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ADRML: anticancer drug response 
prediction using manifold learning
fatemeh Ahmadi Moughari1,2 & changiz eslahchi1,2*

one of the prominent challenges in precision medicine is to select the most appropriate treatment 
strategy for each patient based on the personalized information. the availability of massive data 
about drugs and cell lines facilitates the possibility of proposing efficient computational models for 
predicting anticancer drug response. In this study, we propose ADRML, a model for Anticancer Drug 
Response Prediction using Manifold Learning to systematically integrate the cell line information with 
the drug information to make accurate predictions about drug therapeutic. the proposed model maps 
the drug response matrix into the lower-rank spaces that lead to obtaining new perspectives about 
cell lines and drugs. The drug response for a new cell line-drug pair is computed using the low-rank 
features. The evaluation of ADRML performance on various types of cell lines and drug information, in 
addition to the comparisons with previously proposed methods, shows that ADRML provides accurate 
and robust predictions. Further investigations about the association between drug response and 
pathway activity scores reveal that the predicted drug responses can shed light on the underlying drug 
mechanism. Also, the case studies suggest that the predictions of ADRML about novel cell line-drug 
pairs are validated by reliable pieces of evidence from the literature. Consequently, the evaluations 
verify that ADRML can be used in accurately predicting and imputing the anticancer drug response.

Precision medicine aims to finely select treatments for cancer based on the genetic information of individual 
 patients1. One of the highly critical problems in precision medicine is predicting anticancer drug response for 
each  patient2–4. Due to the heterogeneity of tumors, the patients with the same type of cancer may show vari-
ous therapeutic responses toward similar  drugs5. Therefore, providing computational methods to discover the 
relationship between genomic information and drug sensitivity is of high importance and can be beneficial in 
precision  medicine3,6.

Genomics of Drug Sensitivity in Cancer (GDSC)7 and Cancer Cell Line Encyclopedia (CCLE)8 are two pro-
jects that have provided molecular profiles and drug response values for hundreds of cancer cell lines against 
several anticancer drugs. These large datasets facilitate the development of computational methods for anticancer 
drug sensitivity prediction. Numerous computational methods have been proposed to predict drug response 
using gene expression profile, or other molecular information of cell lines. Some of the computational methods 
have considered drug information such as chemical substructure of drugs, besides made use of cell line infor-
mation. In the proposed computational methods, various machine learning methods have been utilized such as 
sparse linear  regression4,9–11, random  forest2,12,13, kernel-based  methods4,14–17, matrix  factorization1,18–20, neural 
networks and deep  learning21–24.

Wang et al. have proposed a Similarity Regularized Matrix Factorization (SRMF) method, which utilizes the 
similarity of cell lines based on gene expression profiles and chemical substructure similarity of drugs to predict 
anticancer drug  sensitivity1. They also conducted drug-repurposing and suggested new potential treatments 
for cell lines with Non-small Cell Lung Cancer (NSCL). It is suggested that patients who have similar genomic 
properties reveal similar responses to similar  drugs1. Based on the SRMF study, Suphavilai et al. have proposed 
a recommender system called “CaDRReS” that can predict drug response for unseen cell  lines19. Furthermore, 
they showed that latent space features are correlated with associated pathways of drugs. They did not consider any 
features of drugs for predicting the drug response values. Afterwards, Chang et al. have devised “CDRscan”, an 
ensemble model containing five Convolutional Neural Networks (CNNs)21. They made use of mutational profiles 
of cell lines and chemical substructure of drugs as the input features to these CNNs. The drug response values 
were measured by averaging the output of five CNNs. Moreover, they have repurposed multiple non-oncology 
drugs as the potential therapeutic agents for cancer cell lines. Recently, Wei et al. have suggested a simple cell 

open

1Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, 
Tehran, Iran. 2School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 
Iran. *email: Ch-Eslahchi@sbu.ac.ir

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-71257-7&domain=pdf


2

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:14245  | https://doi.org/10.1038/s41598-020-71257-7

www.nature.com/scientificreports/

line-drug complex network called “CDCN”25. They constructed a complex network from various information, 
including cell line similarities, drug similarities, and drug responses, and inferred unknown drug response from 
the network. They also proposed a generalized version that can predict the drug response for new drugs and 
new cell lines. Despite its simple structure, CDCN had satisfying results in imputing missing drug responses.

Nevertheless, the proposed methods had moderate performance and do not analyze several types of features 
for cell lines and drugs. Thus, investigating the influence of various features for cell lines and drugs in predicting 
therapeutic response is still in need and challenging. We investigate three types of cell line features, namely gene 
expression, mutation profile, and copy number variation, in addition to three types of drug features, including 
chemical substructure, target proteins, and associated KEGG pathways. In this work, we propose ADRML, Anti-
cancer Drug Response Prediction, by using Manifold Learning. ADRML constructs a bipartite graph between 
drug and cell lines, and then decompose its adjacency matrix using similarity-constrained manifold learning 
into two lower-dimensional latent matrices. The proposed method is capable of predicting therapeutic response 
for new cell lines and new drugs. The similarity-constrained manifold learning previously has been used in the 
context of drug-disease association  prediction26 and drug–drug interaction  prediction27, which yielded accurate 
performance.

The performance of ADRML is measured using various types of cell line similarities and drug similarities and 
is compared to the recently proposed methods on both GDSC and CCLE datasets. Moreover, the rationality of 
ADRML predictions is confirmed by analyzing the association between the predicted drug response values and 
activity scores of Biocarta pathways. Finally, conducting case studies on the predictions of ADRML for unknown 
drug response in literature and reliable databases verifies its capability in predicting unknown drug response 
and admits that ADRML obtains accurate results for new pairs of cell line-drug.

