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Abstract – Giardia duodenalis (also known as G. intestinalis) is a flagellated protozoan that parasitizes the small
intestine and is a common causal agent of zoonotic infections in humans and animals. To assess the genetic diversity
and zoonotic transmission potential of G. duodenalis in stray dogs, 159 fecal specimens were collected from dogs in
Chengdu, Yaan, and Leshan in Sichuan province, China. Of the 159 fecal samples from stray dogs, 18 (11.3%) were
G. duodenalis-positive based on nested PCR amplification of the beta giardin (bg) gene, and the occurrence varied
from 1.8% to 35% in different cities. Dog-specific assemblages C (n = 9) and D (n = 9) were identified. The gluta-
mate dehydrogenase (gdh) and triosephosphate isomerase (tpi) genes of all bg-positive isolates were characterized.
A total of 16 and 8 isolates were positive for the gdh and tpi genes, respectively. Two novel sequences of the bg locus
were detected among genetic assemblage D isolates, and one novel gdh sequence and four novel tpi sequences were
identified among genetic assemblage C isolates. Mixed infections of assemblages C and D were also detected. Assem-
blages A and B, which have high zoonotic potential, were not detected. Our results show that G. duodenalis is preva-
lent and a cause of diarrhea in dogs in Sichuan province, China.
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Résumé – Détection et génotypage multilocus de Giardia duodenalis chez les chiens dans la province du
Sichuan, en Chine. Giardia duodenalis (également connu sous le nom de G. intestinalis), est un protozoaire
flagellé qui parasite l’intestin grêle et un agent causal commun d’infections zoonotiques chez les humains et les
animaux. Pour évaluer la diversité génétique et le potentiel de transmission zoonotique de G. duodenalis chez les
chiens errants, 159 échantillons de matières fécales ont été prélevés chez des chiens à Chengdu, Yaan et Leshan,
dans la province du Sichuan, en Chine. Sur 159 échantillons de matières fécales provenant de chiens errants,
18 (11.3 %) étaient positifs pour G. duodenalis sur la base de l’amplification par PCR imbriquée du gène de la bêta
giardine (bg), et l’occurrence variait de 1.8 % à 35 % dans différentes villes. Les assemblages spécifiques au chien
C (n = 9) et D (n = 9) ont été identifiés. Le gène de la glutamate déshydrogénase (gdh) et le triosephosphate
isomérase (tpi) de tous les isolats bg-positifs ont été caractérisés. Au total, 16 et 8 isolats étaient positifs pour les
gènes gdh et tpi, respectivement. Deux nouvelles séquences du locus bg ont été détectées parmi les isolats
d’assemblage génétique D, et une nouvelle séquence gdh et quatre nouvelles séquences tpi ont été identifiées parmi
les isolats d’assemblage génétique C. Des infections mixtes des assemblages C et D ont également été détectées.
Les assemblages A et B, qui ont un potentiel zoonotique élevé, n’ont pas été détectés. Nos résultats montrent que
G. duodenalis est répandu et une cause de diarrhées chez les chiens dans la province du Sichuan, en Chine.

Introduction

Giardia duodenalis, also known as G. intestinalis or
G. lamblia, is an important zoonotic intestinal parasite that

infects humans and a variety of domestic and wild animals
[18]. G. duodenalis has high potential for zoonotic transmission
via water or feces; diarrhea is a major clinical sign of infection.
In humans, G. duodenalis can infect immunocompromised
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hosts [21], such as AIDS patients, and can be life-threatening.
G. duodenalis has been reported in livestock [12, 16, 26],
wildlife [13, 20], and companion animals [10, 11, 15, 27];
it infects numerous mammalian species, including humans
and species that are closely connected with humans. It is dis-
tributed worldwide and poses a threat to public health.

There are eight known genotypes (A–H) of G. duodenalis
[7]. Assemblages A and B have zoonotic potential and can
infect humans [5], cattle [28], sheep [26], dogs [19], and cats
[2]. Specifically, subgenotypes of assemblages A (subtypes
A1, A2, A3, and A4) and B (subtypes B1 and B4) are associ-
ated with human infections [5]. Hence, assemblages A and B
are considered zoonotic genotypes. Genetic assemblages
C–H have been reported in specific hosts. Assemblages C
and D are observed in canines [10, 11, 27]. Assemblage E
has been reported in cattle [12]. Assemblage F is specific to
cats, pigs, and cetaceans [1, 15, 20], and assemblage G is
specific to mice and rats [30]. Assemblage H was reported in
the grey seal and gulls [9].

