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Purpose: To employ bioinformatics and machine learning to predict the characteristics of immune cells and genes associated with the 
inflammatory response and ferroptosis in chronic obstructive pulmonary disease (COPD) patients and to aid in the development of 
targeted traditional Chinese medicine (TCM). Mendelian randomization analysis elucidates the causal relationships among immune 
cells, genes, and COPD, offering novel insights for the early diagnosis, prevention, and treatment of COPD. This approach also 
provides a fresh perspective on the use of traditional Chinese medicine for treating COPD.
Methods: R software was used to extract COPD-related data from the Gene Expression Omnibus (GEO) database, differentially 
expressed genes were identified for enrichment analysis, and WGCNA was used to pinpoint genes within relevant modules associated 
with COPD. This analysis included determining genes linked to the inflammatory response in COPD patients and analyzing their 
correlation with ferroptosis. Further steps involved filtering core genes, constructing TF-miRNA‒mRNA network diagrams, and 
employing three types of machine learning to predict the core miRNAs, key immune cells, and characteristic genes of COPD patients. 
This process also delves into their correlations, single-gene GSEA, and diagnostic model predictions. Reverse inference complemented 
by molecular docking was used to predict compounds and traditional Chinese medicines for treating COPD; Mendelian randomization 
was applied to explore the causal relationships among immune cells, genes, and COPD.
Results: We identified 2443 differential genes associated with COPD through the GEO database, along with 8435 genes relevant to 
WGCNA and 1226 inflammation-related genes. A total of 141 genes related to the inflammatory response in COPD patients were 
identified, and 37 core genes related to ferroptosis were selected for further enrichment analysis and analysis. The core miRNAs 
predicted for COPD include hsa-miR-543, hsa-miR-181c, and hsa-miR-200a, among others. The key immune cells identified were 
plasma cells, activated memory CD4 T cells, gamma delta T cells, activated NK cells, M2 macrophages, and eosinophils. 
Characteristic genes included EGF, PLG, PTPN22, and NR4A1. A total of 78 compounds and 437 traditional Chinese medicines 
were predicted. Mendelian randomization analysis revealed a causal relationship between 36 types of immune cells and COPD, 
whereas no causal relationship was found between the core genes and COPD.
Conclusion: A definitive causal relationship exists between immune cells and COPD, while the prediction of core miRNAs, key 
immune cells, characteristic genes, and targeted traditional Chinese medicines offers novel insights for the early diagnosis, prevention, 
and treatment of COPD.
Keywords: bioinformatics analysis, Mendelian randomization, machine learning, COPD, characteristic genes, targeted traditional 
Chinese medicine, early diagnosis

Introduction
Chronic obstructive pulmonary disease (COPD) is recognized as a heterogeneous ailment,1 primarily characterized by airway 
alterations (bronchitis, bronchiolitis) and/or alveolar abnormalities (emphysema), leading to chronic respiratory symptoms 
(dyspnea, cough, expectoration) and a progressive, persistent limitation of airflow.2 COPD represents a significant global public 
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health challenge, with research indicating its lengthy latency period.3 Once diagnosed, altering the course of COPD proves 
exceedingly challenging,4 inflicting not only personal suffering but also imposing a substantial economic burden on society.5 

Globally, COPD is the causative factor for more than half of all chronic respiratory disease cases,6 gradually becoming the third 
leading cause of death worldwide.7 With the increase in population aging, both the prevalence and mortality rates of COPD are 
on an upward trajectory.8 A study targeting middle-aged individuals revealed that the prevalence of COPD among those over 
30 years of age was approximately 11.7%,9 while research focused on China indicated a prevalence rate of 13.7% among 
individuals over 40 years of age, with nearly 100 million people affected.10 Smoking, secondhand smoke, occupational 
exposure, and a history of previous lung infections have been identified as high-risk factors for COPD.11

Historically, COPD was predominantly considered an ailment of elderly individuals, and little attention has been given to 
its clinical and pathological characteristics in younger individuals. This oversight led to cases remaining undiagnosed or only 
being identified at advanced stages, thereby missing critical opportunities for early intervention and the deceleration of 
disease progression.12 However, with the advancement of research and the subsequent publication of several large cohort 
studies,13–15 there is a growing recognition that the origins of COPD can be traced back to early life, possibly even before 
birth, due to prenatal passive smoke exposure, as well as active and passive smoke exposure during childhood, adolescence, 
or adulthood, all of which contribute to the development of COPD.16 The early progression of the disease is influenced by 
genetics,17 environmental factors,18 and smoking,19 yet the heterogeneity and susceptibility of COPD patients cannot be fully 
explained by environmental factors such as smoking alone.20 It is partly believed that COPD represents the cumulative 
outcome of gene‒environment interactions over the course of an individual’s life,21 with this dynamic process revealing 
chronic symptoms and structural and functional impairments, ultimately affecting lung development and aging. This 
understanding has led to the introduction of concepts such as Pre-COPD22–24 and PRISm,25,26 making early screening, 
diagnosis, and preemptive intervention or halting of progression a focal point of research. Airway inflammation is central to 
the pathogenesis of COPD,27 acting as a key factor in disease progression and exacerbation, with persistent inflammation 
present in both the lung parenchyma and peripheral airways.28,29 Ferroptosis, a form of necrotic cell death, is linked to the 
pathogenesis of COPD and may serve as a potential therapeutic target.30 Intervening in the progression of ferroptosis could 
have a significant impact on airway epithelial cells in COPD.31,32 Mendelian randomization, employed as an instrumental 
variable, infers the causal relationship between exposure and outcome, mitigating confounding and reverse causality.33

Thus, this investigation employs bioinformatics and machine learning to discern the inflammatory responses asso
ciated with COPD, and through the integration of ferroptosis, identifies distinctive immune cells and potential biomar
kers. It further refines the selection of traditional Chinese medicines aimed at prevention and treatment. By incorporating 
Mendelian randomization analysis, it examines the causal relationships between immune cells, genes, and COPD. This 
approach offers innovative strategies for the early diagnosis, prevention, and treatment of COPD, and furnishes a novel 
perspective on the application of traditional Chinese medicine in treating COPD.