Results
Benchmark datasets and collected features. In this work, we used two pharmacogenomic datasets, 
namely the Genomics of Drug Sensitivity in Cancer (GDSC)7 and Cancer Cell Line Encyclopedia (CCLE)8. 
Among several types of data in these datasets, various information including the half-maximal inhibitory con-
centration (IC50), the gene expression profile, copy number variation, and mutation profile was downloaded by 
using PharmacoGx R  package28. The collected genes were accessible in the COSMIC  database29, and the collected 
drugs were restricted to the drugs with a Compound ID (CID) in the PubChem  database30.

Some values of IC50, copy number variation, and mutation profiles in both datasets were missing. A pre-
processing procedure was applied, according to Lu et al.2 to impute the missing values, which is fully described in 
“Pre-processing to impute the missing data”. After applying the pre-processing steps, the GDSC dataset contained 
98 drugs and 555 cell lines from 19 cancer types, as defined by The Cancer Genome Atlas (TCGA)31, and the 
CCLE dataset contained 24 drugs and 363 cell lines from 22 cancer types as defined by TCGA. Furthermore, 
several types of information about drugs were obtained from the following databases:

• The fingerprints of canonical simplified molecular-input line-entry (SMILES) were obtained from  PubChem30.
• The target proteins were collected from GDSC,  DrugBank32, and literature.
• The KEGG-pathways related to the drugs were downloaded from the STiTCH  database33.

A brief description of the collected data is presented in Table 1.

Hyper-parameter tuning. ADRML model is fully described in “Methods” which has three hyper-
parameters: “k” is the dimension of latent space, “ µ ” is the regularization coefficient, and “ � ” is the simi-
larity conservation coefficient. In order to map the response matrix into lower dimensional space, “k” 
value was considered to be less than the number of cell lines and drugs. For simplicity, we considered 
k = k′% ofmin(number of cell lines, number of drugs) . We tuned the hyper-parameter values using grid search. 
We executed ADRML with fivefold cross-validation on all pairs of cell line and drug for all combinations of 
k ∈ {10%, 20%, ..., 90%} , � and µ ∈ {2−3, 2−2, 2−1, 20, 21, 22, 23} . The hyper-parameters were tuned on CCLE 
dataset, using gene expression similarity of cell lines and chemical similarity of drugs by maximizing a fitness 
score (briefly mentioned as fitness in the following).

Table 1.  The number of collected samples and features. The cell line features such as gene expression profile, 
mutation profile, copy number variation, tissue types, drug names, and drug response values were downloaded 
from PharmacoGx package, Drug fingerprints were obtained from pubchem, target proteins were gathered 
mainly from GDSC and DrugBank, and KEGG pathways were obtained from STiTCH database.

Dataset Cell line Drug Tissue types
Expression 
profile

Mutation 
profile

Copy 
number 
variation

Drug 
fingerprint

Target 
protein

KEGG 
pathway

CCLE 363 24 22 19,389 1,667 24,960 881 76 124

GDSC 555 98 19 11,712 54 24,959 881 – –
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where the evaluation criteria including Coefficient of Determination ( R2 ), Pearson Correlation Coefficient (PCC), 
and Root Mean Square Error (RMSE) are completely explained in “Evaluation criteria”. The definition of fitness 
score is logical since the best model is the one with the highest values of R2 and PCC, and the lowest value of 
RMSE. ADRML achieved the best results when k = 70%, µ = 23 and � = 22 . We considered the same hyper-
parameter values for all types of similarities in CCLE and GDSC. In order to illustrate the impact of µ and � on 
the fitness score, we fixed the latent dimension to k = 70% and depicted the fitness function in a 3D-histogram 
of Fig. 1a. It is evident that when � is small, the fiteness function is increasing with regard to µ . Conversely, when 
µ is small, the larger � values leads to higher fitness score.

Moreover, the values of µ = 23 and � = 22 were fixed and the influence of latent space dimension was exam-
ined. Figure 1b demonstrates that the greater dimensions of latent space leads to higher fitness score. Moreover, 
PCC, and R2 improves by increasing k, while RMSE declines as k grows larger. However, the criteria value do not 
change or have subtle changes after k = 70%.

performance of ADRML prediction. We investigated the effects of using different similarity constraints 
on ADRML performance. Several cell line similarities based on gene-expression, mutation, and copy number 
variation, and multiple drug similarities based on chemical substructure, target proteins, and KEGG pathways 
were considered as the constraints of manifold learning.

Table 2 summarizes the performance of ADRML for every combination of cell line and drug similarity. 
Each pair of cell line and drug similarity is shown in one row and the columns show the computed crite-
ria. Clearly, ADRML yields both accurate and robust performance in each scenario, because the results 
of all conditions are quite high and close to each other. However, it achieves the best results using simi-
larity of cell lines based on gene expression and similarity of drugs based on target proteins, which yields 
RMSE = 0.487, R2 = 0.682, PCC = 0.846 . We used these two similarities for further evaluations.

In order to investigate ADRML performance on each drug, we depicted the drug-wise correlation plots. Fig-
ures 2 and 3 illustrated the pearson correlation between the observed and the predicted log IC50 for four drugs 
in CCLE and GDSC datasets, respectively. The figures show high drug-wise PCC and validate that ADRML can 

(1)fitness = R2 + PCC − RMSE

Figure 1.  The effect of choosing different values of hyper-parameters on ADRML performance.

Table 2.  Performance of ADRML on various types of similarities. The performance of each model is evaluated 
using fivefold cross-validation on cell line-drug pairs and using k = 70% , µ = 23 , and lambda = 22 . Each row 
shows the performance of ADRML on a pair of cell line and drug similarity. The best results of each criteria is 
shown in bold face.

