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Abstract

Low Impact Development (LID) is an alternative to conventional urban stormwater management 

practices, which aims at mitigating the impacts of urbanization on water quantity and quality. Plot 

and local scale studies provide evidence of LID effectiveness; however, little is known about the 

overall watershed scale influence of LID practices. This is particularly true in watersheds with a 

land cover that is more diverse than that of urban or suburban classifications alone. We address 

this watershed-scale gap by assessing the effects of three common LID practices (rain gardens, 

permeable pavement, and riparian buffers) on the hydrology of a 0.94 km2 mixed land cover 

watershed. We used a spatially-explicit ecohydrological model, called Visualizing Ecosystems for 

Land Management Assessments (VELMA), to compare changes in watershed hydrologic 
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responses before and after the implementation of LID practices. For the LID scenarios, we 

examined different spatial configurations, using 25%, 50%, 75% and 100% implementation 

extents, to convert sidewalks into rain gardens, and parking lots and driveways into permeable 

pavement. We further applied 20 m and 40 m riparian buffers along streams that were adjacent to 

agricultural land cover. The results showed overall increases in shallow subsurface runoff and 

infiltration, as well as evapotranspiration, and decreases in peak flows and surface runoff across all 

types and configurations of LID. Among individual LID practices, rain gardens had the greatest 

influence on each component of the overall watershed water balance. As anticipated, the 

combination of LID practices at the highest implementation level resulted in the most substantial 

changes to the overall watershed hydrology. It is notable that all hydrological changes from the 

LID implementation, ranging from 0.01 to 0.06 km2 across the study watershed, were modest, 

which suggests a potentially limited efficacy of LID practices in mixed land cover watersheds.

Keywords

LID practices; watershed scale; impervious area; peak flow; surface runoff; shallow subsurface 
runoff and infiltration; evapotranspiration

1. Introduction

Urbanization alters natural hydrological systems by altering stream channel networks (e.g., 

channelization and burial), creating microclimates (e.g., urban heat islands), and generating 

rapid runoff from precipitation and snowmelt events [1]. These changes have direct impacts 

on surface and groundwater quantity and quality. Conventional urban stormwater 

management practices are often developed to control runoff and minimize flooding; 

however, these systems can be costly and may not directly address issues, such as reductions 

in infiltration and groundwater storage via impervious surfaces that may lead to urban 

flooding, erosion, and the degradation of water quality [2].

In recent years, alternative stormwater management practices, such as Low Impact 

Development (LID), have been adopted (e.g., bioretention cells or rain gardens, permeable 

pavements, and bioswales) in many urban and suburban areas [3,4]. LID, also called 

sustainable urban drainage systems (SUDSs), among other globally varying names [5], is an 

approach that uses soils, vegetation, and landscape design to control nonpoint source runoff 

and pollutants in urban systems. A goal of LID is to promote watershed resilience through 

“green” design [6].

There is a growing body of literature focused on evaluating the local (e.g., plot or site) scale 

effectiveness of LID. Several recent papers have synthesized the key findings of studies 

assessing the effects of different LID practices, including field experiments and modeling 

studies, on water quantity (e.g., peak flow and runoff volume) and water quality (e.g., 

nitrogen, phosphorous, and total suspended solids) at local scales [7–11]. These previous 

studies provide foundational research for scaling LID approaches to watersheds. However, 

limited evidence of LID effectiveness at the watershed scale exists [12,13], and research 

focusing on LID impacts at watershed scales is just beginning to emerge [14]. Therefore, 
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questions remain about how LID practices can individually or cumulatively affect watershed 

hydrology [14,15].

Experimental studies, designed to investigate the watershed-scale effects of LID, have 

provided critical insights into how watershed hydrology responds to these approaches. For 

example, Jarden et al. [16] designed a paired watershed approach to quantify the effect of 

street-connected bioretention cells, rain gardens, and rain barrels on peak discharge and total 

storm runoff. The results from the subwatershed with smaller LID lots and underdrain 

connections showed a substantial reduction in peak discharge (up to 33%) and total storm 

runoff (up to 40%). Additionally, recent field-based research provides evidence of the 

cumulative watershed scale effects of LID on hydrologic responses, such as peak flows and 

pollutant loads [17–20]. Such experimental studies can be resource intensive (e.g., financial, 

personnel, time) [21]; however, process-based models provide a means to go beyond 

measured data and explore the projected “what if” LID scenarios using potentially less 

resources.

Process-based or mechanistic watershed models, which simulate hydrological (and other) 

processes and outputs for different water balance components (e.g., streamflow, 

evapotranspiration), are critical tools to understand the influence of LID practices on 

watershed processes [22]. The Storm Water Management Model (SWMM) [23] has been 

used to simulate the effects of different LID practice implementations (porous pavement, 

rain barrels, and rain garden) on runoff and flood risk reductions in an 87.6 km2 urban 

watershed and model the cumulative effects of street-side bioretention cells, rain gardens, 

and rain barrels in a 0.12 km2 residential watershed [21]. Overall, the results indicate 

increases in evaporation and infiltration, as well as decreases in surface runoff and discharge, 

across different return periods. Tsshe performance of LID practices (rain gardens, permeable 

pavements, and rainwater harvesting tanks) has also been evaluated under different urban 

land use densities using the Soil and Water Assessment Tool (SWAT) [24], demonstrating 

that the effectiveness of LID practices differs among the urban land use densities [25].

The aforementioned studies and others (e.g., [26–29]) advance current knowledge on the 

effectiveness of LID practices at watershed scales using various process-based model 

approaches; however, all of these studies focus on watersheds that are entirely urban or 

suburban. A clear need exists for an understanding of the extent to which LID approaches 

are effective in mixed land cover watersheds, i.e., those with urban and suburban land cover 

in addition to others (e.g., forest and agriculture). Furthermore, a spatially explicit approach 

toward representing LID practices and associated hydrological processes to analyze the 

effects of varying patterns of mixed land use and land cover under different management 

practices is critical [30], as most approaches are challenged with representing spatial 

landscape heterogeneities [31].

