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Abstract

Background: Internal tandem duplications (ITDs) are tandem duplications within coding exons and are important
prognostic markers and drug targets for acute myeloid leukemia (AML). Next-generation sequencing has enabled the
discovery of ITD at single-nucleotide resolution. ITD allele frequency is used in the risk stratification of patients with AML,;
higher ITD allele frequency is associated with poorer clinical outcomes. However, the ITD allele frequency data are often
unavailable to treating physicians and the detection of ITDs with accurate variant allele frequency (VAF) estimation
remains challenging for short-read sequencing. Results: Here we present the ScanITD approach, which performs a stepwise
seed-and-realignment procedure for ITD detection with accurate VAF prediction. The evaluations on simulated and real
data demonstrate that ScanITD outperforms 3 state-of-the-art ITD detectors, especially for VAF estimation. Importantly,
ScanlITD yields better accuracy than general-purpose structural variation callers for predicting ITD size range duplications.
Conclusions: ScanITD enables the accurate identification of ITDs with robust VAF estimation. ScanITD is written in Python
and is open-source software that is freely accessible at https://github.com/ylab-hi/ScanITD.
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Findings
Background

Internal tandem duplication (ITD) is a tandem duplication event
residing within coding exons. ITD is a type of genetic alterations
that frequently occur in genes implicated in cancer [1]. For ex-
ample, ITDs in FLT3 are discovered in ~20%-30% of patients with
acute myeloid leukemia (AML) and have been associated with
increased relapse risk and decreased overall survival [2, 3]. The
FLT3 ITDs vary in size from 3 to >300 bp and consist of tan-
dem repeats of the entire or partial FLT3 exon 13-15 region in-
serted into the FLT3 juxtamembrane domain or nearby tyrosine
kinase domain [4, 5]. FLT3 ITD allele frequency is used in the risk
stratification of FLT3 ITD-positive AML patients; patients with
a high allele frequency (>0.5) belong to the high-risk group ac-
cording to European LeukemiaNet guidelines [6]. FLT3 ITD with a
high allele frequency confers a poor prognosis and has a signif-

icant negative effect on the management of patients with AML
[6, 7].

The recent development of next-generation sequencing
(NGS) has enabled the detection of ITDs at single-nucleotide res-
olution. However, the detection of larger FLT3 ITDs and accu-
rate reporting of ITD frequency remains challenging for NGS-
based methods. False-negative ITD results or inaccurate variant
allele frequency (VAF) estimations could negatively alter treat-
ment solutions for patients with AML. Small and intermediate-
sized ITDs can be detected by existing insertion and deletion (in-
del) callers (e.g., Pindel [8]), and large ITDs are generally identi-
fied by tools designed for structural variation (SV) detection. To
date, there is a lack of tools specifically designed for ITD detec-
tions across the whole size spectrum and accurately reporting
the VAF.

In this study, we developed a novel computational tool
named ScanITD, which uses chimeric alignments to reconstruct
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ITDs spanning several tens to several hundreds of base pairs and
then performs local realignment of clustered split reads to esti-
mate the VAF of predicted ITDs accurately. Here, we compared
the performance of ScanITD with existing ITD detectors and SV
detectors using simulated data. We also applied ScanITD to the
50x whole-genome sequencing (WGS) data of NA12878 human
individual and whole-exome sequencing (WES) data of 24 sam-
ples from patients with AML from The Cancer Genome Atlas
(TCGA) project. We demonstrated that ScanITD outperformed
the existing methods for detecting ITDs and estimating VAF with
high accuracy.

The short reads are aligned first by BWA-MEM [9] or other soft-
clipping aware NGS aligners to a BAM file, and then ScanITD an-
alyzes the BAM file to detect ITDs following 2 steps (Fig. 1A). In
the first step, ScanITD reconstructs ITDs by redefining chimeric
reads through the following procedures:

1. Identifying the soft-clipping mode of primary and alternative
alignments from the chimeric reads based on their Compact
Idiosyncratic Gapped Alignment Record (CIGAR) strings. The
primary and alternative alignments due to an ITD event will
have different soft-clipping modes, such as left part mapped
and right part soft-clipped (referred as MS mode) or left part
soft-clipped and right part mapped (referred as SM mode)
(Fig. 1B).