Information and Methods
Identification and Correlation Analysis of Common Differentially Expressed Genes
Using the R language to extract data from the GEO database, GSE5058 served as the training set, and GSE106986 served 
as the validation set. The data were normalized, and differential gene expression was screened with |logFC| > 1 and adj.P. 
Val < 0.05. Concurrently, GSEA enrichment analysis was conducted on all differentially expressed genes, and KEGG and 
GO enrichment analyses were performed on the upregulated and downregulated genes.

Construction and Selection of the WGCNA Network
The R language was used to perform WGCNA on the GSE5058 dataset, identifying relevant gene modules and selecting 
gene sets potentially associated with COPD.
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Determination of COPD Genes and Enrichment Analysis of Inflammatory Response 
Genes
Intersection of differentially expressed genes and genes selected from WGCNA identified COPD-related genes. The 
inflammatory response genes with a relevance score>10 from the GeneCards database (https://www.genecards.org) were 
intersected with COPD-related genes to identify genes associated with COPD-related inflammation. Further enrichment 
analysis of this gene intersection was conducted, and a PPI network diagram was drawn.

Selection of PPI Core Genes and Lasso Diagnostic Model with External Independent 
Validation
Employing R language, we have constructed a PPI network diagram for intersecting genes and isolated the core genes 
through betweenness centrality analysis to explore their interrelations. Additionally, we have developed a LASSO 
diagnostic model for these core genes and assessed it using receiver operating characteristic (ROC) analysis, with 
further validation conducted in the dataset GSE106986.

Connection Between Core Genes and Immune Infiltration and Construction of the 
TF-miRNA‒mRNA Network
The expression of core genes in the COPD and healthy control groups was explored and validated in the GSE106986 
dataset. The Network Analyst database (https://www.networkanalyst.ca/NetworkAnalyst/) was used to construct the TF- 
miRNA‒mRNA network of the core genes, and immune analysis of the core genes was performed.

Selection and Correlation Analysis of Core Immune Cells
The CIBERSORT method was used to compare immune cell differences between the COPD and control groups and to 
identify differential immune cells. LASSO regression was used to select COPD-related immune cells, and the intersec
tion of these methods was used to identify the core immune cells associated with COPD. The correlation between core 
genes and core immune cells was further explored.

Differential and Immune-Related Analysis of COPD Patients Combined with 
Ferroptosis
Ferroptosis-related genes were obtained from the FerrD (http://www.zhounan.org/ferrdb/current/) and GeneCards data
bases. Differential analysis was conducted on the dataset combined with ferroptosis-related gene sets to explore their 
correlation with immune infiltration.

Machine Learning Selection of COPD Characteristic Genes and Prediction of 
Diagnostic Models
Three different machine learning algorithms—SVM-REF, LASSO, and random forest—were used to select characteristic 
genes for COPD. Coexpression heatmaps, columnar diagnostic models, and ROC curves of characteristic genes were 
constructed and validated in the GSE106986 dataset.

Single-Gene GSEA Analysis of Characteristic Genes and Their Connections with 
Specific Gene Sets
GSEA was conducted on each characteristic gene to explore its relevance to COPD and further analyze its connection 
with specific gene sets.
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Prediction and Molecular Docking Validation of Traditional Chinese Medicine for 
COPD Core Genes
The TCMSP database (https://old.tcmsp.com/tcmsp.php) was used to collect information on compounds that act on core 
genes and to identify candidate compounds and actual genes. A “target-compound” network diagram was constructed 
with Cytoscape software. TCMSP is utilized to reverse-engineer potential traditional Chinese medicines, and a “target- 
compound-traditional Chinese medicine” network diagram is constructed. Molecular docking validation was performed 
on selected compounds and genes.

Study of Mendelian Randomization for Immune Cells and Genes
We utilized the GWAS database (https://gwas.mrcieu.ac.uk/) to acquire genetic data related to the disease COPD (finn- 
b-J10_COPD), with a sample size of 193,638 individuals of European descent, including 16,380,382 SNPs; genetic data 
related to 731 immune cells were derived from the genetic characteristics of immune cells as the basis of autoimmunity 
in 2020;34 genetic data related to core genes were obtained from the GWAS database, with some lacking genetic data 
being deleted. The outcome data still included the genetic data of COPD patients used above. We conducted an 
association analysis by selecting SNPs based on a significance level of P<1×10−5. Subsequently, we eliminated SNPs 
in linkage disequilibrium using R2<0.001 and Kb=10000 criteria, calculated the F-statistic for the selected SNPs to 
remove weak instrumental variables, and considered F values greater than 10 as indicative of non-weak instrumental 
variable. An analysis was conducted on a total of 13,318 immune cell-related SNPs through the selection of instrumental 
variables. The causal relationship with COPD was primarily assessed using the Inverse Variance Weighted method, with 
MR-Egger, Weighted Median, Simple Mode, and Weighted Mode methods utilized as supplementary approaches to 
detect heterogeneity and pleiotropy, along with conducting sensitivity analyses.