In this paper, we assess how LID implementation affects watershed hydrologic responses in 

a mixed land cover watershed. Specifically, we ask: How does the type and extent of LID 

practices affect water balance components, including surface runoff, peak flows, 

evapotranspiration, shallow subsurface flow, and infiltration, in a mixed land cover 

watershed? We do this by using a spatially-explicit ecohydrological model, called 
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Visualizing Ecosystems for Land Management Assessments (VELMA) [32] for a variety of 

scenarios associated with LID and the implementation of forested riparian buffers. Our study 

is one of the first, to our knowledge, to examine LID implementation at the watershed scale 

using spatially explicit modeling approaches in a system with mixed suburban, agricultural 

and forest land cover. As a result, we discuss the implications of this study for effective 

stormwater management in mixed land cover systems and future research directions toward 

this goal.

2. Materials and Methods

2.1. Study Area Description

The Shayler Crossing (SHC) watershed is a subwatershed of the East Fork Little Miami 

River Watershed in southwest Ohio, USA and falls within the Till Plains region of the 

Central Lowland physiographic province. The Till Plains region is a topographically young 

and extensive flat plain, with many areas remaining undissected by even the smallest stream. 

The bedrock is buried under a mantle of glacial drift 3–15 m thick [33,34]. The Digital 

Elevation Model (DEM) has a maximum value of ~269 m (North American_1983 datum) 

within the watershed boundary (Figure 1). The soils are primarily the Avonburg and 

Rossmoyne series, with high silty clay loam content and poor to moderate infiltration [35]. 

Average annual precipitation for the period, 1990 through 2011, was 1097.4 ± 173.5 mm. 

Average annual air temperature for the same period was 12 °C [36].

We considered SHC a mixed land cover watershed, located on the east side of Cincinnati, 

Ohio, with a drainage area of 0.92 km2 (Figure 1). The primary land uses consist of 64.1% 

urban or developed area (including 37% lawn, 12% building, 6.5% street, 6.4% sidewalk, 

and 2.1% parking lot and driveway), 23% agriculture, and 13% deciduous forest (Table 1). 

Total imperviousness covers approximately 27% of the watershed area, the majority of 

which is directly connected to a storm sewer system without any intermediary [30]. The 

watershed was chosen for this study because it is part of the East Fork Little Miami River 

Watershed, where a long-term monitoring and focused modeling effort is being conducted 

by the US Environmental Protection Agency (EPA), Office of Research and Development 

(ORD), Ohio Environmental Protection Agency (Ohio EPA), and Clermont County (Ohio) 

Stormwater Division.

2.2. Input Data

We obtained average daily precipitation and temperature data from a weather station, located 

approximately 13 km from the north boundary of the watershed at 84.2909° W, 39.194° N 

[37]. Streamflow has been monitored, from 3 April 2006 to the present day, using a stage 

sensor (600 LS Sonde with temperature, conductivity, and shallow vented level sensors, YSI 

Inc., Yellow Springs, OH, USA) at the watershed outlet. Water depth was recorded at 10-min 

intervals and converted to streamflow (m3 s−1) using a rating curve, developed by US EPA. 

We obtained a 10 m resolution DEM, Soil Survey Spatial Tabular (SSURGO 2.2) soil data, 

and National Land Cover Dataset (NLCD) land use data from the Natural Resources 

Conservation Service (NRCS) Geospatial Data Gateway [38]. We further used an 
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impervious area shape file from Clermont County, Ohio through the Center for Urban Green 

Infrastructure Engineering, Inc. (Milford, OH, USA).

2.3. Model Description

To simulate the effect of LID on watershed hydrology, we used the Visualizing Ecosystems 

for Land Management Assessments (VELMA) model. VELMA is a spatially distributed 

ecohydrological model that couples watershed hydrology and carbon (C) and nitrogen (N) 

cycling in plants and soils, and the transport of water, C, and N from the terrestrial landscape 

to streams [32]. VELMA is not an “urban hydrology” model according to the strict tradition 

of stormwater management models (e.g., SWMM). Its key strengths are its spatially explicit 

representation of hydrological and biogeochemical processes and broad applicability to a 

variety of ecosystems, such as forest, agricultural, and urban, in order to assess the effects of 

LID in mixed land cover systems. Urban LID practices can be represented in the model 

using modifications to present watershed permeability, lateral and horizontal hydraulic 

conductivities, and land cover (see Section 2.5). VELMA’s spatially explicit grid-based 

structure affords the capacity to represent transitions from directly connected to indirectly 

connected impervious areas by replacing values on a cell by the cell basis for the 

aforementioned model representations. The model is also capable of scaling hydrologic and 

biogeochemistry responses across multiple spatial (hillslopes to basins) and temporal (days 

to centuries) scales [21]. VELMA’s visualization and interactivity features are packaged in 

an open-source, open-platform programming environment (Java/Eclipse) [32].

VELMA’s modeling domain is a three-dimensional matrix that includes information 

regarding surface topography, land use, and four soil layers. VELMA uses a distributed soil 

column framework to model the lateral and vertical movement of water and nutrients 

through the four soil layers. A soil water balance is solved for each layer. The soil column 

model has three coupled submodels: (1) A hydrological model that simulates the vertical and 

lateral movement of water within the soil and losses of water from soil and vegetation in the 

atmosphere; (2) a soil temperature model that simulates daily soil layer temperatures based 

on surface air temperature; and (3) a biogeochemistry model that simulates C and N 

dynamics.

A simple logistical function, based on the degree of saturation, is applied to capture the 

breakthrough characteristic of soil water. Potential evapotranspiration (PET) is estimated 

using the simple temperature-based method of Hamon [39]. Evapotranspiration (ET) 

increases exponentially as soil water storage increases, and it reaches the PET rate as the soil 

water storage reaches saturation. The VELMA simulator engine allows for the specification 

of a spatial data map, with permeability fractions for each grid cell value (here, each 10 m 

grid cell). The grid’s permeability fractions are taken into account when determining how 

much of a cell’s total water inflow (e.g., from rain, snow melt, and lateral surface 

movement) penetrates into the first layer of the soil column. A permeability of 0 is 

completely impermeable (no water penetrates from the surface to the first soil layer), and 1 

is completely permeable (all water penetrates from the surface to the first soil layer).

