous material
In this section, the focus centers on the implementation of a deep  learning92 artificial intelligence (AI) algorithm 
utilizing an artificial neural  network93. Subsequently, optimization based on a genetic  algorithm94 is applied. This 
comprehensive procedure is executed methodically, with the initial step encompassing data visualization and 
description, followed by AI implementation and optimization.

Data visualization and description
Regarding data visualization and description, the entire experimental dataset is initially formatted and consoli-
dated into a structure, as illustrated in Table 10 95. Each column in this table contains variables such as time, initial 

Table 8.  Langmuir and Freundlich isotherm parameters for the adsorption of 3-Nph on CM-HC at different 
temperatures.

Isotherm Models Parameters

Temperature (K)

300.15 313.15 330.15

Langmuir

Qmax (mg/g) 128.625 107.704 105.441

KL(L/mg)  (10−2) 1.804 1.548 0.939

R2 0.9974 0.9842 0.9766

N 2.393 2.698 2.455

Freundlich
KF (mg/g)(L/mg)1/n 9.945 9.962 6.813

R2 0.9634 0.9742 0.9141

Temkin

BT (L/mg) 22.475 16.664 18.761

AT (KJ/mol) 0.363 0.522 0.178

R2 0.9865 0.9744 0.9586

Redlich–Peterson

αRP (L/mg) 0.035 0.123 0.0005

KRP (L/g) 2.759 3.713 0.629

β 0.917 0.798 1.379

R2 0.9985 0.9971 0.9843

Table 9.  Values of error functions of adsorption isotherm models of 3-Nph on CM-HC at different 
temperatures.

T (K) Model

Error functions

APE SSE ∆q (%) χ2 EABS RMSE

300.15

Langmuir 8.279 33.754 0.118 1.274 12.653 2.598

Freundlich 57.478 469.224 1.052 16.197 54.511 9.687

Temkin 10.216 99.680 0.151 2.364 21.640 4.465

Redlich–Peterson 11.258 19.641 0.187 1.190 11.190 1.982

313.15

Langmuir 18.906 144.054 0.299 11.766 24.773 5.368

Freundlich 37.341 235.752 0.666 9.589 37.525 6.867

Temkin 15.791 142.297 0.278 4.066 27.083 5.335

Redlich–Peterson 9.271 26.502 0.160 1.585 11.177 2.302

330.15

Langmuir 14.555 182.855 0.182 4.808 30.997 6.047

Freundlich 51.710 672.224 0.910 17.772 62.448 11.595

Temkin 20.789 323.810 0.339 14.212 36.983 8.047

Redlich–Peterson 17.807 122.489 0.272 11.221 21.007 4.950
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concentration, pH, dosage, temperature, and the fitness function (removal percentage). Each row corresponds 
to an individual experimental run, mirroring the real experimental procedure, which can be resource-intensive. 
For instance, the execution of experiment run no. 8 required 1440 min. Despite the substantial time investment, 
consolidating the database at this juncture proves beneficial.

To elucidate the data description, violin plots (Fig. 11) are employed for each of the five variables and the 
removal percentage, the latter being the fitness function. The violin plot is chosen for its ability to convey data 
properties akin to a box and whisker plot, while also providing insights into data distribution. An alternative 
method for understanding data distribution is through histograms, as depicted in the scatter matrix of Fig. 12.

The violin plot reveals distinctive patterns, such as a concentration of the time variable towards the upper 
end, aligning with the scatter matrix histogram. Furthermore, there is a noticeable concentration at the lower 
end, indicating durations less than 200 min. Notably, there is an abundance of experimentation for lower initial 
concentrations (< 200 units), a trend consistent with the scatter matrix results showcasing the highest data 
density in this range.

Fig. 9.  Adsorption mechanism of 3-Nph on CM-HC.

Fig. 10.  Adsorption and desorption cycles of 3-Nph on CM-HC.
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The pH variable exhibits its highest density just below the neutral point, with bottlenecks observed around 
pH values of 4–5 and 7. This aligns with the scatter matrix, emphasizing lower probability density at the ends 
compared to a peak at 6. The dosage and temperature graphs share a similar pattern, with higher probability 
distribution for lower dosages (< 2 units) and temperatures (< 305 K). However, as dosages and temperatures 
increase, the number of data points decreases.

The removal percentage’s violin plot correlates intriguingly with the histogram distribution in the scatter 
matrix. The highest frequency of removal percentage occurs at approximately 90 units, with a noticeable reduc-
tion in data points beyond this threshold. The upper end of the 90-unit range exhibits a more substantial data 
distribution compared to the lower end, suggesting a potential combination of the five design variables yielding 
maximum removal percentage.