Cell line similarity Drug similarity RMSE R
2 PCC Fitness

Gene expression Chemical 0.4927 0.675 0.8454 1.0277

Mutation Chemical 0.4935 0.6739 0.8446 1.025

Copy number variation Chemical 0.4964 0.6701 0.8368 1.0105

Gene expression Target protein 0.487 0.682 0.846 1.041

Mutation Target protein 0.4894 0.6794 0.844 1.034

Copy number variation Target protein 0.4992 0.6664 0.8319 0.9991

Gene expression KEGG pathways 0.5003 0.6651 0.8453 0.999

Mutation KEGG pathways 0.5004 0.665 0.8452 0.9993

Copy number variation KEGG pathways 0.5045 0.6595 0.8385 0.9982
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predict drug responses with high correlation to the real responses. The majority of data in these scatter plots are 
centered near the fitted line. It is notable that the outliers are natural due to the technical noises in gene expres-
sion data, or inconsistency of drug responses in CCLE and  GDSC5,25,34,35. Further plots for drug-wise PCC of 
GDSC are shown in Supplementary Figs. S1–S98 and the drug-wise PCC of CCLE are shown in Supplementary 
Figs. S99–S122.

Comparison of prediction performance with state-of-the-art methods. For comprehensive eval-
uation of ADRML’s performance, we compared it to other recent state-of-the-art methods, namely,  CDRscan21, 
 CDCN25,  SRMF1, and  CaDRReS19. The implementations of all methods were obtained from the available codes 
referred to in their papers. In order to have a fair comparison, we conducted all evaluations in the same setting 

Figure 2.  Drug-wise PCC for 4 drugs in CCLE. The computed PCC is illustrated in lower right corner of each 
plot.
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and using the same datasets. The comparison was made on the average performance of the models over 30 rep-
etitions of fivefold cross-validation with tuned hyper-parameters.

It should be noted that the hyper-parameters of CaDRReS cannot be fully tuned, due to its high time complex-
ity. The hyper-parameters for CaDRReS is assumed according to its paper and authors’ suggestion.

The features used for cell lines and drugs are different in these methods. For each method, the required fea-
tures, as mentioned in their paper, are provided from the benchmark datasets described in "Benchmark datasets 
and collected features".

In addition to the mentioned methods, K-nearest neighbor (KNN) with K = 1 was considered as a baseline 
method and compared to the results of other methods. KNN is implemented using the Scikit-learn module in 
 Python36. For executing KNN, the input feature vector for each pair of cell line ci and drug dj was considered as 
the concatenated vector of ith row of simC and jth column of simD. All types of cell line similarities and drug 

Figure 3.  Drug-wise PCC for 4 drugs in GDSC. The computed PCC is illustrated in lower right corner of each 
plot.
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similarities were considered as simC and simD, respectively. The complete report of KNN performance on vari-
ous types of similarities are provided in Supplementary Table S1. KNN obtained the best performance on gene 
expression similarity of cell lines and chemical substructure similarity of drugs.

Tables 3 and 4 present the performance of the mentioned methods on CCLE and GDSC, respectively. Addi-
tionally, the scatter-plots with fitted lines for the predictions of the mentioned methods on CCLE are presented 
in Supplementary Figs. S123–S128.

The results of baseline method (KNN) in both datasets were not too far from the state-of-the-art methods, 
which means that improving the results is challenging. In CCLE dataset, SRMF achieved the best RMSE and 
favorable PCC; however, it achieved R2 lower than the baseline, i.e., the variance of predicted log IC50 did not 
explain the variance of real drug responses perfectly. CaDRReS yielded reasonable results but its R2 and PCC were 
less than the baseline. CDRscan obtained the favorable R2 and PCC but it had the highest RMSE. Therefore, its 
prediction values have a high correlation and far distance to the real responses, simultaneously. CDCN revealed 
a satisfying performance but with lower R2 and PCC, and higher RMSE than the results of ADRML. Therefore 
ADRML outperformed other methods.

In the case of the GDSC dataset, SRMF obtained the best RMSE and moderate R2 , and PCC. The performance 
of CaDRRS was satisfying, but R2 and PCC were worse than the baseline. CDRscan showed good performance but 
with high RMSE, similar to its performance on the CCLE dataset. Moreover, CDCN’s performance was satisfy-
ing; however, its R2 and PCC were lower than ADRML, and its RMSE was higher than ADRML. Consequently, 
ADRML outperformed other methods with regard to R2 , and PCC.

In addition to the mentioned analysis, we investigated whether using other types of cell line similarities and 
dug similarities would aid in improving the results of other methods. To this aim, we executed CDCN, SRMF, 
CaDRReS, and KNN on all types of similarities. It is worth mentioning that CDRscan receives binary feature 
matrices as the input and the dimension of binary feature vectors of drugs in CCLE and GDSC datasets were 
not appropriate for the designed CNNs in CDRscan; therefore, it is not applicable to perform CDRscan on other 
types of similarities. Other methods (CDCN, SRMF, CaDRReS, and KNN) receive the similarity matrices as the 
input. Moreover, CaDRReS gets only the cell line similarity, and it does not obtain any drug similarity matrix 
from the input.

The entire report of the performance criteria measured for the performance of the mentioned methods is 
presented in Supplementary Table S1. It can be seen that the performance of other methods almost does not 
improve using other similarities in comparison to their proposed similarities. Often, with respect to a particu-
lar pair of cell line similarities and drug similarities, SRMF obtains the best RMSE. At the same time, ADRML 
achieves best R2 and best PCC.

All in sum, ADRML performed better than other state-of-the-art methods on both CCLE and GDSC in terms 
of R2 and PCC. These achievements further substantiate ADRML performance.

Removing redundant cell lines from ccLe and GDSc. CCLE dataset contains 363 cell lines from 22 
different tissue types. The number of cell lines in each tissue type is shown in Fig. 4. The least frequent tissue 
types (Biliary tract and prostate) contain one cell line, and the most frequent tissue type (Lung) comprises 76 cell 

Table 3.  Comparison of methods’ performance on CCLE dataset. The methods were evaluated by averaging 
over 30 repetitions of fivefold cross-validation on cell line-drug pair. The best results of each criterion are 
shown in boldface.