The soil column model is placed within a watershed framework to create a spatially 

distributed model applicable to watersheds (Figure 2, shown here with LID practices). 
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Adjacent soil columns interact through down-gradient water transport. Water entering each 

pixel (via precipitation or flow from an adjacent pixel) can either first infiltrate into the 

implemented LID and the top soil layer, and then to the downslope pixel, or continue its 

downslope movement as the lateral surface flow. Surface and subsurface lateral flow are 

routed using a multiple flow direction method, as described in Abdelnour et al. [21]. A 

detailed description of the processes and equations can be found in McKane et al. [32], 

Abdelnour et al. [21], Abdelnour et al. [40].

2.4. Watershed Model Setup

We used VELMA’s pre-processor tool (called Java Processing Digital Elevation Model 

(JPDEM) [32,41]) to fill sinks, determine flow direction, and compute the flow contribution 

area of a 10 m DEM [32]. The watershed boundary was delineated, and the watershed outlet 

was assigned using VELMA’s pre-processor [32]. All DEM, soil, and land use maps were 

clipped so that they have the same number of columns and rows for the American Standard 

Code for Information Interchange (ASCII grid, Esri, Inc., Esri grid format ArcGIS Desktop 

10.0 Help, http://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/esri-

grid-format.htm) input in VELMA. The soil and the land use maps contained ID numbers 

for every cell in the simulation area, which corresponded to one or more of VELMA’s 

simulator configurations. We assigned two of VELMA’s soil configurations to represent 

Rossymoyne and Avonburg soil types and seven land use configurations to represent 

agriculture, forest, lawn, buildings, streets, sidewalks, parking lots and driveways. We 

merged wet pond pixels with lawn pixels because currently lakes and ponds are not 

implementable in VELMA.

2.5. Base Model Parameterization, Calibration and Validation

We performed the base model calibration with daily streamflow at the outlet of the 

watershed from 1 January 2009 to 31 December 2010 with 2008 as a model warmup period 

and from 1 January 2011 to 31 December 2011 as a validation period. Our calibration period 

(2009 and 2010) included normal precipitation years (1040 and 1046 mm), and our 

verification period (2011) was a wet year (1660 mm). We defined a ‘wet’ period as greater 

than one standard deviation from the mean precipitation (>1270.1 mm) and a dry period as 

less than one standard deviation (<923.9 mm).

Calibration was conducted through both semi-automatic and manual calibrations. We used 

autocalibration to screen for sensitive parameters and reduce the solution space. Manual 

calibration was implemented as a second phase to further refine the parameter values. For 

the initial automatic calibration, we used the MOEA-VELMA calibration tool that links 

VELMA with the Multiobjective Evolutionary Algorithm (MOEA) [42] framework in Java. 

The MOEA framework uses evolutionary algorithms to solve multiobjective optimization 

problems, and the MOEA-VELMA calibration tool leverages this ability to tune model input 

parameters to minimize the differences between simulated results and observed data. Several 

parameters were chosen to calibrate the model, including soil layer thickness, saturated 

hydraulic conductivity, porosity fraction, bulk density, wilting point, field capacity, and PET 

parameters. The MOEA-VELMA calibration tool then implemented NSGA-II [43], using 

the MOEA framework, and searched for the optimal set of input parameters to optimize our 
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objective function, that is, Nash Sutcliffe Efficiency (NSE) [44] for the observed and 

predicted daily streamflow:

NSE = 1 − i = 1
n Oi − Pi

2

i = 1
n Oi − O 2 (1)

where Oi is the ith measured variable (e.g., discharge), Pi is the ith predicted variable, O is 

the arithmetic average of the measured variable, and n is the total number of observations. 

The NSE coefficient ranges between 1 (perfect fit) and negative infinity. An efficiency below 

zero implies that the mean value of the observed value is a better predictor than the model.

After almost 500 simulations, we narrowed the range of selected sensitive parameters and 

ran the MOEA-VELMA calibration tool for an additional 500 simulations. Then, we picked 

the solutions with a higher NSE and used those parameter ranges in the manual calibration.

After the initial semi-automatic calibration, we conducted manual calibration through visual 

analysis to capture trends in observed streamflow, using NSE in addition to percent bias 

(PBIAS) [45] and root mean squared error (RMSE) [46]. PBIAS measures the average 

tendency of the predicted data to be larger or smaller than observed values. It is also 

measures over- and underestimation of bias [44]:

PBIAS = i = 1
n Oi − Pi

i = 1
n Oi

× 100 (2)

and RMSE is the square root of the mean square error and varies from zero to large positive 

values:

RMSE = 1
n i = 1

n
Oi − Pi

2 (3)

To ensure the simulations provided reasonable volumetric matches with observed data, we 

also used a total simulated to total observed annual streamflow ratio (Sim:Obs) for each 

simulation year. If the Sim:Obs was >1, simulated streamflow from the year exceeded that of 

the observed streamflow. If it was <1, the opposite was true, and Sim:Obs = 1 suggested a 

perfect match between the total annual simulated and observed streamflow.

The soil thickness of each layer was parameterized using United States Department of 

Agriculture (USDA) soil survey data for the study area [35]. We used the MOEA-VELMA 

calibration tool to calibrate saturated vertical and horizontal hydraulic conductivities for 

each soil layer. Other soil physical characteristics (porosity, field capacity, wilting point, and 

bulk density) were obtained based on soil texture class (Table 2) [32]. We obtained the first 

term of the PET Hamon equation (petParam1) for different cover types using the MOEA-
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VELMA calibration tool, with the second term of Hamon equation set to a constant value of 

0.622, based on Abdelnour et al. [21]. A be parameter is a calibration constant; it is an ET 

coefficient used in the logistic equation that computes ET from PET. We estimated this 

parameter value from autocalibration. Air density (roair) was constant and set to 1300 g m−3 

(Table 3). We adjusted all soil physical characteristics and PET parameters to best match the 

observed streamflow during manual calibration. The parameters and their final model values 

are shown in Tables 2 and 3. Setting soil parameters to zero produces an error in the 

VELMA output; therefore, we set soil parameter values for impervious areas to those of the 

clay soil texture class, using the approach by McKane et al. [32].