It should be noted that the dataset used for the ANN analysis comprises 87 entries, which may be considered 
small for robust ANN applications. This limitation could potentially affect the generalizability of the model. To 
address this issue in future studies, we propose to expand the dataset through additional batch experiments to 
enhance the training process and improve the model’s accuracy and generalizability. Further, employing cross-
validation methods or increasing the diversity of the data points could also contribute to more reliable ANN 
predictions. These steps will help in mitigating the effects of the current dataset size and provide a more robust 
framework for ANN applications in adsorption batch experiments.

In this phase, correlation heat maps incorporating coefficients from  Pearson96,  Spearman97, and  Kendall98 
methods have been successfully implemented and are visually represented in Fig. 13. Notably, all three heat 
maps exhibit a correlation coefficient of 1 along the diagonal, indicating pairwise correlations such as time-time, 
initial concentration with initial concentration, among others. Conversely, the data situated above or below the 
diagonal represents a mirrored image. Consequently, it is appropriate to focus solely on interpreting one side 
of the correlation heat map. The primary emphasis of this discussion is on the significance of the correlation 
coefficient values and the distinctions arising from the implementation of different correlation methods. It is 
imperative to acknowledge that, in all instances, a positively correlated coefficient is exclusively observed for 
time and dosage, with Pearson correlation coefficients of 0.26 and 0.38, respectively. It can be asserted that the 
relationship between time and the removal percentage does not exhibit a strongly positive correlation; however, 
dosage demonstrates a more robust positive correlation with a coefficient of 0.38. Nonetheless, this interpreta-
tion undergoes notable variations when examining the Kendall correlation, which implies that time possesses a 
more potent correlation coefficient with the removal percentage compared to dosage—an observation similarly 
noted with the Spearman method. This leads to the conclusion that the determination of whether time or dosage 
more significantly influences the removal percentage is inconclusive. Nevertheless, all three algorithms consist-
ently affirm the existence of a positive relationship. The correlation coefficient of pH, as determined by all three 
methods, is negative. However, its value is in close proximity to zero, signifying that pH is not the most robust 
or influential variable affecting the removal percentage. A parallel trend is observed for temperature, displaying 
a negative correlation coefficient, suggesting that lower temperatures are preferable for achieving higher removal 
percentages. The most substantial correlation is identified for the initial concentration concerning the removal 
percentage, with values of −0.59 for both Pearson and Spearman correlations, and −0.45 for the Kendall cor-
relation. This indicates that the initial concentration emerges as the most influential parameter for the removal 
percentage, with lower initial concentrations proving more conducive to achieving favorable outcomes.

Table 10.  General format of the experimental data. Data publicly available at: https:// dx. doi. org/ 10. 6084/ m9. 
figsh are. 24545 587.

Experimental run no. Time Initial concentration pH Dosis temperature Removal percentage

1 15 50 6 1 300.15 47.04

2 30 50 6 1 300.15 61.87

3 60 50 6 1 300.15 68.96

4 120 50 6 1 300.15 80.01

5 180 50 6 1 300.15 86.09

6 360 50 6 1 300.15 86.94

7 720 50 6 1 300.15 89.74

8 1440 50 6 1 300.15 91.06

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

82 1440 50 6 1 330.15 83.71

83 1440 100 6 1 330.15 85.46

84 1440 250 6 1 330.15 69.56

85 1440 500 6 1 330.15 67.60

87 1440 700 6 1 330.15 54.67

87 1440 1000 6 1 330.15 37.78

https://dx.doi.org/10.6084/m9.figshare.24545587
https://dx.doi.org/10.6084/m9.figshare.24545587
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Deep learning artificial neural network
For enhanced accuracy and mitigating multicollinearity issues within the dataset, an advanced approach involv-
ing artificial neural networks (ANNs)99 was implemented for deep learning  purposes100,101. Previous attempts 
using traditional machine learning techniques such as multivariate regression analysis and support vector 
machine yielded unsatisfactory results, prompting the adoption of ANNs.

The initial ANN configuration consisted of a single hidden layer comprising 10 neurons. Architecture optimi-
zation was pursued by employing the  Adam102 optimizer in  Python103, within the Google Colab  environment104. 

Fig. 11.  Violin plot of the variables and the fitness function.
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Despite multiple iterations, the mean square error (MSE)105 ranged between 75.8409 and 156.8976, indicating 
suboptimal performance.

