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The human immune system relies on highly complex and diverse transcripts and the proteins they encode. These include

transcripts encoding human leukocyte antigen (HLA) receptors as well as B cell and T cell receptors (BCR and TCR).

Determining which alleles an individual possesses for each HLA gene (high-resolution HLA typing) is essential to establish

donor–recipient compatibility in organ and bone marrow transplantations. In turn, the repertoires of millions of unique

BCR and TCR transcripts in each individual carry a vast amount of health-relevant information. Both short-read RNA-

seq-based HLA typing and BCR/TCR repertoire sequencing (AIRR-seq) currently rely on our incomplete knowledge of

the genetic diversity at HLA and BCR/TCR loci. Here, we generated over 10,000,000 full-length cDNA sequences at a me-

dian accuracy of 97.9% using our nanopore sequencing-based Rolling Circle Amplification to Concatemeric Consensus

(R2C2) protocol. We used this data set to (1) show that deep and accurate full-length cDNA sequencing can be used to pro-

vide isoform-level transcriptome analysis for more than 9000 loci, (2) generate accurate sequences of HLA alleles, and (3)

extract detailed AIRR data for the analysis of the adaptive immune system. The HLA and AIRR analysis approaches we in-

troduce here are untargeted and therefore do not require prior knowledge of the composition or genetic diversity of HLA

and BCR/TCR loci.

[Supplemental material is available for this article.]

The human immune system relies on highly diverse and complex
receptors to protect us from a wide array of pathogens. The tran-
scripts encoding these immune receptors are of great interest to ba-
sic and translational research aswell asdiagnostic andother clinical
purposes (Loganet al. 2011;Weng et al. 2013;Vollmers et al. 2015).
However, RNA-seq, the current gold-standard for whole-transcrip-
tome analysis, falls short of describing these immune receptors
completely and accurately (Mose et al. 2016; Bolotin et al. 2017).
Accurate and deep full-length cDNA sequencing of immune cell
transcriptomes could overcome this shortfall by providing (1) the
isoforms of surface receptors targeted in immunotherapy, (2) al-
lele-resolved HLA transcript sequences central to self/non-self-dis-
crimination, and (3) B cell receptor (BCR) and T cell receptor (TCR)
repertoires instrumental to the adaptive immune response to
pathogens.

First, full-length cDNA sequencing should be capable of in-
vestigating the transcript isoforms of surface receptors expressed
by B cells which have important roles in the immune response
but are also themselves targets in the treatment of B cell–derived
leukemia. For example, current antibody and chimeric antigen re-
ceptor (CAR) T cell therapies against B cell acute lymphoblastic leu-
kemia (B-ALL) target epitopes of CD19, CD20, and CD22 (Davila
and Brentjens 2016; Fry et al. 2018). However, evidence is accumu-
lating that these epitopes might be absent in some isoforms ex-
pressed by these genes (Sotillo et al. 2015; Byrne et al. 2017;

Fischer et al. 2017). Determining isoform-level transcriptomes of
healthy and cancerous immune cellsmight inform treatment deci-
sions and future development.

Second, full-length cDNA sequencing could be used to accu-
rately determine the sequence and identity of alleles of HLA genes.
HLA genes encode for the major histocompatibility complex
(MHC) group of immune receptors which are instrumental in
the presentation of antigens on the cell surface (Shiina et al.
2009). Determining the identities of HLA alleles that are present
within an individual’s genome (HLA typing) is of central impor-
tance to establish compatibility of donor and recipient for organ
and bone marrow transplantation.

Currently, HLA typing is performed in clinical laboratories by
amplifying the genomic DNA encoding these genes and sequenc-
ing the resulting amplicons with short-read sequencers (Wang
et al. 2012). This targeted DNA-based approach is required because
even sophisticated computational tools relying on complex work-
flows and statistically rigorous frameworks struggle to process
RNA-seq data and provide reliable allelic identities (Boegel et al.
2012; Orenbuch et al. 2019). Extracting accurate and full-length
HLA allele sequences from full-length cDNA sequences could
therefore simplify the computational task of determining the iden-
tities of HLA alleles present in a sample.