Results
Selection and Correlation Analysis of Common Differentially Expressed Genes
Using the R programming language, relevant datasets from the GEO database, specifically the GSE5058 dataset 
containing 39 samples, were extracted. The expression matrix was normalized, incorporating 15 COPD patients and 
24 healthy controls into the study. From the dataset, a total of 2443 DEGs related to COPD were identified, with 1149 
upregulated and 1294 downregulated genes in comparison to those in the healthy control group. Concurrently, GSEA 
enrichment analysis was conducted on all differentially expressed genes, and both upregulated and downregulated genes 
were subjected to KEGG and GO enrichment analyses. The enrichment of DEGs was predominantly associated with 
pathways such as the Notch signaling pathway, ferroptosis, the Wnt signaling pathway, circadian rhythms, Th1 and Th2 
cell differentiation, vascular smooth muscle contraction, the MAPK signaling pathway, cholesterol metabolism, T-cell 
activation, and positive regulation of the inflammatory response (Figure 1).

Construction and Selection of the WGCNA Network
A WGCNA was conducted on 15 COPD patients and 24 healthy controls, clustering the 39 samples and removing any 
apparent outliers (Figure 2A). A soft-thresholding power of β=8 was chosen with an R2 greater than 0.9 (Figure 2B). By 
employing a clustering height limit of 0.6 to merge highly correlated modules, six modules were identified for further 
analysis and are displayed beneath the dendrogram (Figure 3C and D). The study explored the correlation between 
module eigengene (ME) values and clinical traits and revealed that the turquoise module was positively correlated with 
the healthy control group (r=0.86, P=2e-12) and negatively correlated with the COPD group (r=−0.86, P=2e-12) 
(Figure 2E). The significance of COPD-related genes within the turquoise module is shown in Figure 2F. A heatmap 
of the interactions among genes within the module, where deeper colors indicate stronger interactions, is presented 
(Figure 2G). Finally, a heatmap illustrating the correlation between modules and traits, detailing the relationships of 
various modules, is depicted (Figure 2H).

https://doi.org/10.2147/COPD.S476808                                                                                                                                                                                                                               

DovePress                                                                                              

International Journal of Chronic Obstructive Pulmonary Disease 2024:19 2076

Cao et al                                                                                                                                                              Dovepress

Powered by TCPDF (www.tcpdf.org)

https://old.tcmsp.com/tcmsp.php
https://gwas.mrcieu.ac.uk/
https://www.dovepress.com
https://www.dovepress.com


Identification of COPD Genes and Enrichment Analysis of Inflammatory Response 
Genes
According to the WGCNA, 8435 genes within the turquoise module intersected with 2443 DEGs, yielding 2.320 COPD- 
related genes identified as disease genes for COPD (Figure 3A). Further analysis of the 1226 inflammatory response 
genes obtained from the GeneCards database revealed 141 COPD-related inflammatory response genes (Figure 3B). DO 
enrichment analysis revealed that these 141 genes are associated with diseases such as chronic obstructive pulmonary 
disease, obstructive lung disease, bacterial infectious disease, tuberculosis, bronchial disease, and interstitial lung disease 
(Figure 3C). GO enrichment analysis revealed biological processes such as regulation of inflammatory response, positive 
regulation of inflammatory response, and reactive oxygen species metabolic process, occurring in locations such as the 
cytoplasmic vesicle lumen, membrane raft, caveolae, and endoplasmic reticulum lumen and involving cytokine receptor 
binding, growth factor activity, lipopolysaccharide binding, and hormone activity (Figure 3D). KEGG pathway enrich
ment primarily focused on the JAK-STAT signaling pathway, MAPK signaling pathway, NF-kappa B signaling pathway, 
IL-17 signaling pathway, TNF signaling pathway, and T-cell receptor signaling pathway (Figure 3F–H). Additionally, 
a protein‒protein interaction (PPI) network was constructed (Figure 3I).

Selection of PPI Core Genes and Lasso Diagnostic Model with External Independent 
Validation
Using R language, we constructed a PPI network for 141 genes and identified core genes through betweenness centrality, 
resulting in a total of 37 core genes (Figure 4A). These genes include CD4, CSF3, CD69, IL1A, IL11, EGF, CCR7, 

Figure 1 Standardized GSE5058 dataset (A); volcano plots and heatmaps of differentially expressed genes are shown (B and C); GSEA plots are shown (D and E); KEGG 
and GO enrichment analyses of upregulated and downregulated genes are shown (F); and a focus on the Notch signaling pathway is shown (G).
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TP53, MMP3, ACHE, FOS, PLG, CCR2, LRRK2, CCR6, MAPK11, CSF1, AGT, PTGS2, PTPN22, FASLG, TLR4, 
FOXP3, TLR7, SPP1, INS, POMC, ADIPOQ, CARD11, LTA, ACE2, NR4A1, IL10, GFAP, ABCB1, NOS1, and MYC. 
A heatmap was generated to further illustrate the variations and clustering relationships among these core genes 
(Figure 4B), and their interrelations were explored further (Figure 4C). A lasso diagnostic model was constructed for 
these core genes, and its efficacy was evaluated using receiver operating characteristic (ROC) curve analysis. The AUC 
values for all 37 core genes exceeded 0.75, with the overall training set achieving an AUC of 1, indicating 
a commendable diagnostic capability for COPD (Figure 4D–F). The GSE106986 dataset was used as a validation set, 
where the overall AUC for the core genes exceeded 0.65, further confirming its diagnostic utility for COPD (Figure 4G).