To address this, manual iterations were conducted by varying the number of hidden layers and neurons, 
transitioning from a structure of 5-10-10-1 to 5-100-100-1. Unfortunately, this did not yield satisfactory results. 
The implementation was then transferred to  MATLAB106, where the scaled conjugate  method107, known for its 
suitability in regression fits for small and noisy datasets, was adopted.

The optimized architecture identified was 5-14-14-1 (refer to Fig. 14). This architecture includes an input 
layer with five variables, two hidden layers with 14 neurons each utilizing a tansig activation function, and an 
output layer representing the removal percentage with a linear activation function.

The Tansig function, or hyperbolic tangent sigmoid transfer function, is a popular activation function used 
in neural networks, particularly in the context of artificial neural networks (ANNs). Mathematically, it is defined 
as: tansig(x) = 2

1+e−2x − 1 , where x represents the input to the function. This function outputs values that range 
from −1 to 1, making it particularly useful for modeling data that have been normalized to this range. The 
Tansig function is an S-shaped curve, similar to the logistic sigmoid function, but with outputs spread over a 
wider range on the y-axis. This characteristic allows the function to handle negative values more naturally and 
makes it beneficial for problems where the symmetry around zero can help in faster convergence of the learning 

Fig. 12.  Scatter matrix with histograms between the design variables and the fitness function.
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algorithm. The use of the Tansig function in neural networks is advantageous because of its non-linear nature, 
which enables the network to learn complex patterns that linear models might not be able to capture. Addition-
ally, the gradients of the Tansig function are stronger for values in the range closer to zero, which can lead to more 
effective and efficient training phases, especially during backpropagation where gradients are used to update the 
weights. In the context of our ANN model used to analyze adsorption batch experiments, employing the Tansig 
function as the activation helps the network in handling varying dynamics of the data while maintaining stable 
learning and convergence behaviors. This choice is crucial for the performance of our ANN, particularly given 
the constraints imposed by the relatively small size of the dataset.

The iterative adjustment of bias and weight matrices in each epoch led to the optimal values at Epoch 228 
(see Fig. 15), resulting in MSE values of 4.07, 18.406, and 6.2122 for the training, testing, and total datasets, 
respectively (refer to Table 11).

The coefficient of determination, corresponding to R-squared values, for training, testing, and the total data-
set were 0.98759, 0.94280, and 0.98108, respectively. This confirmed the efficacy of the selected architecture 
and convergence criteria. The output generated from this optimized model was saved for further analysis and 
interpretation.

Upon establishing the architecture and statistical characteristics of the proposed artificial neural network 
(ANN) model, the subsequent phase involves a comprehensive graphical visualization to assess the model’s 
performance. While statistical indicators provide crucial insights, graphical representations offer additional 
nuances that may not be discernible through numerical metrics alone.

In Fig. 16a, the regression fit graph portrays the relationship between the target variable (experimental 
removal percentage) and the model’s output (simulated removal percentage). Ideally, a perfect linear correla-
tion between these variables signifies an impeccable goodness of fit. The linear fit equation reveals a slope of 
1.00, indicating a consistent rate of change between the target and output. However, a bias of −0.56 is observed, 
implying a slight deviation of the y-intercept from the origin, a phenomenon rationalized by the scarcity of data 
points below a removal percentage of 50. Notably, the graph includes representations of both training and testing 
data. Strikingly, the statistical performance of the training dataset aligns more closely with the linear regression 
line than the testing data. Instances of substantial deviation from the regression line in the testing data caution 
against over-reliance on this subset for optimization, as poorly predicted points may lead to local  optima47.

Furthermore, adherence to key regression assumptions is imperative for robust model  validation108. Fig-
ure 16b delves into the examination of normality, independence, and homoscedasticity of errors. The normality 
of errors is scrutinized using a QQ-plot, where the majority of data points closely adhere to the theoretical normal 
distribution line. However, six outlier data points, positioned at the extremes of the distribution, warrant care-
ful consideration during the optimization phase. Independence of errors is assessed through a plot of residuals 
against experimental run (row number). The absence of a discernible pattern in this plot affirms the independ-
ence of errors. Intriguingly, the same six outlier data points identified earlier exhibit distinctive characteristics, 
emphasizing the need for meticulous handling during optimization. Finally, homoscedasticity of residuals is 
validated via a plot correlating predicted values with residuals. The absence of a defined pattern in this plot 
further confirms the homogeneity of residuals. Notably, the six outlier points exhibit unique behaviors in this 
context as well, underscoring their significance in the overall analysis.

In conclusion, this multifaceted graphical analysis provides a comprehensive evaluation of the ANN model’s 
performance, ensuring a thorough understanding of its strengths and potential limitations in addressing the 
research objectives.