Third, accurate full-length cDNA sequencing should also be
capable of determining adaptive immune receptor sequences,
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including BCR heavy and light chains and TCR alpha and beta
transcripts. These receptor transcripts contain a constant region
that determines the type and characteristics of the receptor and a
variable region that determines its binding affinity. The exon en-
coding the variable regions is generated through the process of
somatic VDJ recombination, which randomly recombines one
gene segment each from pools of similar but distinct V, D, and J
gene segments (Tonegawa 1983). Each developing T or B cell
uses this somatic recombination process unique to these cell types
to rearrange nonfunctional loci into two functional genes (B cells:
heavy/light [kappa or lambda], T cells: alpha/beta). The repertoires
of these transcripts present in blood or tissue samples carry a large
amount of information on the composition of the loci they are ex-
pressed from, as well as the activation state, clonal composition
(including malignant clones in leukemia) (Logan et al. 2011),
and basic biological processes of the adaptive immune system.

Currently, targeted adaptive immune receptor repertoire se-
quencing assays (AIRR-seq) methods are routinely used to se-
quence these transcripts and investigate the human immune
system (Horns et al. 2016; de Bourcy et al. 2017a,b). Specialized as-
says are required for this task because the diversity and unique na-
ture of these transcripts make them practically impossible to
analyze at full length using standard RNA-seq protocols. Further,
the majority of these assays are based on primers against known
V segments and therefore are potentially biased against so far un-
known V segments. The ability to instead extract these full-length
transcripts in an unbiased way from whole-transcriptome full-
length cDNA sequencingwould greatly simplifyworkflows and ex-
pand the information that can be recovered from nontargeted
transcriptome analysis.

With full-length transcriptome sequencing rapidly maturing
(Sharon et al. 2013; Oikonomopoulos et al. 2016; Gupta et al.
2018; Workman et al. 2019), we wanted to investigate its current
potential for these types of analyses. Here, we use our previously
published R2C2method (Volden et al. 2018; Byrne et al. 2019) im-
plemented on the Oxford Nanopore Technologies MinION
sequencer to analyze RNA extracted from a human peripheral
blood mononuclear cells (PBMC) sample—a mix of mostly mono-
cytes, B cells, and T cells.We analyzed the resulting data to identify
transcript isoforms, allele-resolved sequences of full-length HLA
transcripts, as well as extract repertoires of BCR and TCR
transcripts.

Our results show that accurate and deep full-length cDNA se-
quencing can resolve themost complex transcripts in themamma-
lian genome and represents an unbiased alternative to currentHLA
typing and AIRR-seq methods.

Results

We extracted total RNA and genomic DNA from PBMC samples
purified from the whole blood of a healthy male adult. DNA was
used for high-resolution HLA typing, whereas total RNA was
used for several transcriptome analysis assays. First, we generated
full-length cDNA using a modified first half of the Smart-seq2 pro-
tocol (Picelli et al. 2014b). cDNA was then split to generate se-
quencing libraries with three different methods. First, to
generate standard Smart-seq2 libraries, part of this cDNA was tag-
mented using Tn5 (Picelli et al. 2014a). Next, we circularized the
full-length cDNA and performed rolling circle amplification on
the resulting circular DNA. This reaction generated long dsDNA
containing multiple concatemeric copies of the original full-
length cDNA. We either sequenced this DNA on the ONT

MinION using the R2C2 protocol (Volden et al. 2018) or tag-
mented it with Tn5 to generate a hybrid Smart-seq2 and R2C2
short-read library we named Smar2C2 (Fig. 1). Because of their dis-
tinct features, the different libraries were intended for different
tasks. R2C2 data were intended to provide full-length cDNA se-
quences for isoform identification and AIRR characterization.
Smart-seq2 and Smar2C2 data were intended to provide highly ac-
curate short-read data for SNP identification and isoform sequence
polishing, with Smar2C2 data providing improved coverage of
transcript ends.

R2C2 data characteristics

The R2C2 method sequences the same cDNA sequence multiple
times to overcome the low accuracy of raw 1D ONT cDNA reads
(Workman et al. 2019). In an update to the previously published
version (Volden et al. 2018) of R2C2, we also incorporated the
use of unique molecular identifiers (UMIs) as part of the DNA
splints. Because the UMIs are linked to cDNA after PCR amplifica-
tion they do not indicate unique RNA molecules, but instead re-
flect unique circularization events, thereby allowing us to
combine the raw reads originating from the same cDNA molecule
to improve R2C2 consensus read accuracy.