2. The primary and alternative alignments must be mapped in
the same chromosome and the same strand.

3. The genomic location and size of the ITD are determined
from the primary alignment and the distance offset between
primary and alternative alignments under 2 scenarios:

(a) If ITD size is less than the read length, ScanITD reconstructs
ITDs as insertions based on the transindel algorithm [10],
which will modify the CIGAR string and update the start po-
sition of the chimeric read (Fig. 1B). ScanITD will add (n)I in
the redefined CIGAR string, where (n) is the size of the ITD
and “I” denotes the insertion. A string rotation algorithm as
described in Algorithm 1 and Supplementary Fig. S1 will be
executed to further evaluate whether the detected event is a
novel sequence insertion or a bona fide ITD event.

(b) If the ITD size is larger than the read length, ScanITD will add
anew SV tag in the chimeric reads instead of modifying their
CIGAR strings. The format of the SV tag follows (TDUP, POS,
SIZE), where TDUP indicates that this is an ITD event, and
the position and size of the ITD are inferred as illustrated in
Fig. 1B.

In the second step, ScanITD will scan the ITD reconstructed
BAM file to calculate the VAF of the predicted ITDs. VAF is cal-
culated by AO/DP, where AO (alternate allele observation count)
is the number of ITD-supporting reads and DP is the total
read depth. AO is counted from both ITD-containing chimeric
reads and split reads clipped at the same genomic location with
chimeric reads. As shown in Fig. 1C, the soft-clipped part of the
ITD-containing read is used as seed sequence and each mis-
matched alignment of 3’ or 5 read ends flanking the ITD will be

aligned in pairwise with the seed using the Smith-Waterman al-
gorithm to add them in support of the ITD. With this procedure,
soft-clipped reads resulting from ITD that were not recognized
as ITD-containing reads in Step 1.3.b will be rescued in AO esti-
mation to accurately measure the ITD allele frequency. Finally,
the predicted ITDs will be reported in VCF format.

For the redefined CIGAR string with an inserted sequence in
between 2 mapped parts, we used a string rotation method to
judge whether the inserted sequence is a duplicated genomic
sequence or a novel sequence. The duplication event is inferred
on the basis of genomic sequence surrounding the insertion as
described below and in Supplementary Fig. S1.

Algorithm 1 duplication inference from an inserted sequence
Require: Seqs, Lens, Seqr, Seqr
Seqins — Inserted sequence
Lens —The length of the inserted sequence
Seqy, Seqr—The left-side and the right-side genomic sequences adjacent to the
inserted sequence from the reference genome; their length is 1 bp less than the
inserted sequence.
insertionInspector(Seqms, Lens, Seqr, Seqr)
1. for i = 1 to Lenyys/2 do/« left rotation #/
2. Seqmvs < Lens™ element of Sequs + first Lens —1 elements of Sequs

3 SeqQextracT < lastielement of Seqp + first Lenys - i elements of Seqr

4 if countMismatches(Seqns, Seqextract) < cutoff then

5. return true

6. end if

7. end for

8. for i =1 to Lens/2 do/« right rotation #/

9. Sequus < first Lenyys -1 elements of Sequs + 1™ element of Sequys
10. Seqextract < last Leniys - i elements of Seqy + first i elements of Seqg
11. if countMismatches(Seqms, Seqextract) < cutoff then
12. return true
13. end if
14. end for
15. return false

end

The simulated data were generated by ITDsim [11], targeting the
FLT3 ITD hotspot region chr13:28,607,161-28,609,590 (hg19). The
dataset included a total of 40,401 samples with combinations of
varied ITD lengths (range: 1-201 bp; n = 201) and varied start-
ing positions (chr13:28,608,112-28,608,312; n = 201). ITD allele
frequency was defined as 50% with the mixture of 1,000 paired-
end ITD reads and 1,000 paired-end wild-type reads of varied
read length (2 x 100 bp and 2 x 275 bp).