Method Cell line similarity Drug similarity RMSE R
2 PCC

ADRML Gene expression Target protein 0.49 0.68 0.85

CDRscan Mutation Chemical 0.76 0.67 0.83

CDCN Gene expression Chemical 0.48 0.67 0.83

SRMF Gene expression Chemical 0.25 0.40 0.80

CaDRReS Gene expression – 0.53 0.31 0.52

KNN Gene expression Chemical 0.56 0.57 0.78

Table 4.  Comparison of methods’ performance on the GDSC dataset. The methods were evaluated by 
averaging over 30 repetitions of using fivefold cross-validation on cell line-drug pair. The best result of each 
criterion is shown in boldface.

Method Cell line similarity Drug similarity RMSE R
2 PCC

ADRML Gene expression Chemical 0.73 0.75 0.88

CDRscan Mutation Chemical 0.76 0.72 0.83

CDCN Gene expression Chemical 0.77 0.72 0.85

SRMF Gene expression Chemical 0.20 0.62 0.85

CaDRReS Gene expression – 0.49 0.34 0.57

KNN Gene expression Chemical 0.99 0.55 0.78
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lines. Since the cell lines from the same tissue may have high similarity, this may lead to redundancy. Thus, it is 
better to eliminate the redundancy within each tissue type and based on the number of cell lines from that tissue. 
In order to remove the redundancy in each tissue type, we filtered out the cell lines that are very similar to other 
cell lines. In this way, we excluded the cell lines with high similarity to other cell lines in the same tissue type.

The detailed procedure of removing redundant cell lines is described in “Finding the most redundant cell 
lines”. This procedure led to eliminating 64 cell lines and the remaining 299 cell lines from CCLE. The remain-
ing cell lines comprise the purified CCLE dataset without redundancy. The list of remaining and excluding cell 
lines are reported in Supplementary Table S2. To analyze the performance of ADRML and other state-of-the-art 
methods on the new dataset, we executed these methods using 30 repetitions of fivefold cross-validation. Table 5 
demonstrates the performance of methods on the new dataset. It can be seen that ADRML outperforms other 
methods with respect to R2 and PCC.

Moreover, the GDSC dataset comprises 555 cell lines from 19 tissue types. Various tissue types have different 
numbers of cell lines which are shown in Fig. 5 To remove the redundant cell lines from GDSC, the procedure 
described in “Finding the most redundant cell lines” was applied on the GDSC, resulting in eliminating 103 cell 
lines and preserving 452 cell lines. The remaining cell lines form the purified GDSC dataset with lower redun-
dancy. The list of remaining and excluding cell lines are reported in Supplementary Table S2. The performance 
of methods on the new GDSC dataset using 30 repetitions of fivefold cross-validation is represented in Table 6. 
It can be seen that SRMF obtained the best RMSE, CDCN achieved the best R2 and ADRML yield the best PCC.

Figure 4.  Tissue types in CCLE. The number of cell lines in each tissue type is shown in parenthesis.

Table 5.  Comparison of methods’ performance on the purified CCLE dataset. The methods were evaluated by 
averaging over 30 repetitions of fivefold cross-validation on cell line-drug pair. The best result of each criterion 
is shown in boldface.

Method Cell line similarity Drug similarity RMSE R
2 PCC

ADRML Gene expression Target protein 0.60 0.56 0.83

CDRscan Mutation Chemical 0.89 0.54 0.79

CDCN Gene expression Chemical 0.65 0.43 0.83

SRMF Gene expression Chemical 0.28 0.26 0.74

CaDRReS Gene expression – 0.52 0.32 0.51

KNN Gene expression Chemical 0.57 0.55 0.75
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It can be inferred from the comparison results in Tables 3 and 4 with the results in the Tables 5 and 6 that the 
performance of models declines a bit when the redundant cell lines were removed. This issue may be due to the 
reduction in sample size or the existence of bias before removing redundancy of cell lines.

Moreover, we applied the redundancy removal procedure with different thresholds (θ) to investigate the per-
formance of ADRML on different levels of redundancy removal. Furthermore, this procedure is repeated based 
on gene expression similarities of cell lines. Table 7 represents the number of remaining cell lines according to 
the various values of threshold.

ADRML performance was evaluated on each of the resulting datasets after redundancy removal based on vari-
ous levels of strictness. Figure 6a,b illustrate the PCC values of ADRML assessed using 5-fold cross-validation on 
the purified datasets. These figures verify that the trend of ADRML performance is almost the same on purified 
datasets based on copy number variation and gene expression. ADRML achieves the best PCC on the strictest 
threshold which removes a lot of cell lines and adding other cell lines declines its PCC. Moreover, the ADRML’s 

Figure 5.  Tissue types in GDSC. The number of cell lines in each tissue type is shown in parenthesis.

Table 6.  Comparison of methods’ performance on the purified GDSC dataset. The methods were evaluated by 
averaging over 30 repetitions of fivefold cross-validation on cell line-drug pair. The best result of each criterion 
is shown in boldface.

Method Cell line similarity Drug similarity RMSE R
2 PCC

ADRML Gene expression Target protein 1.3 0.21 0.85

CDRscan Mutation Chemical 0.92 0.51 0.76

CDCN Gene expression Chemical 0.98 0.55 0.82

SRMF Gene expression Chemical 0.54 -33.11 0.70

CaDRReS Gene expression – 0.95 0.29 0.52

KNN Gene expression Chemical 1.00 0.54 0.77
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PCC on purified CCLE datasets first increased sharply and then decreased by lowering the level of strictness in 
redundancy removal.

Analysis of association between drugs and signaling pathways. To demonstrate that the predic-
tion of ADRML is meaningful and rational, we investigated the correlation between the predicted drug responses 
and pathway activity scores for several Biocarta Pathways from  MsigDB37. The detailed procedure is described in 
“Computing association of drugs and signalling pathways”. Figure 7 visualizes the association between drugs and 
signaling pathways for 24 drugs in the CCLE dataset and 25 Biocarta pathways. The entire association values are 
provided in Supplementary Table S3. There are numerous pieces of evidence in the literature for these correla-
tions, some of which are provided here.