We generated R2C2 data in four technical replicates using in-
dividual ONT MinION 9.4.1 flow cells. 1D raw reads from each
flow cell were processed using the C3POa program (Volden et al.
2018) to generate a total of 10,298,086 R2C2 consensus reads
(Fig. 2A). Of these reads, 122,353 could be grouped with one or
more other reads based on their UMIs and were combined into
58,893 R2C2-UMI reads. Analysis of the resulting reads showed
an accuracy of 97.9% for regular R2C2 reads and of 99.3% for
R2C2-UMI reads (Fig. 2B). Because of the relatively low number
of these R2C2-UMI reads, we merged regular R2C2 reads and
R2C2-UMI reads into a single data set with a total number of
10,234,626 readswith amedian length of 721 nt (Fig. 2C) of which
>99.9% aligned to the human genome.

Weused featureCounts (Liao et al. 2014) to quantify gene-lev-
el expression based on these R2C2 reads and Smart-seq2 reads.
Gene expression as determined by the different protocols showed
a Pearson’s r of 0.93 suggesting good correlation between them.
Although this suggests that R2C2 captures the transcriptome in a
quantitative manner, it is not the focus of this analysis as the
strength of long-read sequencing like R2C2 is not gene-level but
instead isoform-level transcriptome analysis.

Isoform identification and evaluation

To identify transcript isoforms, we used the R2C2 reads as input
into a revised version of the Mandalorion program (v3, GitHub)
(Byrne et al. 2017). We detected 21,358 transcript isoforms ex-
pressed from 9971 gene loci with a median length of 1152 nt
(Fig. 2C). The isoform sequences Mandalorion produced showed
a median accuracy of 99.7%. Their actual accuracy is likely even
higher considering the genome sequence of the sample donor is
not expected to be identical to the human reference genome
sequence.

We further evaluated the quality of these isoforms using
SQANTI (Fig. 2A; Tardaguila et al. 2018), by which 12,250 isoforms
were scored as “full-splice match” (FSM) of an annotated tran-
script; 2265 isoforms were scored as “novel in catalog” (NIC),
meaning that they used annotated splice sites in previously unan-
notated combinations; 1369 isoforms were scored as “novel not in
catalog” (NNC), which means that they contain unannotated
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splice sites and potentially entirely unannotated exons; and 4661
isoforms were scored as “incomplete splice match” (ISM), which
could mean that they are potential artifacts.

To validate isoform features (exons, 5′ ends, 3′ ends) that did
not match the GENCODE (v29) annotation (Harrow et al. 2012),
we used a new short-read Illumina protocol. Because all general
purpose RNA-seq protocols struggle to capture the ends of tran-
scripts, we developed Smar2C2, which is a hybrid of the Smart-
seq2 and R2C2 methods that tagments not cDNA molecules but
the cDNA concatemers generated as part of the R2C2 method
(Fig. 1). As a result, Tn5-based tagmentation is not affected by
cDNA ends because these ends are now encapsulated within a
much larger DNA molecule. Gene expression as determined by
Smar2C2 and Smart-seq2 showed a Pearson’s r of 0.97 suggesting
that the Smar2C2 protocol does not distort the cDNA composition
(Supplemental Fig. S1). Further, the Smar2C2 protocol was more
likely than the Smart-seq2 protocol to cover transcript ends in
the form of reads containing oligo sequences used in cDNA gener-
ation. Reads containing template switch oligo sequences (TSO
reads) cover transcript 5′ ends and reads containing Oligo(dT) se-

quences (Oligo[dT] reads) cover transcript ends 3′ ends
(Methods). Processing of the approximately 39 million Smart-
seq2 and 23 million Smar2C2 read pairs suggests that Smar2C2
data contain about 6× (Smart-seq2: 3% and Smar2C2: 17% of all
reads) more TSO reads and about 25× (Smart-seq2: 0.17% and
Smar2C2: 4% of all reads) more Oligo(dT) reads than Smart-seq2
data.