Connection Between Core Genes and Immune Infiltration and Construction of the 
TF-miRNA‒mRNA Network
The differences in the expression of the core genes between the COPD group and the control group were significant 
(Figure 5A); the expression of the core genes ACHE, CARD11, CD4, CSF1, CSF3, FOS, FOXP3, GFAP, IL11, INS, 
LTA, MAPK11, MYC, POMC, NR4A1, and NOS1 decreased in the COPD group, while the expression of the remaining 
core genes increased in the COPD group. The expression of the core genes in the validation set was also significant 
(Figure 5B). A TF-miRNA‒mRNA network was constructed for the core genes to better explore the mechanisms by 
which core genes regulate transcription factors such as ETS1, CREB1, and TFAP2A and are involved in COPD through 

Figure 2 Displays the dendrogram of sample clustering (A); Selects an appropriate threshold (B); Visualizes the modules (C); Clusters the modules (D); Illustrates the 
relationship between different modules and groups (E); Highlights the significance of COPD-related genes within the turquoise module (F); Presents a heatmap of module 
interactions (G); Shows a heatmap of the correlation between modules and traits (H).
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interactions with hsa-miR-543, hsa-miR-181c, and hsa-miR-200a (Figure 5C). By employing the CIBERSORT method 
to analyze the correlation between core genes and immune cells, it was discovered that core genes might influence the 
progression of COPD by affecting various immune cells, such as Eosinophils, M2 Macrophages, Plasma cells, and 
activated NK cells (Figure 5D).

Selection and Correlation Analysis of Core Immune Cells
Using the CIBERSORT method, the characteristics of immune cells in the COPD group were compared with those in the 
healthy control group, and the differences in expression between the two groups were investigated. This analysis revealed 
the relative proportions and expression trends of 22 immune cell types (Figure 6A and B) and included a principal 
component analysis (PCA) of immune cells (Figure 6C). There were differences in the number of immune cells between 
the COPD group and the healthy control group, particularly in 11 types of immune cells, including plasma cells, activated 
memory CD4+ T cells, follicular helper T cells, regulatory T cells (Tregs), gamma delta T cells, activated NK cells, 
monocytes, M0 macrophages, M2 macrophages, resting dendritic cells, and eosinophils (Figure 6D). Through LASSO 
regression, 8 types of immune cells were selected: memory B cells, plasma T cells, activated memory CD4+ T cells, 
gamma delta T cells, resting NK cells, activated NK cells, M2 macrophages, and eosinophils (Figure 6E). Together, these 
findings revealed 6 core immune cell types in COPD, namely, plasma cells, activated memory CD4 T cells, gamma delta 
T cells, activated NK cells, M2 macrophages, and eosinophils (Figure 6F). Further analysis of the correlation between 
core genes and core immune cells revealed that plasma cells were positively correlated with CD4, CSF1, and POMC and 

Figure 3 DEGs related to COPD (A); DEGs associated with the inflammatory response in COPD (B); DEG enrichment analysis (C); GO enrichment analysis (D); heatmap 
of DEGs related to the inflammatory response in COPD (E); KEGG enrichment analysis (F–H); and visualization of the protein‒protein interaction (PPI) network (I).
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negatively correlated with the PLG, while eosinophils were negatively correlated with NOS1, among others (Figure 6G 
and H).

Differential and Immune-Related Analysis of COPD Patients Combined with 
Ferroptosis
From the FerrD and GeneCards databases, 396 genes related to ferroptosis were identified. Differential analysis of 
ferroptosis between the COPD group and the healthy control group revealed 181 DEGs. Further intersection with the 
core genes revealed TP53, PTGS2, TLR4, and NR4A1, suggesting that COPD could be treated from the perspective of 
ferroptosis by modulating these four genes (Figure 7A–C). Further analysis of the correlation between ferroptosis and 
immune infiltration revealed differences in the relative proportions and expression trends of 22 immune cells in the 
ferroptosis gene set (Figure 7D and E), with differences observed in 9 types of immune cells. Compared to the healthy 
control group, the COPD group exhibited greater numbers of activated memory CD4 T cells, gamma delta T cells, M0 
macrophages, resting dendritic cells, and eosinophils but lower numbers of plasma cells, follicular helper T cells, 
regulatory T cells (Tregs), activated NK cells, and M2 macrophages; plasma cells and M2 macrophages were negatively 
correlated with ferroptosis (Figure 7F).

Machine Learning Selection of COPD Characteristic Genes and Prediction of 
Diagnostic Models
To identify core genes associated with chronic obstructive pulmonary disease (COPD), we embarked on 
a meticulous selection of characteristic genes, employing three distinct machine learning algorithms for this 

Figure 4 The core genes of the PPI network (A); heatmap of the core genes (B); correlations among the core genes (C); lasso diagnostic model (D); ROC curve analysis of 
the core genes (E); overall ROC analysis of the training set (F); overall ROC analysis of the validation set (G).
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purpose. Using the SVM-REF algorithm, we identified 22 characteristic genes, namely, ABCB1, EGF, PTPN22, 
INS, NR4A1, ACE2, SPP1, LTA, POMC, TLR4, CD4, TP53, ACHE, CSF3, CARD11, PTGS2, CCR7, PLG, CD69, 
FOXP3, TLR7, and MMP3. The LASSO technique yielded 8 characteristic genes, namely, EGF, FOS, PLG, 
PTPN22, TLR7, SPP1, NR4A1, and MYC. Moreover, the random forest method identified 20 characteristic 
genes, including EGF, POMC, PLG, IL1A, ABCB1, CD4, NR4A1, MYC, MAPK11, and PTPN22 (Figure 8A). 
The intersection of these methods revealed 4 genes quintessential to COPD: EGF, PLG, PTPN22, and NR4A1 
(Figure 8B). A coexpression heatmap of these genes revealed a positive correlation among EGF, PLG, and PTPN22, 
whereas NR4A1 exhibited a negative correlation (Figure 8D). The construction of a diagnostic model based on these 
COPD characteristic genes, along with ROC curve analysis (Figure 8C and E), revealed an overall AUC of 0.947, 
indicating the high diagnostic value of these genes, particularly NR4A1, which has emerged as a pivotal gene. The 
expression of these four genes was significantly different between the COPD group and the healthy control group 
(P<0.05), with EGF, PLG, and PTPN22 being overexpressed in the COPD group, whereas NR4A1 was under
expressed. Validation in a separate dataset confirmed these four genes as potential diagnostic markers for COPD and 
targets for its treatment (Figure 8F and G).