2.6. Low Impact Development (LID) Configurations, Scenarios, and Model Parameters

To evaluate the effectiveness of LID practices based on the relative daily changes in 

watershed hydrology compared to the calibrated base model, we simulated three types of 

LID scenarios: Rain gardens (RG), permeable pavements (PP), and forested riparian buffers 

(RB). Our goal was to derive a relative understanding of how different spatial distributions 

of select LID types may affect hydrology in this mixed land over system; therefore, we did 

not aim to represent specific stakeholder-selected LID practices for the watershed (e.g., 

exact sites where landowners would agree to implementation).

To implement the LID scenarios, we replaced grid cells in the calibrated base model, 

identified as impervious, areas with one of two LID practices: RG or PP, depending on the 

impervious area type (see below). We further replaced grid cells in agricultural land cover 

along a stream with RB. We ran each scenario as a separate model using evenly distributed 

spatial configurations of 25%, 50%, 75% and 100% conversions for RG (in sidewalk 

locations) and PP (at parking lots and driveways; see Figure 3 for an example). Each spatial 

distribution of RG and PP met or exceeded the watershed’s water quality volume for 

bioretention (i.e., generally speaking, the volume of water treated by LID practices to 

control in low to medium magnitude storm events), as recommended by the Ohio 

Department of Natural Resources [47]. We also placed RP at 20 m and 40 m on each side of 

the stream in the agricultural land of the Northern part of the watershed (Figure 1). This 

resulted in 10 simulated LID scenarios (4 RG, 4 PP, and 2 RB) for comparison. We note here 

that a large-scale conversion of impervious areas to LIDs (e.g., our 100% conversion 

scenarios) may not be reasonable, in terms of both financial cost and the willingness of the 

community [46]; however, these conversion configurations can provide a maximum 

mitigation potential for decision support.

RG and PP were chosen for the scenarios because they are reasonable retrofitting measures 

for the studied watershed, are the most promising LID practices for reductions in peak flow 

and runoff volume [8,48], and can be applied and assessed in the VELMA model. RBs were 

selected because they currently do not exist in the agricultural land of the watershed (and 

therefore the base model). Their addition was used for comparisons of the watershed-scale 

hydrological responses of RG and RB conversions on impermeable areas. We selected 20 m 

and 40 m buffers to go beyond Ohio EPA’s requirement that forested area must be 

maintained for a minimum of the first 15 m of the area on either bank [49].
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We assessed the effect of the LID scenario implementation: (a) Individually and (b) using an 

LID combination scenario (i.e., fully implementing RG, PP, and RB with the maximum level 

of implementation). The individual model scenario runs of land cover conversions to RG and 

PP, for each spatial configuration, included: (a) Sidewalks were converted to RG and (b) 

parking lots and driveways were converted to PP (Table 4 and Figure 3). Lawns were not 

converted to RG. The percentage of the watershed that was converted to RG, PP, and RB 

practices at different implementation levels is shown in Table 5.

To implement LID into each scenario, we parameterized the soil texture, soil physical 

characteristics, and PET parameter values for LID practices, based on Ohio EPA 

requirements (Table 6) [49]. To do this for the RG scenarios, we created soil maps with a 

new soil class, “RG,” for each spatial configuration (i.e., 25% to 100%). The RG soil maps, 

one for each implementation level, replaced the sidewalk pixels of the original soil map. 

Soils in the new RG maps were adjusted for soil depths, texture classes, and physical 

parameters to represent soils associated with rain gardens. The RG soil maps were based on 

Ohio EPA requirements for rain gardens (Table 6), which suggest that the soil media depths 

of a rain garden are 60–100 cm deep with loamy sand [49]. In the updated model 

configurations for each implementation scenario, we assumed no underdrain pipes and no 

outlet pipes, which are currently not implementable in VELMA.

In addition to the soil maps, we created new land cover maps for each spatial 

implementation level of RG (25% to 100%). We defined a new land cover, “RG,” where 

existing sidewalks were located. For example, at the 50% RG implementation level, 50% of 

sidewalk’s pixels of original were defined as “RG” land cover. For each new “RG” map, we 

parameterized the PET parameters of “RG” land cover to lawn values (Table 7).

For PP scenarios, we generated soil maps with a new soil class, “PP” which replaced 

parking lots and driveways at each conversion level (25% to 100%). We modified the 

original soil depths, soil texture classes, and soil physical parameter values for the “PP” soil 

class (Table 6) using the same values at each conversation level. According to the Ohio EPA 

Stormwater Management Practices manual, the recommended thickness of a PP system is 

40–76 cm, depending on frost depth [49]. Therefore, for PP, we parameterized the hydraulic 

conductivity and other soil physical parameter values of the first 100 cm of the “PP” soil 

class [32]. We assumed that permeable pavement is a continuous pavement system (gravel) 

and well maintained with no clogging issues.

For RB, we created soil maps with a new soil class (Table 6) and a new land cover class 

(Table 7), “RB” to replace current soils and land cover at 20 m and 40 m on each side of 

streams where agriculture exists. Because most riparian buffers for Ohio streams are forested 

[49], we parameterized the soil parameters and PET values of the buffer area in the new soil 

and cover maps to reflect the effect of a forest rooting system and forest canopy on 

infiltration and ET (Tables 6 and 7).