Smar2C2 read coverage dropped sharply outside the splice
sites of 365 exons not overlapping any exons in the GENCODE an-
notation. Further, TSO and Oligo(dT) read coverage dropped
sharply outside of 5525 5′ ends and 5712 3′ ends of FSM, NIC,
andNNC isoforms thatweremore than 10nt away fromannotated
transcription start sites (TSS) and poly(A) sites, respectively. An x-
nt distance to a GENCODE TSS does not guarantee a biologically
distinct element. The distance cutoff of 10 nt and the number of
features identified with this cutoff are therefore ultimately arbi-
trary and do not carry biological significance. Together, this indi-
cated that isoform features identified by Mandalorion were
indeed present within our cDNA pool even if they did not match
the GENCODE annotation (Fig. 2D).

Figure 1. Analysis of the adaptive immune system through high-throughput sequencing. Schematic of experiment design. DNA and RNA extracted from
a PBMC sample underwent several library preparation protocols to generate AIRR-seq, Smart-seq2, Smar2C2, and R2C2 libraries that were sequenced on
Illumina and ONT sequencers.
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Figure 2. Isoform-level transcriptome analysis. (A) Flow chart of the isoform analysis pipeline. (B,C) Swarm plots of the (B) accuracy [Matches/(Matches +
Mismatches + Indels)] and (C) transcript length [Matches +Mismatches] of R2C2 reads (with and without UMI) and isoforms. Red line indicates median. (D)
Normalized Smar2C2 read coverage around isoform features (exons, 5′/3′ ends) that did not match GENCODE annotation determined by either all (splice
sites), TSO (5′ ends), or Oligo(dT) (3′ ends) reads. (E) The CD19 gene locus is shown in a genome browser view. GENCODE annotation (top), Mandalorion
isoforms (center), and R2C2 reads (bottom) are shown. Direction of shown features is indicated by color (“top strand”: blue, “bottom strand”: yellow).
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To showcase the usefulness of deep full-length isoform data
we highlight the CD19 gene expressed by B cells. CD19 is of great
importance because the protein it encodes is a target of cancer im-
munotherapy in B cell acute lymphoblastic leukemia (ALL) and
other B cell cancers. At a total read depth of approximately 10 mil-
lion reads, only 146 reads aligned to the CD19 gene. These 146
R2C2 reads appeared to split into three major and several minor
isoforms (Fig. 2E). Mandalorion identified the three major iso-
forms that confirmed a previously identified splice site in the sec-
ond exon of CD19 that we recently observed in single B cells
(Volden et al. 2018). Because they encode distinct proteins, these
isoforms may affect whether CAR T cells (Sotillo et al. 2015;
Fischer et al. 2017) can bind leukemia cells expressing them.

Allele-specific isoform expression

At close to 98% accuracy, R2C2 reads should be well suited for
allele-specific isoform expression analysis. Because the SNP iden-

tification is much more established with short-read data, we
made use of the Smart-seq2 and Smar2C2 data that we pro-
duced to identify SNPs present in the PBMC sample we
analyzed using the standard genome analysis toolkit (GATK)
RNA-seq workflow (Fig. 3A; Van der Auwera et al. 2013).
Using the TurboPhaser.py (Methods) script, we then extracted
heterozygous SNPs from this list and phased these SNPs within
gene boundaries using R2C2 reads. TurboPhaser.py then sorted
R2C2 reads and short-read RNA-seq read pairs into alleles based
on the phased SNPs they contained. Overall, we assigned 756,072
R2C2 reads (7.4% of all reads, Allele1: 377,794; Allele2: 378,278)
and 1,817,151 RNA-seq read pairs (2.9% of all read pairs, Allele1:
872,130; Allele2: 945,021) to either of two alleles. It is notewor-
thy that R2C2 reads are more than twice as likely to be sorted
into alleles than RNA-seq read pairs based on the same set of
phased SNPs. This is likely caused by R2C2 reads, in contrast to
RNA-seq reads, covering entire transcripts and all SNPs they
contain.
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Figure 3. Allele-resolved isoform expression and sequences. (A) Computational strategy for determining allele-resolved isoforms. (B–E) SNHG5, HLA-A,
HLA-DPA1, and HLA-DRA gene loci are shown in a genome browser view. GENCODE annotation (top), Mandalorion isoforms (center), and allele-resolved
R2C2 reads (bottom) are shown. Direction of shown features is indicated by color (“top strand”: blue, “bottom strand”: yellow). Mismatches of R2C2 reads
to the genome reference are shown in black. Both HLA-A and HLA-DPA show allele-resolved differential expression of isoforms with alternative poly(A) sites.
(E) Red arrows indicate allele-specific variants in the HLA-DRA gene.
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Next, we used the allele-resolved R2C2 reads to quantify the
expression of the previously identified isoforms. To this end, we
separated these reads into the four technical replicates based on
the flow cells they were generated on. Using DESeq (Anders and
Huber 2012), we then identified roughly 80 isoforms that showed
differential expression between the two alleles while accounting
for the technical variation associated with each minion run
(Supplemental Table S2). The SNHG5 gene highlights this differen-
tial expression with transcripts of one allele always retaining the
first intron of the gene and transcripts of the other allele either
splicing or retaining the intron (Fig. 3B). Seven of the roughly 80
differentially expressed isoforms originated from an HLA gene.
HLA-A andHLA-DPA1 both show differentially expressed isoforms
with alternative poly(A) sites. Although the alternative HLA-A iso-
form was previously observed (Kulkarni et al. 2017a,b), the HLA-
DPA1 isoform was not (Fig. 3C,D).