Many recent epidemiological studies have reported
G. duodenalis infections in dogs in China [10, 11, 19, 27],
Japan [8], and Brazil [4]. In Heilongjiang and Shanghai,
China [11, 27], zoonotic genetic assemblages A and B have been
observed in pet dogs. Stray dogs, considered important vehicles,
have played a significant role in transmission to humans in
developing countries. However, little is known about the preva-
lence of G. duodenalis in stray dogs in China. In developing
countries, stray dogs are common and have a wide distribution.
In this study, nested PCR was used to amplify the beta giardin
(bg), glutamate dehydrogenase (gdh), and triosephosphate
isomerase (tpi) loci to investigate the prevalence and genotypes
of G. duodenalis in stray dogs in Sichuan province, China.

Materials and methods

Fecal specimen collection

From November 2016 to January 2017, 159 fecal speci-
mens were collected from stray dogs in shelters in Chengdu,
Yaan, and Leshan cities in Sichuan province, China. Forty
specimens whose hosts had diarrhea were obtained from
Chengdu. Sixty-three and 56 specimens whose hosts did not
exhibit diarrhea were obtained from Yaan and Leshan, respec-
tively. All dogs were stray and abandoned and were housed in
shelters for at least 2 months. Fecal samples were collected,
numbered in plastic containers, and transported to our labora-
tory in ice packs on the day of collection. These fecal speci-
mens were stored in a 4 �C refrigerator.

DNA extraction

Fecal specimens (50–100 mg) were removed from each
plastic container. DNA was extracted directly from fecal
samples using an E.Z.N.A. Stool DNA Kit (Omega Biotek,
Norcross, GA, USA), according to the protocol recommended
by the manufacturer. DNA samples were stored at �20 �C
until use for PCR.

PCR amplification

G. duodenalis was detected by nested PCR amplification of
an approximately 530-bp fragment of the bg locus. The
bg-positive products were further characterized by amplifica-
tion of gdh and tpi. The primers for PCR amplification and
annealing temperatures for the three genes were obtained from
Zhang et al. [29]. Each reaction included 12.5 lL of 2· Taq
PCR Master Mix (KT201-02; Tiangen, Beijing, China),
8.5 lL of deionized water (Tiangen), 2 lL of DNA, and
1 lL each of upstream and downstream primers, for a total
volume of 25 lL. Positive and negative controls were included
in each test. All secondary amplifications were visualized
under UV light after electrophoresis on a 1% agarose gel
mixed with Golden View.

Nucleotide sequencing and analysis

All positive secondary PCR products were sent to Sangon
Biotech Company (Shanghai, China) for sequencing.
Genotypes with mutations, including single nucleotide substi-
tutions, deletions, or insertions, were confirmed by DNA
sequencing of at least two PCR products. Assemblages and
subtypes were identified by the alignment of the nucleotide
sequences with known reference sequences for bg, tpi, and
gdh of G. duodenalis available in the GenBank database using
BLAST and Clustal X.

Phylogenetic analysis

To assess the genetic relationships among G. duodenalis
genotypes and previously published reference sequences in
GenBank, a phylogenetic analysis was performed. A neigh-
bor-joining tree was constructed using Mega 6 based on evolu-
tionary distances calculated with the Kimura 2-parameter
model. The reliability of trees was assessed using a bootstrap
analysis with 1,000 replicates.

Statistical analysis

The v2 test was used to compare the infection rates of
G. duodenalis at three stray dog shelters in different cities,
and differences were considered significant when p < 0.05.

Results

Occurrence of G. duodenalis

In this study, 18 (11.3%) positive specimens were obtained
from 159 fecal specimens by nested PCR amplification of the
bg locus. Among positive specimens, 14 were obtained from
dogs with diarrhea and 4 from dogs without diarrhea. The
occurrence rates in dogs with and without diarrhea were
35.0% and 3.4%, respectively. The infection rates of dogs with
diarrhea were highly significantly different from dogs without
diarrhea. (v2 = 29.85, p < 0.01). Multilocus sequence typing
at bg, gdh, and tpi revealed the presence of G. duodenalis
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assemblages C (13) and D (9). The infection rate in Chengdu
was highest (35%; 14/40), followed by Yaan (4.8%; 3/63) and
Leshan (1.8%; 1/56) based on amplification of the bg locus.