To evaluate ScanITD and compare it with other widely used
duplication detection methods, we rearranged human chromo-
some 20 (GRCh37/hgl9) using the program RSVSim [12] and
svsim [13]. In total, we simulated 1,000 tandem duplications
with the size ranging from 3 to 300 bp following a g-distribution
to reflect the typical ITD size range [5] and real variant size dis-
tribution based on an estimate from the Database of Genomic
Variants (DGV) [14]. Because ITDs reside within coding exons, we
restrict the simulation to coding regions according to the UCSC
Genome Browser RefSeq track file.

Based on the rearranged genome and unarranged genome,
dwgsim [15] was used to generate synthetic sequence data for
use as tumor samples. We generated 36 sets of paired-end reads
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Figure 1: ITD detection with ScanITD. (A) Schematic overview of ScanITD; (B) ITDs are recovered from primary (soft-clipping mode SM) and alternative alignments
(soft-clipping mode MS) of chimeric reads (ITD size > read length); C) Split read local realignment to calculate the actual number of ITD supporting reads (labeled AO)
that is the sum of ITD-containing seed read and split reads clipped at the same genomic location with seed reads.



with varying properties: a mean insert size of 500 bp with 50
bp standard deviation and 75, 100, 150, and 200 bp read lengths
at 20x, 50x, and 100x sequence depth each with 10%, 20%, and
50% VAF. A detailed description of the simulation procedure and
coding scripts are included in the Supplementary Methods.

For the simulated ITD dataset against the FLT3 gene region, we
considered the predicted duplication (DUP) calls for each eval-
uated algorithm to be true-positive (TP) predictions if they met
the following criteria: (i) the predicted left breakpoint was within
the FLT3 ITD hotspot region and (ii) the predicted size was equal
to the true size. For the simulated genome-wide ITD dataset,
we used stringent criteria for the TP definition: (i) the predicted
left breakpoint was within 1 bp of the true breakpoint and (ii)
the predicted size wass equal to the true size. ITDs could also
be detected as short insertions by some algorithms; we counted
them as predicted DUP calls. False-positive (FP) predictions are
those not satisfying the criteria. False negative (FN) events are
DUP events not identified by the detection algorithm. To assess
the performance of each tool, we used precision (or positive pre-
dictive value), recall (or sensitivity), and F1 score as evaluation
metrics as defined below:

recision = P
p ~ TP+FP
TP
| L
e = TP IEN
2TP
F1 e —
SCOT® = TP+ FP+FN

A reference DUP dataset corresponding to NA12878 was gener-
ated by combining the DUP data identified from the NA12878 as-
sembly generated with long reads (PacBio and Oxford Nanopore
Technologies) using Sniffles [16] and the DUP data identified
from the NA12878 assembly generated with Illumina short reads
using Delly [17], Lumpy [18], and Manta [19]. These datasets are
available at [20]. The merge of the DUP datasets was conducted
using SURVIVOR [21], after the selection of DUP length > 50 bp,
resulting in a total of 1,560 DUPs.

NA12878 WGS raw fastq files were obtained from the European
Nucleotide Archive (accession No. ERR194147). Paired-end reads
were aligned to the GRCh37 human reference using BWA-MEM
v0.7.12 with default parameters and duplicated reads were dis-
carded using Picard MarkDuplicates v1.68 [22]. Pindel (v0.2.5) [8],
SoftSV (v1.4.2) [23], SVABA (v1.1.3) [24], ScanITD, and Whamg
(v1.7.0) [25] were used for DUP calling for NA12878. We excluded
ITDSeek; Genomon-ITDetector, which did not work in our com-
putational environment; and Delly, which was used to generate
the reference DUP call set.