Allele-resolved isoform sequences enable high-resolution HLA

typing

Next, we investigated whether allele-resolved R2C2 reads are suit-
ed for identifying which HLA alleles are present in an individual.
Current RNA-seq-based HLA typing methods rely on databases of
previously identified and systematically cataloged HLA alleles.
The IPT-IMGT/HLA database contains the systematic names and
sequences of thousands of different HLA alleles. The systematic
names (e.g., HLA-A∗01:01:01:01) containmultiple groups of digits
separated by colons to denote the relationship between sequences.

Using this database, current RNA-seq based methods can
determine the identity of HLA alleles present in an individual
with 4- to 6-digit resolution. However, even the most advanced
methods like arcasHLA (Orenbuch et al. 2019) have a 10% error-
rate for the identification of some HLA genes and cannot deter-
mine new HLA alleles absent from the database they use.
Reliable HLA typing therefore still requires dedicated DNA-based
approaches. These approaches PCR-amplify full-length HLA genes
from genomic DNA and determine the sequence of the resulting
amplicons. These sequences are then compared to the database
of known HLA alleles to determine 6-digit HLA types.

To test whether R2C2 would enable a similar approach, we
used the 377,794 R2C2 reads assigned to the first allele and
378,278 R2C2 reads assigned to the second allele as separate inputs
into Mandalorion, which then generated 2237 and 2056 allele-
specific isoforms, respectively. Mandalorion generates entirely
read-based consensus sequences for each isoform it identifies,
which in this case included at least one full-length isoform for
each major HLA gene on either allele. Next, to achieve the highest
possible accuracy required for identifying variants and achieving
unambiguous HLA typing, we used allele-resolved RNA-seq reads
to error-correct the allele-specific Mandalorion isoforms with
Pilon (Walker et al. 2014).

To determine the identity of theHLA alleles present in the an-
alyzed sample, we used the HLAtyping.py utility of Mandalorion
that aligns these error-corrected allele-resolved HLA isoform se-
quences to the complete database of HLA alleles (Robinson et al.
2000, 2015) using minimap2 and extracts the best match for
each HLA gene. After finding the best HLA allele match of an er-
ror-corrected allele-specific isoform, we truncated the match to
6-digit resolution to match clinical high-resolution HLA typing.
All HLA alleles we identified in this way (R2C2+RNA-seq)
matched DNA-based high-resolution HLA typing performed at

the Immunogenetics and Transplantation Laboratory (ITL) at
UCSF (Targeted Amplicon NGS) (Table 1).