The genotypes of all positive specimens are listed in Table 1.
Additionally, we found mixed infections in four samples,
CD18, CD32, YA16, and YA60.

Table 1. Prevalence and distribution of Giardia duodenalis by location in Sichuan province, China.

Location (city) No. samples No. positive (%) Genotype (n)

Chengdu 40 14 (35.0%) Assemblage C (8); assemblage D (6)
Yaan 63 3 (4.8%) Assemblage C (1); assemblage D (2)
Leshan 56 1 (1.8%) Assemblage D (1)
Total 159 18 (11.3%) Assemblage C (9); assemblage D (9); assemblage C/D (4)

KY979497 assemblage D dog

KX164009.1 assemblage D dog

JX867770.1 assemblage D dog

KY942091 assemblage D dog 

AY545647.1 assemblage D dog

KY979500 assemblage D dog

KX164008.1 assemblage D dog

KY942092 assemblage D dog.

JF958111.1 assemblage D dog

JN416559.1 assemblage D dog

KY979502 assemblage D dog

HQ538709.1 assemblage D dog

KY979501 assemblage D dog

JF422720.1 assemblage C dog

KY979496 assemblage C dog

KY979498 assemblage C dog

JF422719.1 assemblage C dog

KU156667.1 assemblage C dog

KY979499 assemblage C dog

AY545646.1 assemblage C dog

KY979502 assemblage C dog

EU769210.1 assemblage B Oryctolagus cuniculus

EU769221.1 assemblage G Rattus norvegicus

EU769215.1 assemblage E Ovis aries

EU769220.1 assemblage F Felis catus66
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Figure 1. Phylogenetic relationships of Giardia duodenalis at the bg, gdh, and tpi loci. The relationships between G. duodenalis genotypes
identified in this study and other known genotypes deposited in GenBank were inferred by a neighbor-joining analysis of three genetic loci
using the Kimura 2-parameter model. Bootstrap values greater than 50% from 1,000 replicates are shown. (A) Tree based on the beta giardin
(bg) gene. (B) Tree based on the glutamate dehydrogenase (gdh) gene. (C) Tree based on the triosephosphate isomerase (tpi) gene. Sequences
obtained in this study are marked with ‘‘�’’.
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Molecular analysis

A total of 18 positive specimens were identified by nested
PCR, and a phylogenetic analysis based on bg, gdh, and tpi is
summarized in Figure 1. All positive specimens at different
loci are listed in Table 2. A multilocus sequencing analysis fur-
ther identified subtypes of assemblages C and D (see Table 3
for accession numbers).

Summary of bg results

All isolates obtained from dogs were assemblages C and D,
including nine that were assemblage C and nine that were
assemblage D (Fig. 1A). Among these isolates, two had single
nucleotide polymorphisms (SNPs) compared with the refer-
ence sequences downloaded from GenBank. For assemblage
D, CD23 was similar to KX164009 with two SNPs (substitu-
tion: A/C and C/A), and YA16 was similar to KF958111 with
one SNP (substitution: C/A).

Summary of gdh results

Among 16 isolates from dogs, 12 were identified as assem-
blage C and 4 as assemblage D (Fig. 1B). The YA16 isolate
had a SNP compared with the reference sequences downloaded
from GenBank. At the gdh locus, YA16 was similar to
EF507635 with two SNPs (substitution: A/G and T/C).

Summary of tpi results

Eight isolates were identified as assemblage C at the tpi
locus (Fig. 1C). Among eight isolates, five had a SNP and
two isolates, CD21 and YA49, had the same SNP compared
with the reference sequence downloaded from GenBank. For
the tpi locus, an alignment of all eight assemblage C sequences
was generated. CD40 was similar to EU781005 with a SNP
(substitution: A/G). CD18 was similar to KX014801 with
two SNPs (substitution: G/A and G/A). CD21 and YA49 were
similar to KX014804 with a SNP (substitution: A/G). CD28
was similar to KF993723 with a SNP (substitution: A/C).