To reduce confounding effects of detection strategies and dif-
fering conventions implemented by the different SV algorithms,

we allowed some differences between breakpoint locations for
different algorithms when comparing overlaps between DUP call
sets with the reference one. Up to 20 bp of difference in the left
breakpoints is allowed, 90% overlapped with the reference DUP,
and the right breakpoint should not exceed 20 bp of the refer-
ence DUP. For tools reporting AO, DP, and AF, such as Pindel and
ScanITD, AO > 3, DP > 10, and AF > 0.01 were used as the thresh-
old cut-offs. For SoftSV, the number of supporting reads > 3 was
the cut-off. We extracted the predicted DUPs (>50 bp) from all
tools we used and compared them against the reference DUP
call set from NA12878 to measure the precision and recall of each
method.

Because ITDs most frequently occur in the FLT3 gene of patients
with AML, we first sought to compare ScanITD with 3 exist-
ing ITD detectors: ITDseek v1.2 [11], Genomon-ITDetector [26],
and Pindel v0.2.5 [8], using 2 simulation datasets of hotspot FLT3
ITDs at 275 and 100 bp paired-end reads. ITDseek and Genomon-
ITDetector are designed for ITD detection. Pindel has also been
reported to perform well in FLT3 ITD detection [2], so it was in-
cluded in the comparison. We excluded ITD assembler [27] be-
cause it did not work in our computational environment and
lacked support from its authors. The FASTQ files with synthetic
paired-end reads were aligned by BWA-MEM to obtain BAM files.
The BAM files with hard-clipped/soft-clipped reads or reads with
small insertions were kept. All the evaluating ITD detectors were
called using default parameters with minor adjustments and the
analyses were based on the BWA-MEM-aligned BAM files that we
used.

We observed that ScanITD achieved the highest recall, preci-
sion, and F1 score under these 2 different read length scenarios
(Fig. 2A). When further evaluating the recall and precision in a
different ITD size range, we found ScanITD to be superior at de-
tecting medium to large size ITDs (>100 bp) compared with other
methods (Fig. 2B).

To evaluate the performance of ITD detection algorithms in gen-
eral, we generated a genome-wide ITD simulation dataset allow-
ing unbiased estimation of the sensitivity and specificity of dif-
ferent ITD detection algorithms in other gene regions. To keep a
reasonable runtime, we rearranged the target genome sequence
based on human chromosome 20, which accounts for 2% of the
human genome but has reasonably representative genomic fea-
tures such as GC content, gene density, and repeat content, com-
pared with the whole genome. Then, we randomly placed 1,000
tandem duplications throughout the target genome. The size of
the duplications ranged from 3 to 300 bp. To assess the impact
of sequencing properties (i.e., read depth and read length) and
duplication properties (i.e., VAF), we generated 36 sets of syn-
thetic paired-end reads with varied read depth, read length, and
VAF for the tandem duplications. Last, the simulation data were
aligned to the human reference genome (GRCh37/hg19) using
BWA-MEM.

Algorithms that were developed for general use to identify
SVs could detect tandem duplications at a larger scale. There-
fore, we expanded our comparison to include several widely
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(middle), and F1 score (right) at ITD length range from 1 to 201 bp.

used SV detection tools. Besides the 3 ITD detectors (ITD-
seek, Genomon-ITDetector, and Pindel), we compared Scan-
ITD with 4 SV detectors including Delly v0.8.2, SVABA v1.1.3,
SoftSV v1.4.2, and Whamg v1.7.0 on the simulated genome-
wide ITD datasets with various read depth, read length, and

VAF settings. The measurement metrics precision (or positive
predictive value), recall (or sensitivity), and F1 score (an overall
measure of accuracy that combines precision and recall) were
used to assess the performance of different algorithms in the

comparison.
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Figure 2: Benchmarking of ScanITD for ITD detection against existing ITD detection tools using 2 x 100 bp and 2 x 275 bp simulated reads. (A) Performance measured
by precision (left), recall (middle), and F1 score (right) for ScanITD, ITDseek, Genomon-ITDetector, and Pindel. (B) Performance measured by precision (left), recall