The validation of our deep learning artificial neural network (ANN) is a critical step to ensure the reliabil-
ity and accuracy of the model’s predictive capabilities. We employed a robust validation strategy that involves 

Fig. 13.  Coefficient of correlation of Pearson, Spearman, and Kendall.
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splitting the data into distinct sets: training, testing, and validation. This separation ensures that the model is 
not only trained but also fine-tuned and tested against unseen data. During the training phase, the model’s 
parameters are adjusted to minimize the error on the training set. Then, the validation set is used to tune the 
hyperparameters and prevent the model from overfitting, which is critical given the relatively small dataset. 
The final model’s performance is assessed on a separate test set, which provides an unbiased evaluation of its 
predictive power. The mean square error (MSE) and the coefficient of determination  (R2) are calculated for each 
set to quantify the model’s accuracy and predictive performance. These metrics confirm whether the model can 
effectively generalize beyond the training data.

Ensuring the repeatability of our ANN model involves detailed documentation of the model architecture, 
including the number of layers, the type of activation functions used (e.g., Tansig), and the optimization algo-
rithms (e.g., scaled conjugate method). The iterative process of model training is set to reproducible conditions, 
with fixed seeds for random number generators and consistent training-validation-test splits. This practice is 
vital to achieve consistent results when the model is re-run under the same conditions or by other researchers. 
Additionally, the robustness of the model is tested through repeated runs, where the stability of the results (such 

Fig. 14.  Optimal deep learning architecture.
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as MSE and  R2 values) is checked across different iterations to ensure that the outcomes are not anomalies but 
reproducible findings.

Optimization using genetic algorithm
The employment of deep learning has facilitated the establishment of an empirical correlation between various 
tuning parameters and the fitness function, represented by the removal percentage. This correlation serves as a 
fitness function equation, enabling the formulation of an optimization problem. The objective of this optimiza-
tion is to maximize the removal percentage by adjusting decision variables such as time, initial concentration, 
pH, dosis, and temperature. The decision variable bounds are defined as lower bound = [15, 50, 3, 1, 300.15] and 
upper bound = [1440, 250, 8, 10, 330.15]. To conform to typical optimization conventions geared towards mini-
mization, the removal percentage is multiplied by −1. A noteworthy concern arises from the lack of a continuous 
dataset for digital twin modeling. Despite the high performance demonstrated during empirical modeling, the 
optimization process operates with a potential error margin due to the finite nature of the removal percentage 
(with a maximum value of 100).

The optimization problem is expressed as follows:

Prior to mathematical optimization, a critical step involves visualizing the optimization data to identify poten-
tial regions for improvement. Given the multivariate nature of the data (six dimensions), a parallel coordinate 

Minimize : −1× removal percentage subject to lower bound

≤
[

time, initial concentration, pH, dosis, temperature
]

≤ upper bound 0 ≤ removal percentage ≤ 100.
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Fig. 15.  Convergence criteria of the Mean Squared Error for the best architecture.

Table 11.  Statistical performance indicators for the best architecture.

Source MSE MAPE SSE R2

Training 4.07 1.7369 301.18 0.98759

Testing 18.406 4.9067 239.28 0.94280

Total 6.2122 2.2105 540.46 0.98108
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plot is adopted (Fig. 17). In this plot, red lines signify a higher tendency for improved removal percentage. 
Analysis of the red lines indicates that lower temperatures, reduced dosis, moderate pH values, moderate initial 
concentration, and extended time are favorable for optimization. However, a formal algorithmic application is 
required to substantiate these observations.

To address this, a single-objective genetic  algorithm109 implemented in MATLAB, utilizing the ‘ga’ function, 
is employed for optimization. The chosen parameters include a population size of 50, a maximum of 100 genera-
tions, and parallel computing. The results of this optimization process are tabulated in Table 12.

In Table 12, simulation results stemming from data-driven optimization through a deep learning algorithm 
are presented. Notably, the simulated maximum removal percentage reaches 100.001, a theoretically ideal value 
with a tolerance level of 0.001. While this represents an idealized outcome, the simulation aids in identifying 
decision variable combinations leading to this optimality. However, acknowledging the inherent error margin 
in the digital twin modeling and optimization process, it is crucial to validate the true optimality through 
experimentation.