Discussion

In China, the prevalence of G. duodenalis in dogs has been
reported in Heilongjiang [11], Shanghai [27], Guangdong [10],
and Henan [19]. Four genotypes, assemblages A, B, C, and D,
have been identified in Shanghai in pet dogs [27]. For stray
dogs, only assemblages C and D have been identified in Henan
[19]. Assemblage E, infecting cattle, has been identified in
dogs in Heilongjiang province [11]. In total, five genotypes,
i.e., assemblages A, B, C, D, and E, have been found in dogs
in China. The prevalent assemblages differ among different
areas in China. Five genotypes have been found in Canada.
The prevalent genotypes of G. duodenalis in dogs in Japan

EF507627.1 assemblage D dog

KY979490 assemblage D dog

EF507638.1 assemblage D dog

KY979492 assemblage D dog

KY979491 assemblage D dog

EF507639.1 assemblage D dog

EF507623.1 assemblage C dog

KY979488 assemblage C dog

KY942086 assemblage C dog 

EF507635.1 assemblage C dog

KY979489 assemblage C dog

HM136891.1 assemblage B Homo sapiens

AY178748.1 assemblage G mouse

EU769231.1 assemblage E Ovis aries

JF958092.1 assemblage A Sheep

JF958091.1 assemblage F cat
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Figure 1. Continued.
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[8], Brazil [4], Poland [17], the Netherlands [14], and England
[23] are shown in Table 4.

In most studies of G. duodenalis in dogs, assemblages C
and D, host-specific genotypes, are considered dominant [10,
19, 27]. Other assemblages, such as assemblage E reported
in Heilongjiang [11], have zoonotic potential, to a certain
extent. In this study, only the host-specific assemblages C
and D were found in stray dogs, similar to previous results
in Henan [19]. Moreover, a high frequency of mixed infections
of G. duodenalis has been reported in previous multilocus anal-
yses [19, 27]. A multilocus genotype method (tpi, gdh, and bg
loci) is widely used for the detection of G. duodenalis co-infec-
tion in humans and animals [3, 19, 26, 27]. In this study, mixed
infections of assemblages C and D were also observed, which
is consistent with other studies in dogs [19, 27]. Owing to the
low levels of contact between people and stray dogs in China,
the zoonotic assemblages A and B were not found in this study,
which is consistent with another study in Henan [19]. However,
the identification of genotype A1 in both a child and his dog in
Brazil [24] suggests that the infection in the dog resulted from
contact with G. duodenalis-infected feces of the owner.

Multilocus sequence typing was used for the genetic char-
acterization of G. duodenalis in this study. The bg, gdh, and tpi
loci varied with respect to PCR amplification rates, consistent

Table 2. Genotypes of Giardia duodenalis isolates from dogs in
Chengdu, Yaan, and Leshan in Sichuan province, China at the bg,
gdh, and tpi loci.

Isolates bg gdh tpi

CD02 C Neg Neg
CD17 C C C
CD18 D C C
CD21 C C C
CD23 C Neg Neg
CD25 C C C
CD27 D D Neg
CD28 C C C
CD31 C C Neg
CD32 D C Neg
CD33 D D Neg
CD35 D D Neg
CD36 D D Neg
CD40 C C C
YA16 D C Neg
YA49 C C C
YA60 D C C
LS19 D D Neg

Note: CD represents Chengdu, YA represents Yaan, and LS
represents Leshan; Neg represents negative.

KY942090 assemblage C dog 

KP866790.1 assemblage C raccoon dog

JN587492.1 assemblage C dog

KY979495 assemblage C dog

KX014796.1 assemblage C dog

KY979494 assemblage C dog

KY942088 assemblage C dog 

KY942089 assemblage C dog 

KF993723.1 assemblage C dog

HG970114.1 assemblage C dog

KY979493 assemblage C dog

KX014804.1 assemblage C raccoon dog

KX014801.1 assemblage C dog

KY942087 assemblage C dog 

EU781028.1 assemblage D dog

EU781014.1 assemblage B Cavia porcellus

EU781000.1 assemblage A Felis catus

JF958099.1 assemblage E dog

JF958100.1 assemblage F cat64
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Figure 1. Continued.
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with most previous multilocus typing studies of G. duodenalis
[2, 19, 25]. The stray dogs in our study did not harbor zoonotic
genotypes of G. duodenalis, indicating a minimal role in zoo-
notic transmission in Sichuan province, China.

The results obtained in this study demonstrate that genetic
assemblages C and D of G. duodenalis are present in stray dogs

in Sichuan province, China. Zoonotic genotypes (assemblages
A and B) were not found, suggesting that these genotypes are
not prevalent in stray dogs in Sichuan province, China. More-
over, new subtypes were identified. Nevertheless, G. duode-
nalis is a prevalent protozoan parasite, and although zoonotic
assemblages were not found in stray dogs in this study, poten-
tial transmission should not be overlooked. Certain measures
should be taken to reduce the possibility of intraspecific
transmission.
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