At the 10% VAF setting, we observed that Delly and
Genomon-ITDetector achieved the highest precision across all
coverage levels and read lengths, with a poor performance in
recall (Fig. 3). ScanITD got the second runner-up position when
read length was 75 bp or sequencing depth was 100x, suggest-
ing that it reliably detected tandem duplications in the short-
read scenario, especially for the targeted sequencing setting. In
terms of sensitivity, Pindel had the highest recall at a cost of low
precision, followed by ScanITD in all tested situations at the 10%
VAF setting. The differences were negligible at 50/100x coverage
with 150/200 bp read lengths. While at 20% and 50% VAF set-
tings, ScanITD showed the same or higher recall compared to
Pindel at 50/100x coverage with 150/200 bp read length (Supple-
mentary Figs S2 and S3). When considering both precision and
recall, ScanITD achieved the highest F1 score of all the meth-
ods tested in all tested situations (Fig. 3, Supplementary Figs S2
and S3), indicating that it could correctly identify real tandem
duplications without being disturbed by false-negative results.
In general, our results showed that ScanITD had the best overall
performance measured by F1 score in detecting tandem dupli-
cation events across all conditions.

We next sought to evaluate the performance of the VAF esti-
mation by ScanITD together with ITDseek and Pindel using our
simulated data. We chose these 2 existing ITD detectors for com-
parison because they are the only ITD detectors with the feature
of reporting the VAFs of their predicted ITDs. As shown in Fig. 4,
all 3 methods tended to have a lower estimation of VAFs com-
paring their ground truth values, which may be explained by the
non-uniform distribution of read coverage [28]. Among them,
ScanITD and Pindel reported more accurate VAFs than ITDseek.
In general, ScanITD outperformed Pindel with a relatively higher
median VAF estimation at most of the VAF settings in either low-
or high-coverage datasets.

To assess the performance of ScanITD with real DNA se-
quencing data, we analyzed the well-studied HapMap sample
NA12878/HG001. The 100-bp paired-end WGS data with an av-
erage coverage of 50x were provided through Illumina’s Plat-
inum genomes project [29]. We constructed a reference call set
for sample NA12878 by combining duplication events identi-
fied from long reads (PacBio and Oxford Nanopore Technologies)
and [llumina short reads. Most all of the called duplications are
longer than 50 bp, so DUPs with length > 50 bp were used in the
reference call set.

Because ITDseek and Genomon-ITDetector were not capa-
ble of detecting any duplications in this NA12878 dataset, we
tested ScanITD along with Pindel, SVABA, SoftSV, and Whamg
against a reference duplication call set by measuring their pre-
cision, recall, and F1 scores. We observed that ScanITD achieved
the highest F1 score and second-highest precision/sensitivity
among these 5 algorithms (Fig. 5A), suggesting an overall better
accuracy of detecting the duplication events in NA12878. When
further evaluating the performance in different duplication size
ranges, we found that ScanITD was superior at detecting small
to medium-size duplications (50-300 bp) compared with other
methods (Fig. 5B). Our results indicated that ScanITD is the best
approach for detecting ITD range duplication events (<300 bp).

Finally, we recorded the computational runtime and mem-
ory consumption of ScanITD when analyzing the NA12878 WGS
dataset using a server equipped with a 16-core Intel Xeon(R) CPU
E5-2620 v4 at 2.10 GHz with 16 GB of memory. The first step (ITD
reconstruction) took 7 hours and the second step (split read re-

alignment and ITD calling) took 28 hours when running on chro-
mosomes in parallel. Notably, ScanITD is memory-efficient, only
requiring 2.2 GB peak memory usage.