Paclitaxel drug and TGFβ signaling pathway exhibited a highly positive correlation. Paclitaxel is one of the 
agents that have been frequently reported for the activation of TGFβ  pathway38–41. Thus, the higher consumption 
of Paclitaxel leads to more activation of TGFβ , which verifies the high positive correlation between Paclitaxel and 
TGFβ . Moreover, Paclitaxel positively associated with P53 pathway. It has been verified that Paclitaxel activates 
P53 signaling  pathway42 and the cell lines with disrupted P53 are resistant to Paclitaxel43. Furthermore, HSP90 
inhibitor 17− AAG was positively correlated with P53 pathway. It has been suggested in the previous studies that 
17− AAG has an anti-tumor activity via activation and stabilization of P5344, that admits the positive association 
of 17− AAG and P53 pathway.

Table 7.  The number of remaining cell lines in CCLE and GDSC after applying redundancy removal 
procedure with different levels of strictness (threshold) based on copy number variation and gene expression.

Threshold Dataset Remained cell lines based on copy number variation Remained cell lines based on gene expression

0.01 CCLE 72 111

0.05 CCLE 116 161

0.1 CCLE 194 209

0.15 CCLE 245 245

0.2 CCLE 299 277

0.25 CCLE 325 303

0.3 CCLE 339 322

0.35 CCLE 351 345

0.01 GDSC 78 107

0.05 GDSC 161 209

0.1 GDSC 266 293

0.15 GDSC 363 362

0.2 GDSC 452 435

0.25 GDSC 501 480

0.3 GDSC 529 509

0.35 GDSC 547 532

Figure 6.  Performance of ADRML on purified datasets with different levels of strictness. The purified datasets 
were obtained after redundancy removal with certain thresholds. Each panel shows the PCC of ADRML 
assessed using 5-fold cross-validation on the purified datasets.
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Irinotecan response has a very significant positive correlation with the activity score of P53. Irinotecan is 
a topoisomerase I inhibitor, which is frequently used for anticancer therapy. The previous study on human 
hepatocellular carcinoma (HCC) cell lines for the investigation of the apoptotic mechanisms of Irinotecan has 
revealed that it significantly activates P5345. Additionally, the positive correlation of Irinotecan response and EGFR 
pathway is supported by several pieces of research. They have shown the resistance to Irinotecan is connected 
with the increased expression of EGFR46 and have admitted that Irinotecan upregulates the EGFR  pathway47. 
Also, Panobbinostat which is a potent inhibitor of deacetylases and  HSP9048, revealed a high significant positive 
correlation with TGFβ pathway. Previous study have shown that using Panobinostat increased the level of TGFβ48.

case studies. We conducted case studies on GDSC cell-line-drug pairs with unknown IC50 values. To 
do this, we did not impute the missing values in the IC50 matrix and trained ADRML with all known drug 
responses. For each drug, the predictions of ADRML on unknown pairs were partitioned into four quantiles, 
and the cell lines in the first and last quantiles were considered as the sensitive and resistant cell lines for that 
drug, respectively. The complete list of sensitive and resistant predicted associations are provided in Supple-
mentary Tables S4 and S5, respectively. The sensitive associations were inquired into both the literature and the 
latest release of GDSC (released Feb. 2020). Table 8 represents the supportive pieces of evidence for ADRML 
predictions in Literature. Table 9 incorporates some of the cell line-drug pairs that had unknown IC50 values 
in the previous data extracted from GDSC, and now the drug response value for these pairs are available in the 
latest release of GDSC.

Figure 7.  Correlation of pathway activity scores and drug responses. The drugs are shown in rows, and 
pathways are shown in columns. The positive correlations are represented in red and negative correlations are 
represented in blue. The intensity of the color indicates the extent of correlation.

Table 8.  The Literature evidence for some of sensitive predictions of ADRML about novel cell line-drug 
pairs. These cell line-drug pairs has unknown IC50 in the training dataset and ADRML predicted them as the 
sensitive prediction. The evidence papers for these predictions are represented in the last column.

Cell line Drug Cell line cancer type Drug indication Evidence

HOP-92 Parthenolide Non-Small Cell Lung Cancer Pan-cancer Janganati et al.49

MDA-MB-468 Parthenolide Breast cancer Pan-cancer Janganati et al.49

HCT-116 Parthenolide Colon cancer Pan-cancer Janganati et al.49

MKN45 Roscovitine Gastric adenocarcinoma Pan-cancer Trenti et al.50

AGS Roscovitine Gastric adenocarcinoma Pan-cancer Trenti et al.50
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Discussion
In this study, we proposed a computational model for predicting anticancer drug response, using manifold learn-
ing, called ADRML. The model combines three sets of information, including known drug responses, cell line 
similarity, and drug similarity, to infer the novel predictions. The main contribution of this paper is evaluating 
the influence of various types of cell line similarities and drug similarities on the prediction performance. We 
collected various features for cell lines and drugs from CCLE, GDSC, STiTCH, PubChem, and Drugbank. Here, 
we investigated nine different scenarios using three cell line similarities based on gene expression, mutation, 
and copy number variation, and three drug similarities based on the chemical substructure, target proteins, and 
KEGG pathways. The performance of ADRML was investigated using fivefold cross-validation on cell line-drug 
pairs. The best performance was obtained using gene expression data about cell lines and target protein data about 
drugs, which was more accurate than the previously proposed methods. We also investigated the performance 
of other state-of-the-art methods and KNN (with k = 1) as the baseline method on various types of similarities 
and showed that their best performance was achieved using the similarities that were suggested in their papers.

Another contribution of this paper was the purification of CCLE and GDSC benchmarks via removing 
redundant cell lines. The purified benchmarks were also used for assessing the methods’ performance. The 
results showed that excluding redundant cell lines declines the methods’ performance, which may be due to the 
reduction of sample size or removing bias from the database.