For RG, PP and RB, new permeability fraction maps were also created for each 

implementation level to replace the original permeability fraction map in each model 

scenario. In the new permeability fraction maps, permeability fractions of 0 for impervious 
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surfaces, such as sidewalks, parking lots and driveways, were changed to 1 and 0.95 for RG 

and PP, respectively. The permeability fraction for the RB scenario was changed from 0.95 

for agriculture to 1 for RB forested land cover.

Once the base model was calibrated, we ran the model for each of the 10 scenarios under the 

different LID spatial configurations to evaluate changes in peak flows, surface runoff, ET, 

subsurface runoff and infiltration, and compared them to that of the base model (existing 

conditions).

3. Results

3.1. Calibration and Validation of the Base Model

Daily streamflow calibration suggests acceptable model results across the simulation period 

(Figure 4a–c). The NSE, R2, root mean square error (RMSE), and percent bias (PBIAS) for 

the calibration period (2009 and 2010) were 0.50, 0.53, 3.12 and −2.40, respectively. 

Moriasi et al. [50] recommended that an NSE ≥ 0.50 and PBIAS ≤ ±15 can be considered 

satisfactory for daily streamflow simulations. RMSE varies from 0 to large positive values. 

The lower the RMSE, the better the model fit [46]. The optimum value for PBIAS is zero, 

and low magnitude values indicate better simulations. Negative values indicate model 

overestimation [50]. While the daily model calibration is acceptable, it tends toward 

underestimating peak flows (Figure 4a,b). This is confirmed by a negative PBIAS; however, 

the magnitude is low, which means that the bias toward peak flow underestimation is 

minimal. Further, the Sim:Obs were 0.77, 1.10 and 0.96 (for 2009, 2010, 2011, 

respectively), all of which indicated that annual volumetric streamflow estimates in the base 

model were satisfactory.

Simulations during the validation period captured general daily streamflow patterns; 

however, the model fit was less satisfactory than the calibration period (NSE of 0.40, R2 of 

0.48, RMSE of 5.27, and PBIAS of 13.84). Moreover, visual inspection of the validation 

plot (Figure 4c) indicated that the calibrated parameters were less successful during 2011, 

suggesting that calibrated model simulations may have increased limitations during wet 

years.

The average annual water balance components of the calibrated base model across the 

watershed, for the simulation period (2009–2011), are shown in Table 8. Evapotranspiration 

accounts for about 44% of precipitation, which approximates the lower end of the Sanford 

and Selnick [52] estimates of the fraction of precipitation lost to evapotranspiration in 

Southwest Ohio, USA.

3.2. LID Scenarios

We compared the simulated water balances for the three LID practices at 25%, 50%, 75% 

and 100%, 20 m and 40 m implementation levels and one combined LID scenario at the 

maximum level of implementation. Our results suggest that LID practices decreased surface 

runoff and peak flow, and increased ET, shallow subsurface runoff and infiltration as the LID 

implementation level increased (Figure 5). However, the response varied among different 

LID practices (Figure 5).
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Reduction in peak flows varies from about 0.5% to 5.5% among all individual LID practice 

scenarios, with the high reduction observed for the RG scenario at 100% and 75% 

implementation levels (5.5% and 4%, respectively), followed by 50% RG and 40 m RB 

scenarios (Figure 5a). Surface runoff decreased across all LID scenarios, with the largest 

reductions resulting from the RG scenario at 25%, 50%, 75% and 100% implementation 

levels (7%, 10.5%, 16% and 22%, respectively) (Figure 5b). PP and RB scenarios showed 

smaller reductions in surface runoff, ranging from 0.4 (for 25% PP) to 3.4% (for 100% PP). 

Reductions in surface runoff for 40 m and 20 m RB scenarios were 1.4% and 0.6%, 

respectively (Figure 5b). The percentage reduction in surface runoff was more than peak 

flows across all scenarios.

Retrofitting the baseline model with the LID increased shallow subsurface runoff and 

infiltration with increasing implementation levels as shown in Figure 5c,d. ET increased 2–

15% for RG and RB scenarios across implementation levels, with higher increases in the 

100%, 75% and 50% RG scenarios (11%, 8% and 5%, respectively). The RG scenario 

resulted in higher increases for both processes in comparison to other individual scenarios. 

Following the same trend, PP and RB scenarios increased shallow subsurface runoff and 

infiltration, ranging from 0.2% to 6% for different implementation levels (Figure 5d). 

Changes in ET for PP scenarios were negligible (Figure 5c).

Combining the three LID practices (RG, PP, and RB) at the highest implementation levels 

(100% for RG and PP, and 40 m for RB) resulted in the largest reductions in peak flows and 

surface runoff compared to individual LID implementations. The reductions in peak flow 

(8.5%) were modest, but considerably greater in surface runoff (26%; Figure 5a,b). The 

combined LID scenario resulted in the greatest increase in ET (15%), as well as a shallow 

subsurface runoff and infiltration (21%), in comparison with individual LID scenarios 

(Figure 5c,d).

The RG scenario showed the highest reduction in peak flows in comparison with PP and RB 

scenarios (Figure 5a). Therefore, we compared the peak flow to the percent of reduction in 

peak flow after RG implementation (100% scenario) during the simulation period (Figure 6). 

Peak flows were defined as one standard deviation above the mean simulated daily 

streamflow (here, 3.18 mm). We also considered the streamflow one day after we considered 

the peak flows to include a portion of the falling limb of the hydrograph. The percentage 

reduction in peak flows after RG implementation decreased exponentially with increasing 

peak flow conditions R2 of 0.47; p-value < 0.001 (Figure 6).

4. Discussion

4.1. LID Practices and Watershed-Scale Hydrological Effects

We assess, via spatially explicit model simulations, the relative effects of different types and 

configurations of LID practices on watershed hydrology in a mixed land cover system. 

Model simulation results suggest reductions in peak flows and surface runoff, and increases 

in evapotranspiration and subsurface flow and infiltration, with all spatial configurations of 

LID at the watershed scale. This is consistent with Gagrani et al. [19], Fry and Maxwell 

[53], and Avellaneda et al. [54], who reported similar effects on water balance components 
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and peak flows after the placement of different LID practices in urban watersheds, with 42–

55 percent impervious surfaces and drainage areas ranging from 0.2 km2 to 12 km2.