To examine whether ScanITD could enhance ITD detection in
clinical data, we analyzed the WES data from the TCGA AML co-
hort. It has been reported that 24 patients harbor experimen-
tally validated FLT3 ITDs [1]. We applied ScanITD together with
the 3 existing ITD detectors to identify FLT3 ITDs from these 24
patients. We used the original reported ITD size (ranging from
18 to 102 bp) as the gold standard [1] to measure the correct-
ness of ITD prediction for each tool. As shown in Table 1, Scan-
ITD correctly identified 22 ITDs and it demonstrated the highest
sensitivity (92%) compared with Pindel (72%), ITDseek (42%), and
Genomon ITDetector (71%). We further evaluated the reported
VAFs for ScanITD, Pindel, and ITDseek that are capable of pre-
dicting ITD allele fraction. We found that ScanITD reported the
highest VAFs in 20 samples while Pindel only reported the high-
est VAFs in 4 samples, and ITDseek always reported lower VAFs
than ScanITD and Pindel. Thanks to split read local realignment,
ScanITD could rescue ITD-supporting reads in the AO calcula-
tion, increasing the reported VAF. For example, ScanITD reported
an 87-bp FLT3 ITD with its VAF of 0.30 that is nearly twice the
VAF reported by Pindel (0.16) in patient TCGA-AB-2844. A man-
ual review of the aligned reads in this patient further confirmed
that ScanITD’s estimation of this VAF was accurate (Supplemen-
tary Fig. S4). Our results suggest that ScanITD outperforms the
existing methods for accurately measuring the VAFs of the ITD
predictions.

Herein, we have devised ScanITD, a computational approach al-
lowing the accurate identification of ITDs from DNA sequencing
data. ScanITD made good use of chimeric alignments for ITD re-
construction. By performing local realignment of clustered split
reads, ScanITD achieved robust VAF estimation. The evaluations
on simulated and real data demonstrate that ScanITD outper-
formed the existing ITD detectors, especially for estimating VAF
with high accuracy. Compared with general-purpose SV detec-
tors, ScanITD also exhibited competitive performance and su-
perior accuracy in duplication detection, especially for a range
of ITD sizes.

Besides performance improvements compared to other ITD
callers, 1 improvement of ScanITD is the ability to distinguish
insertions of novel sequence and insertions as a result of the du-
plicated genome sequence. Most of the ITD callers and general-
purpose SV detection methods, such as Pindel [8] and Sv-
ABA [24], are not able to differentiate small novel sequence
insertions from tandem duplications and report both types
of events as insertions. In essence, ScanITD belongs to split-
read-based approaches leveraging the split reads that solely
mapped around ITD breakpoints. Other split-read-based meth-
ods, such as Pindel and SoftSV [23], rely on realigning all the
split reads. Another novel feature of ScanITD is that it re-
aligns split reads in a heuristic manner that can use all re-
lated split reads without limiting the length of the soft-clipped
part. However, Pindel and SoftSV realign split reads to refer-
ence genome by requiring the soft-clipped part to be of a rea-
sonable length (e.g., >10 bp). The heuristic algorithm used by
ScanITD is a seed-and-realignment procedure. Once the seed
chimeric read is found, any split reads clipped at the same
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Figure 3: Benchmarking of ScanITD for ITD detection against existing ITD detection tools and SV detection tools using genome-wide simulated reads with 10% VAF.

genomic location as the seed will be taken into considera-
tion, no matter how short they are (Fig. 1C and Supplemen-
tary Fig. S4). This strategy makes ScanITD estimate VAFs with
high accuracy (Fig. 4 and Table 1). Our benchmarks using simu-
lated data have demonstrated that ScanITD exhibited competi-
tive or superior performance with algorithms using a split-read
realignment strategy (e.g., Pindel, SoftSV) or integrated strat-
egy (e.g., Delly integrating split-read and read-pair information)
(Fig. 3).

As a heuristic algorithm, ScanITD uses chimeric reads or
reads with small insertions to locate the ITD breakpoints; the
generation of these ITD indicators solely relies on soft-clipping-
aware NGS aligners such as BWA-MEM. However, under cer-
tain circumstances depending on ITD length and read length,
aligners may generate only soft-clipped/hard-clipped reads in-

stead of chimeric reads or reads with small insertions. Under
these cases, ScanITD is not able to determine correct break-
points (Fig. 2B).

There are still limitations for ScanITD to detect some types
of duplication events. Our benchmarks using NA12878 WGS
data demonstrated that ScanITD performed weakly compared
with general-purpose SV detection algorithms for large dupli-
cations. The existence of duplications carrying indels and dis-
persed duplication might be 2 possible reasons (Supplemen-
tary Fig. S5). In these cases, ScanITD is not able to deter-
mine correct breakpoints using chimeric reads. A combina-
tion and integration of multiple independent pieces of evidence
such as read pair and read depth information may further im-
prove ScanlITD’s performance for non-tandem duplication event
detection.