Single-Gene GSEA Analysis of Characteristic Genes and Their Connections with 
Specific Gene Sets
Single-gene GSEA of the four characteristic genes revealed that all four genes were predominantly associated with the 
Notch signaling pathway, mirroring the findings of previous differential gene enrichment analyses. Thus, it is plausible 

Figure 5 Expression of core genes in both groups (A); expression of core genes in both groups within the validation set (B); TF-miRNA‒mRNA network diagram of core 
genes (C); correlation between core genes and immune cells (D). The significance markers are shown as: #P>0.05; *P<0.05; **P<0.01; ***P<0.001.
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that these characteristic genes may influence the mechanisms of COPD through the Notch signaling pathway 
(Figure 9A). In the analysis of the expression of 50 specific gene sets between the COPD group and the healthy control 
group, differences were observed in the expression of 16 gene sets between the two groups. These include the 
REACTIVE OXYGEN SPECIES PATHWAY, PI3K AKT MTOR SIGNALING, NOTCH SIGNALING, WNT BETA 
CATENIN SIGNALING, and CHOLESTEROL HOMEOSTASIS, among others (Figure 9B). The relationships between 
the four characteristic genes and specific gene sets revealed that EGF, PLG, and PTPN225 were negatively correlated 
with NOTCH signaling, whereas NR4A1 was positively correlated with these genes (Figure 9C). This further corrobo
rates the hypothesis that characteristic genes may exert their influence on COPD mechanisms through the Notch 
signaling pathway.

Prediction and Molecular Docking Validation of Traditional Chinese Medicine for 
COPD Core Genes
By utilizing the TCMSP database for the analysis of 37 core genes, targets without corresponding compounds were 
eliminated, resulting in 23 actual genes (Table 1) and 78 candidate compounds. This facilitated the construction of 
a “target-compound” network diagram (Figure 10A), with TP53, FOS, IL10, MMP3, MYC, FASLG, IL1A, EGF, INS, 
and ADIPOQ ranking high in degree. Further analysis through TCMSP identified 437 traditional Chinese medicines 
corresponding to the 78 compounds, leading to the creation of a “target-compound-traditional Chinese medicine” 
network diagram (Figure 10B). Prominent traditional Chinese medicines in terms of degree value include Ephedra, 
Ginkgo biloba leaf, Coriander, Perilla, Mulberry leaf, Chrysanthemum, Sea buckthorn, and Kudzu flower, with com
pounds MOL000069, MOL000098, MOL000675, MOL000008, MOL000511, MOL000006, MOL000415, MOL000879, 

Figure 6 Bar chart of immune cells (A); heatmap of immune cells (B); PCA plot of immune cells (C); differential analysis of immune cells (D); selection of immune cells (E); 
selection of core immune cells (F); heatmap of core immune cells and core genes (G); and correlation analysis of core immune cells (H).

https://doi.org/10.2147/COPD.S476808                                                                                                                                                                                                                               

DovePress                                                                                              

International Journal of Chronic Obstructive Pulmonary Disease 2024:19 2082

Cao et al                                                                                                                                                              Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


MOL000223, and MOL000432 being noteworthy. The compounds MOL000069, MOL000098, and MOL000008, which 
have a high degree of value, were selected for molecular docking validation with TP53 and MMP3 (Figure 10C and 
Table 2).

Study of Mendelian Randomization for Immune Cells and Genes
Mendelian randomization studies revealed that 36 types of immune cells have a causal relationship with COPD, while 
other cells do not exhibit such a relationship. It is possible to reduce the risk of COPD through Basophil AC, CD16+ 
monocyte % monocyte, CD3− lymphocyte AC, and TCRgd AC, whereas CD27 on CD24+ CD27+, CD27 on sw mem, 
and CD62L on monocytes may increase the risk of COPD. The selected core genes did not have a causal relationship 
with COPD, indicating that the identified core genes do not increase or decrease the risk of developing COPD. 
(Figure 11, Tables 3 and 4)

Discussion
COPD is a complex process of environmental-genetic-host interactions that evolves over time, manifesting as systemic 
chronic inflammation.35 As time progresses, the narrowing and disappearance of small airways occur,36,37 with even the 
terminal and respiratory bronchioles being compromised and lost before the gradual decline in lung function becomes 
apparent in early-stage COPD.38 This leads to irreversible damage, fixed airflow obstruction, and chronic respiratory 
symptoms.2 With the field of COPD research advancing toward the early stages of the disease, there has also been a shift 
in the paradigm of COPD prevention and treatment toward prevention and early intervention. Advancing research into 

Figure 7 Differential and ssGSEA of the COPD combined with ferroptosis gene set (A); GSEA of ferroptosis (B); analysis of key genes associated with COPD combined 
with ferroptosis (C); analysis of immune cells related to ferroptosis (D); differential analysis of immune cells related to ferroptosis (E); and correlation between ferroptosis 
and immune cells (F). The significance markers are shown as: ns, P>0.05; *P<0.05; **P<0.01; ***P<0.001.
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the biological mechanisms of COPD, the trajectory of disease progression, and early intervention can positively impact 
the prognosis of COPD patients, thereby aiming to reduce the prevalence and mortality rate of the disease. The majority 
of PRISm cases may develop COPD, and conditions such as chronic bronchitis and emphysema may represent stages in 
the progression of COPD. By intervening early in chronic bronchitis and emphysema, it may be possible to prevent the 
onset of COPD. TCM can treat COPD through various mechanisms, including inhibiting inflammatory responses, 
reducing oxidative stress,39 inhibiting cell apoptosis, improving airway remodeling,40 and regulating the gut 
microbiota.41 This approach can improve related symptoms, reduce side effects of medications, alleviate economic 
burdens, and enhance quality of life, especially for patients who have not been diagnosed with COPD, potentially halting 
its progression in advance. Therefore, the study of immune cells in COPD, potential biomarkers, and the targeted 
prediction of traditional Chinese medicine for the early diagnosis and intervention of COPD is highly important for 
reducing the prevalence of this disease.