The magnitudes of simulated water balance responses to LID placement in our watershed 

study were lower than other studies in strictly urban watersheds (e.g., Fry and Maxwell [53] 

and Avellaneda et al. [54]) and more similar to a pilot study in a small suburban watershed 

(1.8 km2) of Cincinnati, Ohio, where retrofitted rain gardens and rain barrels did not result 

in substantial runoff reductions [55]. The more limited response in our study watershed 

reflects, in part, the smaller extent of urban and suburban land cover compared to studies in 

other watersheds. Only 27 percent of our study watershed was covered in impervious 

surfaces, and only 31 percent of this area was converted to LID at the highest level of 

implementation. Therefore, our results are not completely unexpected and may point to 

important scale issues regarding the extent to which LID influences hydrologic regimes in 

mixed land use watersheds.

The simulated RB scenario did not result in a significant effect on peak flow at the 

watershed outlet and other water balance components. This is likely because only 3% of the 

total watershed area (and 13% of the watershed’s agricultural land cover) was converted to 

RB at the highest implementation level (40 m). This indicates that the type and extent of LID 

practices affects cumulative watershed-scale hydrological effects [15,56].

In the mixed land cover SHC watershed, model comparisons among LID scenarios 

suggested that the RG was most effective across all implementation levels at reducing runoff 

and peak flow, and promoting ET, compared to PP and RB. RG also exerted greater control 

over modifying watershed water balance components, in terms of per unit area LID 

conversions. For example, at the 100% implementation level, RG reduced peak flows by 

73% and 2%, decreased surface runoff by 50% and 86%, and increased ET by ~100%, 

which was 23% more than PP and RB, respectively. PP was 28% more effective at 

increasing shallow subsurface runoff and infiltration than RG. Recent studies point to a 

similar effectiveness of RG on water balance components at watershed scales [16,18]. 

Studies also have shown that PP can effectively mitigate surface runoff [57,58]; however, the 

degree of RG and PP functionality depends on the extent of the application area of LID 

within the watershed [59].

We found that 100% implementation of RG across the watershed was more effective at 

reducing peak flows during small storms than during larger ones (Figure 6). At the plot 

scale, Speak et al. [60] found that a green roof runoff retention significantly decreased 

during high rainfall events. These indicate that the effectiveness of any type of management 

practice, including LID, may be exponentially diminished as it loses storage capacity and 

becomes saturated. This counters Wadzuk et al. [61], who concluded, at the plot scale, that 

antecedent soil moisture conditions and “back-to-back events” are not a primary concern for 

biofiltration rain garden and green roof practices in recovering their infiltration capacity. 

However, based on our results, this finding may not be transferable to watershed scales, 

especially when LID practices receive both precipitation and appreciable surface runoff 

loading [62]. Our findings also highlight the potential importance of RG in controlling the 

first flush of pollutant loads and channel erosion [63,64] during more frequent storm events 
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and a need for future research on the impact of LID practices across variable sequences of 

wet weather events.

4.2. Implications for Stormwater Management and Future Research

Our study provides scientists and watershed managers a glimpse into the potential influence 

of LID practices in mixed land cover systems, where only a portion of the watershed is 

converted to LID. Watershed-scale models, such as VELMA, can provide a physically-based 

and systematic means of projecting and evaluating the influence of various LID 

configurations in heterogeneous watersheds. Using this approach, our results suggest modest 

to minimal changes in most components of the water balance in response to LID, though 

these responses may be much more considerable if the watershed was exclusively urban or 

suburban land cover and converted to LID.

It is important to note that the location of the LID implementation with respect to the 

watershed outlet may also be critical [56]. For example, in our study, the watershed in 

agricultural areas are in the headwaters and LID implementation is in the lower portion of 

the watershed. Therefore, while our results suggest a limited shift in watershed hydrological 

dynamics with LID implementation, if LID was implemented into the upgradient of 

agricultural or forested land, then the magnitude of the response may be even less substantial 

due to attenuation from downgradient watershed processes. Based on these results, we 

suggest that future research needs to evaluate the hydrological effects of LID using 

distributed models, with a particular focus on how configurations of different land cover 

types influence watershed-scale LID responses, retiming of runoff delivery from subbasins 

of differing land cover, and antecedent soil moisture, as affected by storm sequences.

Model selection for assessing the hydrological effects of watershed-scale LID 

implementation is challenging because it involves trade-offs in achieving the necessary 

fidelity (i.e., the extent to which the model faithfully represents the modeled system) to 

hydrological, biological, and biogeochemical processes for prediction accuracy, while 

minimizing complexity and uncertainty [14]. Careful consideration of these tradeoffs is 

needed for future work that addresses how LID affects watershed-scale hydrological 

processes, particularly in mixed land cover systems. For example, existing models that 

explicitly integrate LID practices have been developed for urban systems and have specific 

LID modules for urban-based hydrological processes (e.g., SWMM and Green Infrastructure 

Flexible Model (GIFMod) [65]). On the other hand, models that have been explicitly 

developed to assess the effects of LID practices in mixed land cover watersheds (e.g., 

VELMA and Regional Hydro-Ecological Simulation System (RHESSys) [66]) may have a 

strong biogeochemical module (because of their mixed land cover focus) but a more limited 

hydrological capacity to physically represent LID practices, as compared with a model such 

as SWMM. Responses to these challenges are evolving by incorporating LID modules 

within ecohydrological models, such as VELMA, that provide mechanistic representations 

of LID performance [14] and coupling models to quantify how LID affects the fate and 

transport of various pollutants, as well as couple SWMM with other watershed models to 

improve simulations of urban hydrology [67].
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Our findings suggest a clear need for the evaluation of the influence and benefits of LID in 

the context of other watershed land uses and their associated management [68]. For example, 

the incremental influence of LID on overall watershed responses, relative to management 

targets at different locations along the stream network, should be assessed. In this example, 

if a management goal is peak attenuation at the watershed outlet, a cost-benefit analysis, of 

how “best” to manage diffuse sources of runoff across different land cover types for peak 

flow reduction, would be beneficial.