It was interesting that KNN with k = 1 as a simple baseline method shows favorable results and outperforms 
some more complicated methods, especially on the purified datasets. However, it should be noted that sophis-
ticated methods’ performance declines when the data size is not sufficient. A complicated method needs a mas-
sive amount of data to train well and gets a good grasp of predicting outputs from inputs. For example, Chang 
et al.21 have provided CDRscan with more cell lines and drugs than used in this paper and have trained CDRscan 
with 95% of its data (despite 80% of data in this paper). Therefore, the reported R2  in21 is better than the results 
reported in this paper. One can conclude that providing more informative data may enrich the training data and 
lead to better training the complex models. It is noteworthy that due to the challenging inherent of the problem, 
little improvements in results is welcome and useful.

The proposed method in this study outperformed other methods in terms of two criteria R2 and PCC in 
most comparison scenarios. The predicted drug response values revealed high correlations with observed drug 
responses and suggested meaningful clues about drug mechanisms in activation/inhibition of pathways. Moreo-
ver, the reliable literature evidence supports the predictions of ADRML about novel cell line-drug pairs. As a 
consequence, the promising results of ADRML verified its efficiency in predicting anticancer drug prediction 
and imputation.

Method
The proposed method includes five steps:

• Pre-processing to impute missing data
• Calculating various types of similarity matrices for cell lines and drugs
• Normalizing the similarity matrices
• Similarity-constrained manifold learning to factorize the IC50 matrix into low-rank latent matrices
• Estimating Unknown IC50 values using the latent matrices

The overall workflow of ADRML is illustrated in Fig. 8.
For the convenience, define EXPRci , CNVci , and MUTci as the expression of all genes, copy number variation 

ci , respectively. More precisely, CNVc,g and MUTc,g denote the copy number variation and mutation status of gene 
g in cell line c. Furthermore, CHEMdi , TRGTdi , and KEGGdi stand for chemical features, target status (equals 1 
for the proteins that are the target of the drug, 0 otherwise) for all proteins, and pathway status (equals 1 for the 
pathways that are the associated with the drug, 0 otherwise) for drug di , respectively. Finally, IC50ci ,dj is defined 
as the log IC50 value for cell line ci treated with drug dj.

Table 9.  ADRML sensitive predictions for novel cell line-drug pairs verified by the latest release of GDSC. 
These pairs had unknown IC50 in the training dataset and were predicted as a sensitive pair by ADRML. The 
latest release of GDSC reported these pairs as the sensitive pairs.

Cell line Drug Cell line cancer type Drug indication

SK-MEL-24 NSC-87877 Melanoma Melanoma

SK-MEL-3 NSC-87877 Melanoma Melanoma

TK10 Erlotinib Renal cell carcinoma Non-small cell lung cancer (NSCLC) and pancreatic cancer

SW684 WH-4-023 Fibrosarcoma Pan-cancer

SW982 BMS-509744 Synovial sarcoma Pan-cancer

SK-LMS-1 CMK Vulvar leiomyosarcoma Pan-cancer

SW982 A-770041 Synovial sarcoma Sarcoma
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Pre-processing to impute the missing data. Several steps were done to impute the missing data. First, 
the features that were missed in the majority of cell lines are removed. Second, the cell lines that contain missing 
values for more than half of the features were excluded. The other missing values were imputed using a k-nearest 
neighbor approach. To this aim, the distance measure between cell lines was defined as the Euclidean distance of 
their expression profiles because there is no missing in expression features of the cell line; thus, the distance can 
be calculated for each pair of cell lines. The distance between c1 , c2 is D(c1, c2) = ||EXPRc1 − EXPRc2 ||

2
2 . Then, 

the mean feature value among 10-nearest cell lines was used to impute the missing IC50 value of drug d or CNV 
value of gene g in cell line c.

(2)IC50c,d =
∑

ci∈NNc

αiIC50ci ,d

Figure 8.  The overall workflow of ADRML. (A) Collecting various types of cell lines and drugs features. 
Further steps can be executed for each pair of cell line feature types and drug feature types. (B) Pre-processing 
the collected feature by removing the features with missing data for more than half samples and then imputing 
the remaining missing values. (C) Computing various types of cell line similarities and drug similarities using 
similarity functions. (D) Normalizing the similarity matrices using symmetric normalized Laplacian. (E) 
The IC50 matrix constructed from known IC50 values is factorized into two low-rank latent matrices with 
constraints of the similarity matrices. The unknown IC50 values can be predicted by multiplying the latent 
matrices.
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where NNc is the set of 10 cell lines with the minimum distance from cell line c, and αi =
D(c, ci)

∑

cj∈NNc
D(c, cj)

 . 

Moreover, to impute the mutation status (“1” for mutated and “0” for wild type) of gene g in cell line c, the major-
ity vote of 10 nearest cell lines is used, i.e. MUTc,g is 1, if and only if 

∑

ci∈NNc
MUTci ,g >

∑

ci∈NNc
(1−MUTci ,g )

.

Similarity matrices construction and normalization. For computing the similarity score of two cell 
lines (or drugs), the PCC and Jaccard-index (JI) were regarded as the similarity function, which are elaborated 
in the following.

where x, y are two feature vectors, xi and yi denote the ith element of these vectors, and x̄, ȳ are the mean value 
of them. Basically, the PCC is used to calculate the similarity of two continuous vectors, while JI is appropriate 
to measure the similarity of two discrete vectors. Therefore, we considered this rationality in the calculation of 
similarity matrices. The dimensions of cell line, and drug similarity matrices are n× n and m×m , respectively, 
where n denotes the number of cell lines and m denotes the number of drugs. Consequently, we constructed 
the three types of similarity matrices for cell lines, based on EXPR, CNV, and MUT. Since EXPR and CNV fea-
tures are real-valued, PCC was used to measure their similarity, while MUT is binary-valued and JI was used to 
measure mutation similarity.

• SimCEXPR is the similarity matrix of cell lines based on their gene expression profiles. 

• SimCCNV is the similarity matrix of cell lines based on their copy number variations. 

• SimCMUT is the similarity matrix of cell lines based on their mutation profiles. 

Furthermore, three types of similarity matrices for drug based on Pubchem SMILES (CHEM), target proteins 
(TRGT ), and KEGG pathways (KEGG) were calculated as follows. It is notable that all drug features are binary-
valued; thus, JI was used for measuring the similarity of drugs based on each type of information.