The Notch signaling pathway plays a pivotal role in the development, differentiation, and regeneration of the lungs 
following injury;42 participates in the induction of goblet cells and mucosal secretion; and is associated with chronic 
inflammation.43 Notch signal transduction can control the balance between ciliated cells and secretory cells in COPD, 
thereby altering chronic inflammation in the airway epithelium,44 regulating alveolar morphology,45 affecting bronchial 
stem and progenitor cells,46 modulating macrophages,47 and inducing immune imbalance.48 The downregulation of 
Notch pathway gene expression is associated with smoking and COPD.49 Ferroptosis is related to COPD,50,51 especially 
age-related disease,52 and the mechanism of COPD is time dependent. Ferroptosis represents a novel target for treating 
inflammatory diseases,53 complementing inflammation, intervening in immune system regulation of cell death,54 

Figure 8 Machine learning-based selection of characteristic genes (A); identification of characteristic genes (B); predictive model of characteristic genes using columnar 
diagrams (C); correlation of characteristic genes (D); ROC curve analysis of characteristic genes (E); expression of characteristic genes (F); and expression of characteristic 
genes in the validation set (G).The significance markers are shown as: *P<0.05; **P<0.01; ***P<0.001.
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alleviating airway inflammation,55 and regulating macrophage M2 polarization,56 among other aspects involved in the 
mechanisms of COPD. Morning symptoms are most common in COPD patients,57 with symptom variability over time 
related to fluctuations in lung function due to circadian rhythms.58 Circadian rhythms are linked to the pathophysiology 
of COPD,59,60 with symptoms worsening over time and affecting sleep.61 Circadian rhythms play a significant role in 
chronic inflammatory lung diseases through oxidative stress, inflammatory responses, and alterations in lung function.62

Screening identified 141 genes associated with the inflammatory response in COPD, and disease ontology (DO) 
enrichment analysis revealed their significant enrichment in pulmonary diseases such as COPD, obstructive lung disease, 
tuberculosis, and interstitial lung disease, further substantiating the substantial correlation of these 141 genes with COPD. 
Cytokines play a crucial role in coordinating and maintaining the chronic airway inflammation characteristic of COPD.63 

Lipopolysaccharide, through modulation of the gut microbiome,64 can ameliorate COPD. Growth factors are vital for 
lung morphogenesis and are associated with increased susceptibility to COPD.65 The persistent inflammatory response 
forms the basis of COPD pathogenesis65 and is central to its progression;66 thus, inhibiting this inflammatory response is 
an effective method for treating COPD.67 The JAK-STAT signaling pathway activates cytokines in the inflammatory 
response,68 playing a significant role in COPD, while the IL-17 signaling pathway coordinates pulmonary immune 
defense in COPD.69 Further screening identified 37 core genes, validating their diagnostic capability for COPD. CD4 
regulates T cells to control autoimmunity, thereby managing pulmonary inflammation in COPD.70,71 CD69 regulates 
various pulmonary inflammatory events and is an early activation marker of lymphocytes;72 increased levels of CD4 and 
CD69 in the blood can reduce airway obstruction in COPD patients.73 CSF3, a member of the IL-6 family, controls the 
production, differentiation, and function of granulocytes and is a survival and proliferation factor for macrophages and 
neutrophils; genetic variations in CSF3 are associated with lung function in smokers with COPD.74 IL11 is related to 
genetic susceptibility to COPD75 and represents a potential target for treating chronic lung diseases.76 MMP3 may serve 

Figure 9 GSEA of characteristic genes (A); expression of gene sets characteristic of both groups (B); heatmap of the expression of characteristic genes in specific gene sets 
(C). The significance markers are shown as: ns and #P>0.05; *P<0.05; **P<0.01; ***P<0.001.
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as a serum marker for COPD77 and plays a crucial role in small airway remodeling.78 Chemokines such as CCR2 and 
CCR6 participate in the regulation of COPD through chronic inflammation or bronchial remodeling.79 NOS1 is 
associated with the inflammatory response in COPD patients80 and can alleviate pulmonary hypertension in COPD 
patients.81 ACE2 is highly expressed in the blood of COPD patients.82 MicroRNAs (miRNAs) are intimately associated 
with COPD and are pivotal biomarkers for both diagnosis and prognosis. The potential of miRNAs as therapeutic targets 
for COPD treatment has a broad spectrum of application prospects, underscoring their significance in the medical 
field.83,84 The establishment of a core gene TF-miRNA‒mRNA network revealed that the transcription factor CREB1 
could reduce susceptibility to COPD,85 hsa-miR-543 can regulate the progression of COPD by targeting IL33,86 and hsa- 
miR-181c87 plays a significant role in influencing the inflammatory response, neutrophil infiltration, reactive oxygen 
species production, and inflammatory factors in COPD. MiR-146a-5p, through the negative modulation of IL1A, can 
provoke the induction of IL8, thus leading to persistent inflammatory conditions in the pulmonary regions affected by 
COPD88.