Having confirmed the accuracy of the HLA alleles we identi-
fied, we compared them to HLA alleles determined using only
RNA-seq data and different programs. The seq2HLA package
(RNA-seq/seq2HLA) only generates data with 4-digit resolution
and failed to identify HLA-DPA1, HLA-DQA1, and HLA-DQB1
as heterozygous and miscalled HLA-DPB1. The arcasHLA
(Orenbuch et al. 2019) package (RNA-seq/arcasHLA) performed
better, determining the correct HLA alleles for all HLA genes.
However, although both RNA-seq/arcasHLA and R2C2+RNA-seq
strategies identify only one 6-digit resolution allele for the HLA-
DRA genes (HLA-DRA∗01:01:01), only R2C2+RNA-seq identifies
the HLA-DRA gene as heterozygous by identifying distinct se-
quences for the two alleles. Because targeted amplicon NGS data
were not available for HLA-DRA to serve as ground truth, we can-
not be certain that the R2C2+RNA-seq strategy yields a correct re-
sult for this gene. However, visualizing allele-resolved R2C2 reads
suggests the existence of heterozygous variants in two distinct
HLA-DRA alleles that are several hundred base pairs apart.
ArcasHLA cannot resolve this because the variants are outside
the protein-coding region, where they affect 8-digit but not 6-digit
HLA resolution (Fig. 3E).

Overall, these findings show that accurate full-length cDNA
sequencing at high depth allows the determination of highly accu-
rate sequences of HLA alleles, which can then be used for high-res-
olution HLA typing. In contrast to short-read RNA-seq-based HLA
typing, which requires a reference database, these HLA allele se-
quences can be also used to discover so far unknown HLA alleles.

Extracting adaptive immune receptor repertoires (AIRR) from

R2C2 data

Next, we evaluated whether accurate full-length sequencing could
also—completely or in part—replace specialized assays for the
analysis of adaptive immune receptor repertoires. To do so, we ex-
tracted R2C2 reads from our data set which aligned to BCR or TCR
gene loci. Each R2C2 read was treated independently and annotat-
ed using the IgBLAST (Ye et al. 2013) algorithm that identifies V, D,
and J segments, CDR3 sequences at the V(D)J intersection, and
mutations present in each sequence. Finally, we use sequence sim-
ilarity to determine which constant region is present in each se-
quence. In this way, we identified tens of thousands of adaptive
immune receptor sequences (Table 2).

We then performed in-depth analysis on these annotations
with a focus on the transcript sequences encodedby theBCRheavy
chain (IGH), because the IGH locus is the only adaptive immune
receptor locus undergoing VDJ recombination, somatic hypermu-
tation, and class-switch recombination (Tonegawa 1983).

We compared R2C2-based IGH sequences to 266,390 IGH se-
quenceswe generated from the sameRNA sample by the gold-stan-
dard UMI-based targeted AIRR-seq method we developed (called
AIRR-seq from here on out) (Vollmers et al. 2013, 2015; Horns
et al. 2016, 2019; de Bourcy et al. 2017a). We also used 3261 IGH
sequences generated from a different RNA sample of the same in-
dividual that we published previously (Cole et al. 2016). These se-
quences were generated using our TMI-seq method which, in
contrast to standard AIRR-seq (Vollmers et al. 2013), succeeds in
covering the entire V segment by overcoming Illumina read length
limitations through a combination of Tn5-based tagmentation
and unique molecular identifiers. We focused our analysis on the
most relevant features of the IGH repertoire, namely (1) CDR3
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length, (2) isotype usage, (3) V segment composition andusage, (4)
somatic hypermutation, and (5) clonality.

CDR3 length

First, we investigated whether R2C2-based IGH repertoires capture
the full width of CDR3 lengths. The sequences of CDR3s are re-
sponsible for the majority of an BCR/antibodies specificity and
are composed of semirandom sequence at the intersection of V,
D, and J segments. However, CDR3 sequences in functional anti-
bodies are limited to certain lengths tomaintain the reading frame
between variable and constant regions. This limitation can be
clearly observed in CDR3 lengths of AIRR-seq sequences but is
less pronounced for R2C2 sequences. This is likely attributable to
remaining indel errors in the CDR3 sequences (Fig. 4A). So, al-
though R2C2-based repertoires capture CDR3 sequences of the ap-
propriate length and distribution, downstream analyses that rely
on CDR3 length to differentiate functional and nonfunctional
IGH sequences would be hampered.

Isotype usage

Second, we investigated whether R2C2-based IGH repertoires can
be used to determine B cell isotype usage. Isotype usage reflects
the activity of the adaptive immune system at a given time
(Vollmers et al. 2013, 2015; Bashford-Rogers et al. 2019). IGHM
and IGHD sequences aremostly expressed by naive B cells, whereas
IGHA(1-2), IGHG(1-4), and IGHE sequences are only expressed by
previously activated B cells that have undergone class-switch
recombination.