A subsequent experiment, conducted under conditions aligning with the optimal points identified in simu-
lation, yields a removal percentage of 98.77%. The percentage difference between this experimentally verified 
optimality and the simulated result is a mere 1.24%, demonstrating the success of applying deep learning with 

Fig. 16.  (a) Regression fitting for the optimal architecture. (b) Verification of the assumptions of the regression 
fit, including normality, independence, and homoscedasticity from left to right.
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genetic algorithm optimization. Consequently, it is recommended to prioritize experimental optimality for 
robust validation.

Conclusion
It is concluded that the carbonaceous material from Haematoxylum campechianum waste (CM-CM) proved 
to be an effective low-cost adsorbent to remove 3-nitrophenol from aqueous solution. The experiment results 
show that the uptake capacity of 3-Nph by CM-HC is dependent of contact time, pH of solution, adsorbent 
dosage and temperature parameters. Removal of 3-Nph was found to be more favorable at pH = 6 and at T = 
300.15 K. Over concentrations studied, adsorption equilibrium data showed the best fitted Langmuir model at 
all pH solutions, dosage of adsorbent and temperatures studied. The maximum adsorption capacity of CM-HC 
was calculated as 236.156 mg/g. The results of kinetic study show that for Ci (3-Nph) = 50–100 mg/L, the 
pseudo-second order model was best fit model to the adsorption of 3-Nph. Some other conclusions from the 
data analytics are following:

1. The relationship between time, dosage, and various environmental factors with the removal percentage is 
explored through correlation analysis using Pearson, Spearman, and Kendall methods. Despite differences 
in the strength of correlations between the methods, a consistent positive correlation exists between time 
and dosage with the removal percentage. The interpretation varies slightly among methods, highlighting the 
nuanced influence of correlation algorithms. Notably, the initial concentration emerges as the most influential 
parameter, emphasizing its significance in achieving favorable outcomes. The study suggests that determining 
whether time or dosage more significantly influences the removal percentage remains inconclusive, but the 
positive relationship is consistently affirmed by all three correlation algorithms.

2. The identified 5-14-14-1 architecture, fine-tuned over 228 epochs, demonstrated robust performance with 
mean squared error (MSE) values of 4.07, 18.406, and 6.2122 for training, testing, and total datasets, respec-
tively. The coefficient of determination (R-squared) values further confirmed the efficacy of the selected 
architecture. The graphical analysis of the model’s performance revealed a well-fitted linear correlation 
between experimental and simulated removal percentages, with attention to potential pitfalls in relying solely 
on the testing dataset for optimization. The assessment of normality, independence, and homoscedasticity 
of errors provided a comprehensive understanding of the model’s strengths and limitations.

3. Through the approach of a single-objective genetic algorithm implemented in MATLAB, a theoretically 
ideal removal percentage of 100.001 was simulated, aiding in identifying decision variable combinations 
leading to optimality. The subsequent experimental validation under optimal conditions yielded a removal 
percentage of 98.77%, showcasing the success of combining deep learning with genetic algorithm optimiza-
tion. However, it is emphasized that experimental validation is crucial to account for inherent error margins 
in digital twin modeling. The study recommends prioritizing experimental optimality for robust validation 
of the optimization results obtained through the integration of deep learning and genetic algorithms.

Fig. 17.  Parallel coordinate plot.

Table 12.  Optimality based upon simulation and experimentation.

Source Time Initial concentration pH Dosis Temperature Removal percentage

Simulation 1381.2912 23.0771 5.7939 9.1888 305.6714 100.001

Experimentation 1440 25 6 10 300.15 98.77
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This research not only contributes to the advancement of environmental science but also offers a unique 
opportunity for educational innovation. By incorporating artificial neural networks, deep learning, and data sci-
ence methodologies into the study of adsorption processes for pollutant removal, students can engage in cutting-
edge interdisciplinary approaches. The utilization of genetic algorithm optimization adds a practical dimension 
to their learning experience, fostering skills in optimization and critical thinking. This innovative integration 
of advanced technologies provides students with valuable exposure to real-world problem-solving, preparing 
them for future challenges in environmental engineering and promoting a forward-looking educational model.

Overall, the combination of using biosorbents for environmental remediation and enhancing these efforts 
through educational programs presents a holistic approach to managing water pollution. The research under-
scores the importance of continuous research in biosorbent efficacy and advocates for robust educational pro-
grams that empower individuals with the knowledge and skills to make impactful environmental decisions. 
Future strategies should focus on expanding the availability of educational resources related to biosorbents and 
increasing public engagement through tailored educational programs that highlight the practical aspects of 
environmental stewardship (Supplementary Information).

Data availability
The datasets generated and analysed during the current study are available in the figshare repository, [https:// 
dx. doi. org/ 10. 6084/ m9. figsh are. 24545 587].
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