Through the infiltration and screening of immune cells, six characteristic immune cells associated with COPD were 
identified: plasma cells, activated memory CD4 T cells, activated gamma delta T cells, activated NK cells, M2 
macrophages, and eosinophils. The presence of plasma cells is related to excessive mucus secretion in COPD 
patients.89 Activated memory CD4+ T cells play a role in immune protection of the lungs90 and participate in the 
inflammatory response in COPD.91 Gamma delta T cells serve as potential biomarkers for COPD.92 Activated NK cells 
regulate proinflammatory factors in lung injury93 and modulate the inflammatory response in both the upper and lower 
respiratory tracts.94 Activation of M2 macrophages on alveoli can reduce the airway inflammatory response in COPD 
patients.94 Eosinophils have become potential therapeutic targets for COPD95 and are associated with airway inflamma
tion, and targeting eosinophils in COPD patients can achieve better therapeutic effects.96 Ferroptosis analysis revealed 
that the TLR4 receptor is associated with COPD97 and can regulate the airway inflammatory response in COPD 
patients.98 Inhibiting ferroptosis in bronchial epithelial cells through PTGS2 can improve airway remodeling in 

Table 1 Actual Genes

Number Gene UniProt ID Protein

1 CD4 P01730 T-cell surface glycoprotein CD4
2 CSF3 P09919 Granulocyte colony-stimulating factor

3 IL1A P01583 Interleukin-1 alpha

4 EGF P01133 Pro-epidermal growth factor
5 CCR7 P32248 C-C chemokine receptor type 7

6 TP53 P04637 Cellular tumor antigen p53

7 MMP3 P08254 Stromelysin-1
8 FOS P01100 Protein c-Fos

9 PLG P00747 Plasminogen
10 CCR2 P41597 C-C chemokine receptor type 2

11 AGT P01019 Angiotensinogen

12 FASLG Q0VHD7 Tumor necrosis factor ligand superfamily member 6
13 TLR4 O00206 Toll-like receptor 4

14 SPP1 P10451 Osteopontin

15 INS P01308 Insulin
16 POMC P01189 Pro-opiomelanocortin

17 ADIPOQ Q15848 Adiponectin

18 LTA P01374 Lymphotoxin-alpha
19 ACE2 Q9BYF1 Angiotensin-converting enzyme 2

20 NR4A1 P22736 Nuclear receptor subfamily 4immunitygroup A member 1

21 IL10 P22301 Interleukin-10
22 GFAP P14136 Glial fibrillary acidic protein

23 MYC P01106 Myc proto-oncogene protein
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COPD.99 The repair and regeneration of alveolar epithelial cells are associated with ferroptosis100, and immune cells can 
interact synergistically with ferroptosis.101 M2 macrophages can clear senescent red blood cells and recycle iron to 
participate in iron homeostasis while also triggering ferroptosis in macrophages, thereby limiting their immune 
activity.102

Using three machine learning techniques, four genes associated with the inflammatory response in COPD patients 
were identified: EGF, PLG, PTPN22, and NR4A1. NR4A1 acts as a negative regulator of signal transduction, modulating 

Figure 10 Depicts the target-compound diagram (A); Illustrates the target-compound-traditional Chinese medicine diagram (B); Presents the molecular docking diagram 
(C).

Table 2 Candidate Compounds and Potential Traditional Chinese Medicines

MOL ID Compound Degree Number Traditional Chinese Medicine Degree

MOL000069 Palmitic acid 241 1 Ephedra 18

MOL000098 Quercetin 168 2 Ginkgo biloba leaf 16
MOL000675 Oleic acid 119 3 Coriander 15

MOL000008 Apigenin 85 4 Perilla 14

MOL000511 Ursolic acid 85 5 Mulberry leaf 14
MOL000006 Luteolin 81 6 Chrysanthemum 13

MOL000415 Rutin 77 7 Sea buckthorn 13

MOL000879 Methyl palmitate 77 8 Kudzu flower 12
MOL000223 Caffeic acid 75 9 Peppermint 11

MOL000432 Linolenic acid 66 10 Carthami Flos 11
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immune tolerance, iron homeostasis, and the inflammatory response of lung macrophages in COPD.103 A common 
pathological feature of COPD is excessive mucus secretion,104 with EGF being related to the expression of MUC5AC in 
the airway epithelium.105,106 The PLG plays a crucial role in various inflammatory conditions,107 participating in cell 
migration and tissue remodeling.108 PTPN22 is involved in immune responses109,110 and various inflammatory 
reactions.111 Correlation analysis of specific gene sets revealed that both characteristic and core genes are significantly 
associated with the Notch signaling pathway. IL10, known for its broad-spectrum anti-inflammatory effects, is related to 

Figure 11 Mendelian randomization of immune cells (A); Mendelian randomization of core genes (B).

Table 3 Relevant Genetic Data for the Core Genes

Number Gene Database Number Gene Database

1 ACE2 Prot-a-16 12 IL10 Prot-a-1464
2 ADIPOQ Ieu-a-1 13 INS Prot-a-1558

3 CCR2 Ebi-a-GCST90002017 14 LRRK2 Prot-a-1791
4 CCR7 Ebi-a-GCST90001907 15 LTA Prot-a-1803

5 CD4 Prot-a-448 16 MYC Prot-a-1978

6 CSF1 Prot-a-680 17 NR4A1 Prot-a-2090
7 CSF3 Prot-a-685 18 PLG Prot-c-4151_6_2

8 EGF Prot-a-908 19 POMC Prot-a-2327

9 FOS Prot-a-1605 20 SPP1 Ebi-a-GCST90010244
10 GFAP Prot-a-1200 21 TLR4 Prot-a-2990

11 IL1A Prot-a-1494 22 TP53 Prot-a-3080
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the rapid decrease in FEV1112 and the severity of COPD.113 FOS is involved in cell proliferation, death, and 
inflammation,114 particularly in the inflammatory response of COPD.115 The predicted compounds targeting the core 
genes included palmitic acid, quercetin, apigenin, and luteolin. In COPD patients, palmitic acid is increased116 and plays 
a role in delaying COPD exacerbation.117 Quercetin acts on COPD through anti-inflammatory and antioxidant 
mechanisms,118 alleviating the progression of COPD.119 Moreover, apigenin reduces the impact of senescent cells on 
COPD through its antioxidant and anti-inflammatory effects.120 The predicted traditional Chinese medicines include 
ephedra, mulberry leaf, chrysanthemum, sea buckthorn, and kudzu flower. Ephedra protect against airway and pulmonary 
inflammation in COPD,121 improving COPD by inhibiting inflammation and cell apoptosis through endoplasmic 
reticulum stress.122 Moreover, chrysanthemum has certain anti-inflammatory effects,123 sea buckthorn can improve 
airway inflammation,124 and it can improve COPD through modulation of the gut microbiome.125