• SimDCHEM is the similarity matrix of drugs according to their chemical substructure fingerprints. 

• SimDTRGT is the similarity matrix of drugs according to their target proteins. 

• SimDKEGG is the similarity matrix of drugs according to their KEGG pathways. 

Then all of the computed similarity matrices were normalized by computing the symmetric normalized 
 Laplacian51. Let S be a similarity matrix, the normalized similarity matrix Snorm was obtained as follows.

where D is a diagonal matrix with diagonal elements equal to the summation of each row in S, i.e. Di,i =
∑

j Si,j . 
It is noteworthy that Dii  = 0.

Manifold learning with similarity constraints. We constructed a bipartite graph with two parts: drugs 
and cell lines. The weight of edges between cell line ci and drug dj is log IC50 value of drug dj on cell line ci . Thus, 
the IC50 drug response matrix R = [ri,j]n×m is the adjacency matrix of this graph, where n, m are the number of 
cell lines and drugs, respectively. We used the manifold learning to factorize the drug response matrix R in two 

(3)CNVc,g =
∑

ci∈NNc

αiCNVci ,g

(4)PCC(x, y) =

∑

i(xi − x̄)(yi − ȳ)
√

∑

i(xi − x̄)2
√

∑

i(yi − ȳ)2

(5)JI(x, y) =

∑

i(xiyi)
∑

i(xi + yi)−
∑

i(xiyi)

(6)SimCEXPR(ci , cj) = PCC(EXPRci ,EXPRcj )

(7)SimCCNV (ci , cj) = PCC(CNVci ,CNVcj )

(8)SimCMUT (ci , cj) = JI(MUTci ,MUTcj )

(9)SimDCHEM(di , dj) = JI(CHEMdi ,CHEMdj )

(10)SimDTRGT (di , dj) = JI(TRGTdi ,TRGTdj )

(11)SimDKEGG(di , dj) = JI(KEGGdi ,KEGGdj )

(12)Snorm = D−1/2LD−1/2

(13)L = D − A
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latent matrices Pn×k and Qm×k with lower rank. By using this factorization we could map the cell line and drug 
features into a latent space with dimension k, i.e. P and Q are the cell line latent matrix and drug latent matrix, 
respectively. The ith row of P (shown by pi ) is the latent vector of cell line ci , and the jth row of Q (shown by qj ) 
indicates the latent vector of drug dj.

The initial goal is to find matrices P and Q, such that each drug response value is obtained by inner product 
of corresponding latent vectors, i.e., ri,j = pi · q

T
j  ; thus, the loss function can be formulated as:

Two terms 
∑

i ||pi||
2 and 

∑

j ||qj||
2 are the regularization constraints of P and Q and µ is the regularization coef-

ficient. The regularization terms prevent these matrices to grow dramatically; therefore, the over-fitting issue may 
not occur. These regularization terms help to reduce the variance and increase the stability and generalization 
capabilities of the  model52.

Manifold learning  studies53,54 have shown that the mapping of data to a lower dimensional space can con-
serve the topological structure of data. Since pi is the feature vector of cell line ci , the distance of two cell lines 
ci and cj can be measured by ||pi − pj||

2 . Similarly, ||qi − qj||
2 denotes the distance of drugs di and dj . We should 

consider some constraints to maintain the distance of cell lines and the distance of drugs while mapping them 
from the original features space to the lower dimensional latent space. Thus, the loss function is supplemented 
by two more terms.

where � is the coefficient of similarity consistency, SimC ∈ {SimCEXPR , SimCCNV  , SimCMUT } , and 
SimD ∈ {SimDCHEM , SimDTRGT , SimDKEGG} . Two last terms are minimized when the feature vectors of cell line 
(or drug) pairs with high similarity are mapped to not distant latent vectors. Therefore, the topological distance 
of cell lines (or drugs) is maintained while mapping to the lower dimensional space.

Iterative optimization rules. The latent matrices P, Q must be obtained by minimizing the loss function in 15. 
We used the iterative Newton’s  method55 to update P, Q matrices:

where pti (or qtj  ) denotes the updated pi (or qj ) after t steps, for all t > 0 and p0i  , q
0
j  were initialized randomly. 

The first and second derivatives (gradient and Hessian) of loss function with respect to pi and qj are computed 
as the following:

Therefore, the latent matrices P, Q are updated alternatively according to Eqs. (22, 23) until convergence.

(14)L =
1

2

�

i,j

(ri,j − pi · q
T
j )

2 +
µ

2





�

i

||pi||
2 +

�

j

||qj||
2





(15)

L =
1

2

�

i,j

(ri,j − pi · q
T
j )

2 +
µ

2





�

i

||pi||
2 +

�

j

||qj||
2





+
�

2





�

i,j

||pi − pj||
2SimC(i, j)+

�

i,j

||qi − qj||
2SimD(i, j)





(16)pt+1
i = pti −∇pi L(∇

2
pi
L)−1

(17)qt+1
j = qtj −∇qj L(∇

2
qj
L)−1

(18)∇pi L =
∑

i,j

(pi · q
T
j − ri,j)qj + µpi + �

∑

j

(pi − pj)SimC(i, j)− �

∑

j

(pj − pi)SimC(j, i)

(19)∇2
pi
L =

∑

j

qTj qj + µI = �

∑

j

(SimC(i, j)+ simC(j, i))I

(20)∇qj L =
∑

i,j

(qj · p
T
i − ri,j)pi + µqj + �

∑

i

(qj − qi)SimD(j, i)− �

∑

i

(qi − qj)SimD(i, j)

(21)∇2
qj
L =

∑

i

pTi pi + µI = �

∑

i

(SimD(j, i)+ simD(i, j))I

(22)

pt+1
i =





�

j

ri,jq
t
j + �

�

j

(SimC(i, j)+ simC(j, i))pti









�

j

qTj qj + µI = �

�

j

(SimC(i, j)+ simC(j, i))I





−1
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The convergence criterion is met when ||pt+1T Qt+1 − pt
T
Qt || < ǫ . In this study, we considered ǫ = 0.01 . The 

value of loss function declined in every iteration, due to the positive definite second derivatives. Therefore, the 
convergence criterion is definitely met after some  steps55 (usually after 10–20 step). After convergence, an esti-
mated matrix is obtained by Rpred = Q ∗ PT.