Isotype usage was similar between AIRR-seq and R2C2-de-
rived repertoires suggesting that R2C2-derived repertoires will be
able to determine the immune activation state of an individual
faithfully (Fig. 4B). Improving on any AIRR sequencing approach
currently available, R2C2-derived repertoires also resolve whether
an IGH transcript encodes for a membrane-bound or secreted (an-
tibody) protein. This is possible because R2C2 reads cover the en-
tire 3′ end of IGH transcripts where this alternative splicing event
occurs. Isoform-level information showed that the majority of
IGHM transcript are membrane-bound (membrane [M]: 1261; se-
creted [S]: 417), whereas IGHD transcripts were split evenly be-
tween the two isoforms (M: 123; S: 164). As expected, over 95%

of the sequences of IGHA(1-2) and IGHG(1-4) isotype subtypes
were secreted (e.g., IGHA1: M: 182; S: 8113).

V segment composition and usage

Third, we determined whether R2C2 repertoires could be used to
investigate V segment usage. Each IGH locus is thought to contain
40–50 V segments, and individuals diverge in which V segments
and V segment alleles they possess. Standard AIRR-seq assays
most often use PCR primers within V segments, thereby masking
variation underneath the priming site and missing variation be-
yond it.

Because the R2C2-based repertoires could not be successfully
analyzed with computational tools meant for virtually error-free
AIRR-seq (Vander Heiden et al. 2014; Gupta et al. 2015), we deter-
mined V segment composition in the analyzed individual by sim-
ply counting how many reads were scored by IgBLAST as using a
specific V segment with three or fewer mismatches. Reads that as-
signed equally well to different alleles of the same V segment were
counted as ambiguous, whereas reads aligned equally well to dif-
ferent V segments were discarded for this analysis. A V segment al-
lele was counted as detected in a repertoire if it was seen in at least
two sequences and accounted for at least 20% of sequences of the
V segment

In general, AIRR-seq and R2C2 showed similar recombination
frequencies for V segments. However, we found that the deeper
AIRR-seq data have an advantagewhendetectingV segment alleles
for V segments that are rarely recombined, including IGHV1-45

Table 1. R2C2 full-length cDNA sequencing enables high-resolution HLA typing

Allele 1 Allele 2

Data
source

Targeted amplicon
NGS

R2C2+RNA-
seq RNA-seq RNA-seq

Targeted amplicon
NGS

R2C2+RNA-
seq RNA-seq RNA-seq

Program HLA Twin HLAtyping.py seq2HLA arcasHLA HLA Twin HLAtyping.py seq2HLA arcasHLA
HLA-A 03:01:01 03:01:01 03:01 03:01:01 32:01:01 32:01:01 32:01 32:01:01
HLA-B 35:01:01 35:01:01 35:01 35:01:01 39:01:01 39:01:01 39:01 39:01:01
HLA-C 04:01:01 04:01:01 04:01 04:01:01 12:03:01 12:03:01 12:03 12:03:01
HLA-DRA 01:01:01 01:01 01:01:01 01:01:01 01:01
HLA-DRB1 16:01:01 16:01:01 16:01 16:01:01 01:01:01 01:01:01 01:01 01:01:01
HLA-DPA1 01:03:01 01:03:01 02:01 01:03:01 02:01:01 02:01:01 02:01 02:01:01
HLA-DPB1 04:02:01 04:02:01 105:01 04:02:01 10:01:01 10:01:01 10:01 10:01:01
HLA-DQA1 01:01:01 01:01:01 01:02 01:01:01 01:02:02 01:02:02 01:02 01:02:02
HLA-DQB1 05:01:01 05:01:01 05:01 05:01:01 05:02:01 05:02:01 05:01 05:02:01

HLA alleles were typed using the programs indicated on top. Different programs used for HLA typing rely on different data sources. The HLA Twin
program requires DNA-based amplicon sequencing (targeted amplicon NGS), and our HLA-typing.py program requires isoform sequences generated
using full-length cDNA (R2C2) and polished with RNA-seq sequences. The seq2HLA and arcasHLA program require only RNA-seq sequences. DRA was
not evaluated by targeted amplicon NGS. Contradicting results are shown in italics.