Advancing the scientific understanding of the hydrological responses to LID in mixed land 

cover systems and linkages with the provision of diverse benefits is imperative because of 

the large number of watersheds globally that have mixed land cover. Future research may 

focus on upscaling fine scale studies to watersheds, applying a host of hydro-ecological 

models with LID modules or model parameter representations to address LID challenges in 

suburban watersheds (e.g., to provide multiple lines of evidence to support predicted 

outcomes), understanding LID’s role in modifying baseflow (e.g., Bhaskar et al. [20]), and 

advancing these studies across diverse physiographic regions. Furthermore, given that we 

simulated and interpreted LID effects in this relatively small mixed land cover watershed, 

future research that applies continuous model simulations to project the hydrological effects 

of different LID configurations in mixed land cover watersheds with even greater complexity 

than ours will help to set realistic expectations for long term LID performance in these 

systems. Finally, research is also needed that expands our approaches to quantifying the 

effects of LID practices on nutrient and sediment loads, and links LID modules within 

watershed-scale ecohydrology models with simulated or measured in-stream processes.

5. Conclusions

We provide one of the first studies, to our knowledge, that assesses the relative watershed-

scale hydrological effects of different types and configurations of LID practices in a mixed 

land cover watershed using a spatially explicit modeling approach. We simulated 10 

scenarios across multiple spatial configurations of LID to evaluate the watershed 

hydrological responses of three practices—rain gardens (RG), permeable pavements (PP), 

and riparian buffers (RB)—in a 0.92 km2 watershed with mixed suburban, agricultural, and 

forest land cover. A spatially-explicit ecohydrological model (VELMA) was used to 

compare changes in the watershed’s water balance before and after LID practice 

implementation.

Overall, we found that the type and extent of LID practices influence watershed hydrological 

responses in our study system. Our simulation results indicate that LID practices decreased 

surface runoff and peak flow, and promoted ET, shallow subsurface runoff and infiltration. 

However, hydrologic responses and effectiveness varied among LID practices and 

implementation levels. When LID practices were considered individually, on a LID per unit 

area basis across all LID implementation levels, RG was more effective in reducing runoff 

and peak flow, and promoting ET, than PP and RB. However, our results indicated that the 

100% implementation of RG was more effective at reducing peak flows during small storms 

than larger ones, suggesting that LID storage capacities are reduced due to soil saturation 

during and following large events. Further, both RG and PP increased shallow subsurface 
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runoff and infiltration to almost the same extent at the watershed outlet and the combined 

LID scenario resulted in the highest performance by increasing shallow subsurface runoff 

and infiltration, and evapotranspiration by 21% and 15%, respectively, and reductions in 

peak flow and surface runoff of 8.5% and 8%, respectively.

We conclude that the spatial configurations and extent of LID practices, as well as the model 

selection and degree of watershed heterogeneity, might be critical for assessing the 

hydrological responses of watershed-scale LID implementation and must be considered in 

future research. Further research is needed to apply different LID configurations within 

mixed land cover watersheds to better understand LID performance and to evaluate the 

effect of LID practices on nutrient and sediment loads.
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Figure 1. 
The study area is a 0.92 km2 subwatershed (Shayler Crossing) of the East Fork Little Miami 

River watershed, located on the east side of Cincinnati, Ohio in Clermont County, USA. The 

watershed outlet is identified as a red triangle.
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Figure 2. 
Generalized structure of the VELMA model, and applications for LID. VELMA’s domain is 

a watershed (a). Each grid cell within the watershed has four soil layers (b), including LID 

applied to the land surface). Infiltration from LID is transported to the first soil layer (black 

arrow). Further vertical transport of water (in this paper), carbon, and nitrogen transport can 

occur between each grid cell’s four layers (white arrows), and surplus water (or carbon, 

nitrogen) is transferred from a grid cell to the adjacent, most down gradient cell(s) in the 

watershed (blue arrows). P = Precipitation; ET = evapotranspiration. Modified from 

Abdelnour et al. [21].
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Figure 3. 
The spatial configuration of different land covers in the SHC watershed, with 10m cell 

resolution: (a) Current land cover, and (b) after LID implementation: Conversion of a 100% 

spatial configuration of the sidewalks to rain gardens, and driveways and parking lots into 

permeable pavements, and the implementation of 40 m forest buffers along both sides of the 

stream on the agricultural land. The watershed outlet is identified as a red triangle.
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Figure 4. 
Plots of (a,b) calibration (NSE = 0.54, R2 = 0.53, RMSE = 3.12, and PBIAS = −2.40) and 

(c) validation (NSE = 0.40, R2 = 0.48, RMSE = 5.27, and PBIAS = 13.84) of the VELMA 

model output at the watershed outlet. The model was calibrated at a daily time step from 1 

January 2009 to 31 December 2010 and validated at a daily time step from 1 January 2011 

to 31 December 2011.
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Figure 5. 
Percent change for watershed water balance components for three different types of LID 

practices at the outlet of the watershed (RG: Rain Garden, PP: Permeable Pavement, and 

RB: Riparian Buffer), (a) peak flow; (b) surface runoff; (c) ET (evapotranspiration); and (d) 

shallow subsurface runoff and infiltration. At the maximum level of implementation (100% 

and 40 m) RG, PP, and RB cover 6.4%, 2.1%, and 3% of the total watershed area, 

respectively.
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Figure 6. 
Percentage reduction in peak flow after RG implementation (100% scenario) vs. peak flow 

(mm) during the simulation period at the watershed outlet. Peak flow was estimated as any 

flow that was one standard deviation above the mean simulated daily flow for the study 

period or flow on the day following peak flow conditions, as described (to capture part of the 

falling limb of the hydrograph).
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Table 1.