In conclusion, through Mendelian randomization, we explored the causal relationships between immune cells, genes, 
and COPD. We deduced that there exists a causal connection between 36 types of immune cell phenotypes and COPD, 
with 22 types showing a negative correlation and 14 types displaying a positive correlation with COPD. Reverse 
Mendelian randomization revealed no causal relationship. Chronic inflammation persists in patients with COPD.126 

Furthermore, an increase in B cell content is observed in the blood of COPD patients,127 which correlates with the 
subgroups of TBNK lymphocytes,128 potentially influencing the remodeling of the bronchiolar walls129 and the reduction 
of terminal bronchioles.130 The augmentation of B cells is somewhat associated with small airway dysfunction and 
impaired pulmonary function.131 Regulatory T cells (Tregs) are linked to lung function,132 and modulating these cells 
may ameliorate pulmonary inflammation.133 Monocytes are pivotal drivers of pulmonary inflammation and tissue 
remodeling.134 Through MR analysis, we investigated the causal relationship between core genes and COPD. 
Regrettably, no causal connection exists between them; however, this outcome does not conflict with prior analyses. 
These core genes simply lack a causal relationship with COPD. This causality should be cautiously interpreted, as 
variations may stem from differences among diverse populations, as well as correlations with various subtypes and stages 

Table 4 MR Heterogeneity and Pleiotropy Analysis

Exposure Pleiotropy Heterogeneity Exposure Pleiotropy Heterogeneity

CD40 on CD14+ CD16- monocyte 0.148 0.091 SSC-A on monocyte 0.735 0.639
CD14+ CD16+ monocyte % 

monocyte

0.903 0.157 CD16+ monocyte %monocyte 0.390 0.237

CD33dim HLA DR+ CD11b+ % 
CD33dim HLA DR+

0.183 0.548 CD62L on monocyte 0.706 0.706

HLA DR on CD14+ CD16- 

monocyte

0.726 0.580 HLA DR+ CD4+ %T cell 0.527 0.581

CD27 on IgD- CD38- 0.941 0.139 CD45RA+ CD8br AC 0.103 0.100

CD28 on CD39+ activated Treg 0.641 0.541 CD62L- CD86+ myeloid DC %DC 0.609 0.925
CD62L- CD86+ myeloid DC AC 0.406 0.652 HVEM on CD45RA- CD4+ 0.858 0.590

HLA DR on CD14+ monocyte 0.716 0.530 CD11c+ CD62L- monocyte % 

monocyte

0.236 0.347

PB/PC AC 0.200 0.376 SSC-A on HLA DR+ NK 0.574 0.271

CD4+ CD8dim %leukocyte 0.449 0.075 Basophil AC 0.364 0.387

CD28- CD8br %CD8br 0.534 0.561 CD33br HLA DR+ CD14dim % 
CD33br HLA DR+

0.4754 0.413

TCRgd %T cell 0.886 0.879 IgD+ CD38- AC 0.671 0.419

CD33dim HLA DR- AC 0.215 0.248 Resting Treg AC 0.770 0.253
IgD+ CD38dim AC 0.240 0.470 IgD+ CD24- %lymphocyte 0.955 0.504

IgD- CD27- %B cell 0.512 0.609 TCRgd AC 0.922 0.907

DC AC 0.498 0.543 TCRgd %lymphocyte 0.869 0.749
CD27 on CD24+ CD27+ 0.831 0.312 CD27 on sw mem 0.505 0.414

HLA DR on monocyte 0.828 0.486 CD3- lymphocyte AC 0.385 0.933
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of COPD. Additionally, discrepancies might be due to variations in different databases, and it is also conceivable that 
core genes may indirectly contribute to the mechanisms driving the development of COPD, rather than having a direct 
impact. However, a survey of European populations revealed no significant correlation between IL1A and the rate of 
decline in lung function,135 aligning with our MR analysis results. Further research suggests that this may be related to 
the dysfunction of COPD airway epithelial cells,136 which are major regulators of mucosal repair,137 affecting the 
secretion of mucins138 and serving as potential immunological markers of lung injury.139 Thus, IL1A might have an 
indirect causal relationship with COPD through pathways involving the regulation of airway epithelial cell function, 
mucosal repair, mucin protein, and immune functions. Additional studies have found that regulating TP53 can improve 
pulmonary inflammation140 and has therapeutic effects on chronic bronchitis,141 a stage in the development of COPD, 
thereby linking them; MYC, a gene associated with allergen sensitization,142 may relate to COPD through its effects on 
eosinophils.143

Conclusion
Through the integration of bioinformatics and Mendelian randomization analysis, we identified potential biological 
markers and core immune cells for COPD via machine learning. This approach has enabled the targeted prediction of 
compounds and traditional Chinese medicines related to COPD. By analyzing these medicines at the miRNA and gene 
levels, we have furnished novel insights into COPD research, offering fresh perspectives on the intricate molecular 
mechanisms underlying the development of COPD. This study also lays a foundation for further advancements in clinical 
drug development. Mendelian randomization analysis suggested a certain causal relationship between immune cells and 
COPD, yet the core genes identified through our screening did not exhibit a causal relationship with COPD, necessitating 
further validation.
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