8 | ScanITD: Detecting internal tandem duplication

75bp, 20x Coverage 75bp, 50x Coverage 75bp, 100x Coverage
Tool : 0.6 . 0.5
I | TDseek oo '
0.6 HEE Pindel T 0.5
[ ScanlTD | 0.4
. . . 0‘4_
w : w w 0.3
0.4
g ' <034 et s < .
R 024 021 . .
02 8 s .
0.1 0.19
0.0 . 0.0 0.0-
- T T 1 T T 1 T T 1
10% VAF  20% VAF  50% VAF 10% VAF  20% VAF  50% VAF 10% VAF  20% VAF  50% VAF
100bp, 20x Coverage 100bp, 50x Coverage 100bp, 100x Coverage
0.7 0.6
0.6
0.6 p
0.5 0.5
> o . 0.4 047
% 047 . % % B
S . < 03- S 039 . ]
0.3
0.2 4 0.2
0.2 |
o 0.1
0.1 1 01 %
0.0 - 0.0- 0.0-
N 1 |l T 1
0% VAF 0% VAF  50% VAF 0% VAF 0% VAF 0% VAF 10% VAF  20% VAF  50% VAF
150bp, 20x Coverage 150bp, 50x Coverage 150bp, 100x Coverage
0.8 s . 0.6 0.6 -
0.7
0.5 0.5
0.6
0.5 0.4 047
w [T . . . w
< 0.4- <03 = < 031
. s s
03 1 024 g - 0.2 ,
Y (] .
0.2
0.1+ 0.1
0.1
0.0- - 0.0 0.0-
N T T 1 T T 1
10% VAF 20% VAF 50% VAF 10% VAF  20% VAF  50% VAF 10% VAF  20% VAF  50% VAF
200bp, 20x Coverage 07 200bp, 50x Coverage 200bp, 100x Coverage
0.7 1 ' T 0.6
0.6 T
0.6 0.5
0.5
0.5 © 1| 0.4 | |
w044 . . . L 047 " ||
< . : < < 0.34
> o o » > 534 >
0.3 : ’
0.2
0.2 0.2 4
o 0.1
] TT " %
0.0 0.0 T 0.0-
- |l T 1 1 1
10% VAF  20% VAF  50% VAF 0% VAF 0% VAF  50% VAF 0% VAF 0% VAF  50% VAF

Figure 4: Benchmarking VAF of ScanITD for ITD detection against ITDseek and Pindel using genome-wide simulated reads. The box represents the VAF values between
the 1st and 3rd quartiles-the InterQuartile Range(IQR=Q3-Q1), the line across the box indicates the median, the whiskers are lines extending from Q1 and Q3 to
endpoins within Q1-1.5xIQR and Q3+1.5xIQR, respectively. Outliers are those that are outside whiskers range.

Conclusions

We present ScanITD as a robust method for detecting ITDs
from NGS data and predicting a precise ITD allele fraction.
We demonstrated that ScanITD reliably detects medium-size
and large ITDs with synthetic and real data and outperformed

the existing methods. ScanITD is capable of detecting ITDs
across the full size spectrum with base-pair resolution. We an-
ticipate that ScanITD will enable identification and elucida-
tion of clinically important ITDs that are currently difficult to
characterize.
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Figure 5: Benchmarking of duplication detection using NA12878 whole-genome sequencing data. (A) Overall performance comparison. (B) Performance comparison
in different duplication size range. Precision, recall, and F1 score are used as the performance measurements.