Summary of Shayler Crossing watershed land use area and characteristics.

Land Use Type Area (km2) % of Watershed % of Total Imperviousness

Lawn 0.34 37.0 -

Agriculture (corn) 0.21 23.0 -

Forest 0.12 13.0 -

Building 0.11 12.0 44.5

Street 0.06 6.5 24.0

Sidewalk 0.06 6.4 23.5

Parking Lot and Driveway 0.02 2.1 8.0
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Table 2.

Soil parameters for the base model (* = calibrated; all other values from McKane et al. [32]). R stands for 

Rossmoyne and A stands for Avonburg soil type.

Parameter Description Soil Type Layer Value Unit

z Soil layer thickness All 1,2,3,4 500, 500, 12,000, 12,000 mm

Ks,l * Saturated lateral hydraulic conductivity R and A
Impervious area 1,2,3,4 130, 100, 80, 30

50, 30, 15, 10 -

Ks.v * Saturated vertical hydraulic conductivity R and A
Impervious area 1,2,3,4 14, 14, 10, 10

7,7,5,5 -

n Porosity fraction R and A
Impervious area All 0.501

0.475
-
-

Pb Bulk density R and A
Impervious area All 1.42

1.21 g cm−3

θwp Wilting point R and A
Impervious area All 0.133

0.272
-
-

θfc Field capacity R and A
Impervious area All 0.33

0.396
-
-
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Table 3.

Calibrated Potential Evapotranspiration parameters for the base model.

Parameter Description Cover Type Value Unit

PetParam1 First term of PET Hamon equation

Agriculture (corn)
Forest
Lawn

Impervious area

0.20
0.30
0.15
0.05

-

PetParam2 Second term of PET Hamon equation

Agriculture (corn)
Forest
Lawn

Impervious area

0.622 -

TemperaturePetOff PET is only active when air temperature is greater than this value

Agriculture (corn)
Forest
Lawn

Impervious area

−3 C°

roair Air density

Agriculture (corn)
Forest
Lawn

Impervious area

1300 g m−3

be ET coefficient used in the logistic equation that computes ET from PET

Agriculture (corn)
Forest
Lawn

Impervious area

3.07 -

noTranspirationPetFraction The fraction of PET available outside of this cover’s growing season

Agriculture (corn)
Forest
Lawn

Impervious area

1 -
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Table 4.

LID configurations in the model and conversion levels.

Type of Current land use Type of Spatial Configuration Maps Under LID 
Scenarios Type of LID Practices Conversion Level

Sidewalks Soil map, cover map, and permeability fraction map Rain Garden (RG) 25%, 50%, 75%, 100%

Parking Lots and 
Driveways Soil map and permeability fraction map Permeable Pavement (PP) 25%, 50%, 75%, 100%

Agriculture Soil map, cover map, and permeability fraction map Riparian Buffer (RB) 20 m and 40 m
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Table 5.

The percent of the watershed converted to each LID practice and implementation level.

Type of LID Practices
Percent Watershed Converted

25% 50% 75% 100%

RG 1.6 3.2 4.8 6.4

PP 0.5 1.1 1.6 2.1

20 m 40 m - -

RB 1.5 3.0 - -
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Table 6.

Soil parameter values used in the LID practice scenarios. RG: Rain Garden, PP: Permeable pavement, and RB: 

Riparian Buffer.

Parameter Description LID Practice Layer Value Unit

z Soil layer thickness
1 All 1,2,3,4 500, 500, 12,000, 12,000 mm

Ks,l Saturated lateral hydraulic conductivity 
2

RG
PP
RB

1,2,3,4
1,2,3,4
1,2,3,4

200, 200, 80, 30
250, 250, 80, 30
300, 300, 80,30

-

Ks.v Saturated vertical hydraulic conductivity 
2

RG
PP
RB

1,2,3,4
1,2,3,4

50, 50, 10, 10
100, 100, 10, 10
50, 30, 15, 10

-

n Porosity fraction 
2

RG
PP
RB

All
0.437
0.437
0.437

-

Pb Bulk density 
2

RG
PP
RB

All
1.65
1.65
1.65

g cm−3

θwp Wilting point 
2

RG
PP
RB

All
0.055
0.033
0.055

-

θfc Field capacity 
2

RG
PP
RB

All
0.125
0.091
0.125

-

1
Ohio EPA [49];

2
McKane et al. [32], based on the Ohio EPA recommended soil texture class of loamy sand and sand for RG and PP [49]. For the RB scenario, the 

values were set to the loamy sand soil texture class to represent a forest rooting system [32].

Water (Basel). Author manuscript; available in PMC 2019 August 08.



E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Hoghooghi et al. Page 31

Table 7.

Potential Evapotranspiration parameter values used in the LID practice scenarios. RG: Rain Garden, PP: 

Permeable Pavement, and RB: Riparian Buffer.

Parameter Description LID Practice Value Unit

PetParam1 
1 First term of PET Hamon equation

RG
PP
RB

0.15
0.05
0.30

-

PetParam2 Second term of PET Hamon equation
RG
PP
RB

0.622 -

TemperaturePetOff PET is only active when air temperature is greater than this value
RG
PP
RB

−3 C°

roair Air density
RG
PP
RB

1300 g m −3

be ET coefficient used in the logistic equation that computes ET from PET
RG
PP
RB

3.07 -

noTranspirationPetFraction The fraction of PET available outside of this cover’s growing season
RG
PP
RB

1 -

1
The values for RG and RB were set to the calibrated values for lawn and forest land cover (Table 3). The value for PP set to minimum value for 

impervious area (Table 3).
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Table 8.

Average annual water balance components of the base model for the entire watershed, from 2009–2011. Note 

that precipitation is lower than the sum of the other water balance components because of the structure of 

VELMA’s hydrological model output, which couples shallow subsurface runoff with infiltration.

Water Balance Component Value (mm)

Precipitation 1249

Surface runoff 444

ET 548

Shallow subsurface runoff + infiltration 427
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