Moreover, the manifold learning was applied on the transpose of response matrix, i.e. all the above procedure 
was repeated for factorizing RT to P′ and Q′ . In the second use of Manifold learning we initialized P′ and Q′ by 
the final computed Q and P in the first run, respectively. After the convergence, the second predicted matrix was 
constructed by R′

pred = P′ ∗ Q′T . Consequently, the predicted log IC50 was computed by R̂ = 0.5(Rpred + R′
pred).

evaluation criteria. We measured the performance ADRML using 5-fold cross-validation on cell line-drug 
pairs. To do this, each pair of (ci , dj) was considered as a sample. Then, the set of all samples was partitioned 
randomly into five almost equally-sized subsets (fold). One fold was considered as the test data and the other 
folds were regarded as the training data. The evaluation was computed for the test data. This procedure was iter-
ated until each fold was considered once as the test data. Finally, the average of evaluation criteria over these five 
iterations denoted the model performance. Evaluation of ADRML is summarized as pseudo-code and shown 
in Fig. 9.

To avoid randomness and reducing variance, the model performance was averaged over 30 randomly repeti-
tion of 5-fold cross-validation. The evaluation criteria include RMSE, R2 , and PCC as follows.

(23)

qt+1
j =

�

�

i

ri,jp
t+1
i + �

�

i

(SimD(j, i)+ simD(i, j))qtj

�





�

j

qTj qj + µI = �

�

j

(SimC(i, j)+ simC(j, i))I





−1

(24)RMSE(ICreal , ICpred) =

√

1

|Test|

∑

i

(

ICreal(i)− ICpred(i)
)2

Inputs:
Rn×m: Known drug response matrix
SimCn×n: Cell line similarity matrix
SimDm×m: Drug similarity matrix
λ, µ, k: Model hyper-parameters

Outputs:
R̂: Predicted drug responses
(RMSE, R2, PCC): The model performance criteria

IDX = ((ci, dj) ; ∀ i ≤ n, j ≤ m))
(IDX1, IDX2, IDX3, IDX4, IDX5) = Split(IDX, 5)
R̂ = ∅
for 1 ≤ f ≤ 5 do:

Rtrain ← R
Test = IDXf , Train = IDX \ IDXf

Rtrain(i, j) = 0 ∀(ci, dj) ∈ Test
Randomly Initialize Pn×k, Qm×k

PML, QML ← ManifoldLearning (Rtrain, P,Q, SimC, SimD, λ, µ, k)
PML, QML ← ManifoldLearning (RT

train, QML, PML, SimD,SimC, λ, µ, k)
Rpred = PML ∗QML Rpred = PML ∗RML

ICreal = {R(i, j), ∀ (ci, dj) ∈ Test}
ICpred = {0.5 ∗ (Rpred(i, j) +Rpred(i, j)), ∀ (ci, dj) ∈ Test}
R̂ = R̂ ∪ ICpred

RMSEf , R2
f , PCCf = Evaluation(ICreal, ICpred)

RMSE = average(RMSE1, ..., RMSE5)
R2 = avergae(R2

1, ..., R
2
5)

PCC = avergae(PCC1, ..., PCC5)

Figure 9.  The pseudo-code for evaluation of ADRML performance.
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where ICreal and ICpred are the vector of real and predicted drug response values for all samples in test set, 
respectively, ¯ICreal , ¯ICpred are their mean values, and |Test| is the number of samples in the test set. Each criterion 
evaluates the model performance from a different point of view. Therefore, it is possible to obtain results which 
led to promising values of one criterion and unfavorable values for other criteria.

finding the most redundant cell lines. In order to eliminate the redundancy from the dataset, the cell 
lines in each tissue type that have high similarity to the majority of cell lines in that tissue type were considered 
as the most redundant cell lines and excluded from the dataset. To do this, the minimum (Q0), first quantile 
(Q1), second quantile (Q2), third quantile (Q3), and maximum (Q4) values for each type of cell line similarity 
in all tissue type were calculated, which are shown in Supplementary Tables S6 and S7. The diversity of cell lines 
was projected better concerning the values of copy number variation similarities, since there was a vast differ-
ence between the quantile values with respect to this similarity. Therefore, the third quantile of copy number 
variation similarities between the cell lines were computed in each tissue type t (denoted by Q3(CNV, t) ). The 
cell line c in tissue type t was excluded if it had the similarity higher than Q3(CNV, t) with more than θ =20% 
of cell lines in tissue type t.

Computing association of drugs and signalling pathways. The association between drug and path-
way was computed by the PCC of drug response values and pathway activity scores. To do this, we considered 
all Biocarta signaling pathways and eliminated the pathways that the gene expression data of more than 10% of 
its genes were not provided. Therefore, we considered 107 Biocarta pathways for CCLE dataset. The pathway 
activity score for cell line ci and pathway pj was computed according to Emdadi et. al.20, by summing up the fold 
change of gene expressions for all genes gl in pathway pi.

where medianc(EXPR(c, gl)) is the median of gene expression of gene gl in all cell lines. Thus, the score of a cell 
line in activating a pathway denotes the total amount of change in gene expression with respect to the median 
expression.

The correlation of drug di and pathway pj was obtained by PCC(ICpred(:, i),AS(:, j)) , where ICpred(:, i) denotes 
the predicted drug response vector of drug di for all cell lines and AS( : , j) stands for the activity score vector of 
pathway pj for all cell lines.

Data availability
The data and implementation are accessible from (https ://githu b.com/fahma dimou ghari /ADRML ).
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