Table 1: FLT3 ITD detection in TCGA AML samples

ScanlITD
TCGA sample ID ITD (length) VAF Length
TCGA-AB-2812 51 0.34 51
TCGA-AB-2825 102 0.06 102
TCGA-AB-2830 69 0.01 69
TCGA-AB-2836 33 0.08 33
TCGA-AB-2840 18 0.25 18
TCGA-AB-2844 87 0.30 87
TCGA-AB-2853 18 0.21 18
TCGA-AB-2869 54 0.21 54
TCGA-AB-2871 63 0.011 63
TCGA-AB-2875 30 0.25 30
TCGA-AB-2877 18 0.22 18
TCGA-AB-2879 33 0.32 33
TCGA-AB-2880 21 0.23 21
TCGA-AB-2895 45 0.23 45
TCGA-AB-2913 66 0.14 66
TCGA-AB-2915 51 0.029 51
TCGA-AB-2918 21 0.1 90
TCGA-AB-2921 24 0.15 57
TCGA-AB-2922 33 0.25 33
TCGA-AB-2925 42 0.21 42
TCGA-AB-2930 42 0.05 42
TCGA-AB-2931 75 0.15 75
TCGA-AB-2934 57 0.05 57
TCGA-AB-2942 24 0.15 24

Pindel ITDseek Genomon
ITDetector
VAF Length VAF Length (length)
0.14 51 0.1 51 51
0.17 102 0.11 97 Missed
0.027 69 0.03 56 42
0.047 33 0.03 34 Missed
0.23 18 0.01 18 18
0.16 87 0.05 89 Missed
0.30 18 0.08 18 18
0.50 46 0.12 55 54
0.0059 63 0.01 63 Missed
0.16 30 0.03 30 30
0.20 18 0.02 18 18
0.20 33 0.06 34 33
0.18 21 0.11 21 21
0.16 45 0.09 49 45
0.065 66 0.06 68 66
0.13 54 0.03 51 51
0.11 88 0.05 90 88
0.09 57 0.06 53 24
0.15 33 0.04 33 33
0.10 42 0.11 45 42
0.029 42 0.02 39 42
0.28 70 0.07 72 Missed
0.043 57 0.05 56 57
0.12 24 0.03 24 24

The correct predictions with the highest VAF are highlighted in boldface; incorrect predictions are highlighted as underlined text.

Project name: ScanITD

Project home page: https://github.com/ylab-hi/ScanITD
Operating system(s): platform independent
Programming language: Python

Other requirements: SAMTools (https://www.htslib.org/)
License: MIT License

Biotools identifier: ScanITD (https://bio.tools/ScanITD)
RRID:SCR_018886

WES data from the TCGA AML cohort are available at the Ge-
nomic Data Commons Data Portal [30] (Project ID: TCGA-LAML,;
dbGaP study accession No.: phs000178). NA12878 WGS fastq data

are available at the European Nucleotide Archive (accession No.:
ERR194147). An archival copy of the code and supporting data is
available via the GigaScience GigaDB database [31].

Supplementary Methods.

Supplementary Figure S1. A string rotation method to determine
whether the inserted sequence is from a duplicated genomic se-
quence or not.

Supplementary Figure S2. Benchmarking of ScanITD for ITD de-
tection against existing ITD detection tools and SV detection
tools using genome-wide simulated reads with 20% VAF.
Supplementary Figure S3. Benchmarking of ScanITD for ITD de-
tection against existing ITD detection tools and SV detection
tools using genome-wide simulated reads with 50% VAF.


https://github.com/ylab-hi/ScanITD
https://www.htslib.org/
https://bio.tools/ScanITD
https://scicrunch.org/resolver/RRID:SCR_018886

Supplementary Figure S4. Experimentally validated FLT3 ITD
(chr13:28608215-28608301) was identified by ScanITD in TCGA-
AB-2844 WES data.

Supplementary Figure S5. Illustration of the non-tandem dupli-
cation scenarios with chimeric reads.

AO: alternate allele observation count; AML: acute myeloid
leukemia; BAM: Binary Alignment Map; bp: base pairs; BWA:
Burrows-Wheeler Aligner; CPU: central processing unit; DP: read
depth; TDUP: tandem duplication; indel: insertion and dele-
tion; ITD: internal tandem duplication; NGS: next-generation se-
quencing; SV: structural variations; TCGA: The Cancer Genome
Atlas; UCSC: University of California Santa Cruz; VAF: variant al-
lele frequency; WGS: whole-genome sequencing; WES: whole-
exome sequencing.
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