Table 2. Full-length adaptive immune receptor repertoires can be
extracted from R2C2 whole transcriptome data

Receptor Gene Number of R2C2 reads

BCR IGH 12,863
IGL 26,759
IGK 24,460

TCR TRA 7289
TRB 13,118
TRD 316
TRG 551

Number of reads that aligned to the respective locus and could be anno-
tated as AIRR transcripts using IgBLAST is shown.
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(0.08% of IGH sequences in AIRR-seq data), IGHV3-20 (0.3%),
IGHV3-30 (0.04%), IGHV4-28 (0.01%), and IGHV4-55 (0.02%),
which R2C2 did not detect at our requisite abundance of
three independent reads. However, we found that R2C2 can unam-
biguously detect V segments that AIRR-seq could not (Fig 4C).
AIRR-seq could not detect one or two of the alleles for IGHV1-69,
IGHV3-21, IGHV3-23, IGHV3-53, and IGHV3-73, whereas R2C2
could. All alleles detected by R2C2 were also detected by TMI-seq
data.

This analysis shows that, although specialized AIRR-seq pro-
tocols have an edge when detecting V segments that are rarely re-
combined, it produces incomplete and therefore often ambiguous
V segment sequences. Although the TMI-seq method we devel-
oped can produce full-lengthV segment data, it requires a complex
workflow and is therefore unlikely to be used for routine clinical
analysis. Overall, R2C2 presents an appealing set of trade-offs
and is therefore a promising tool for determining the V segment
composition and usage within a sample.

Somatic hypermutation

Fourth, we determined whether R2C2 reads would be accurate
enough to detect the mutations in IGH sequences introduced by
somatic hypermutation. We did this by comparing mutations in
IGH transcript sequences that can undergo somatic hypermuta-
tion with TRB transcript sequences that are expected to be entirely
free of somatic mutations.

We focused this analysis on mismatches that are by far the
most common result of somatic hypermutation. We found that
R2C2 reads did show only about two mismatches per 300 nt of
TRB V segment sequence, which corresponds to a mismatch rate
of 0.6% and is in line with the remaining 2% total error rate in
R2C2 reads being mostly composed of indels. Two mismatches
per V segment can therefore be seen as background error in the po-
tentialmutated IGH sequenceswe analyzednext. Here, we took ad-
vantage of the ability of R2C2 reads to distinguish membrane-
bound and secreted (antibodies) isoforms of IGH transcripts.
IGHM transcripts are thought to be mostly expressed by naive
unmutated B cells but can also undergo somatic hypermutation.
Secreted IGHM sequences contained more mutations than mem-
brane-bound IGHM sequences, indicating that they aremore likely
to be expressed by B cells that have undergone activation and
somatic hypermutation (Fig. 5A). This difference in mismatch lev-
els disappears in IGHA1 sequences, which are known to be ex-

pressed only by B cells that have undergone activation and
somatic hypermutation.

Mismatch levels were significantly higher in R2C2-derived
IGHA1 sequences than in AIRR-seq-derived IGHA1 sequences (av-
erage 24.89 to 20.19, Monte Carlo permutation test P-value<
0.00001). Adding randomly sampled R2C2-specific background-
levelmismatches observed in TRB sequences as well asmismatches
observed in the first 20 bases of R2C2 IGHA1 sequences to AIRR-
seq sequences does not abolish this significant difference (average
24.89 to 23.8, Monte Carlo permutation test P-value<0.00001).
One possible explanation of this may be that the primers used
by AIRR-seq fail to bind highly mutated V segments, which then
are not amplified and detected. In turn, this would indicate that
R2C2 might have an advantage when investigating highly mutat-
ed sequences like those involved in the immune response to HIV
(Scheid et al. 2011).

Finally, like AIRR-seq and TMI-seq, IGHA1 transcript se-
quenced by R2C2 show the mutational pattern characteristic of
somatic hypermutation with mutational hotspots in CDR1 and
CDR2. In contrast to AIRR-seq, which uses amplicons primed
from FR1 in the IGH transcript, TMI-seq and R2C2 sequence detect
mutations all the way to the beginning of the V segment (Fig. 5B).

Clonality

Fifth, we investigated the ability of R2C2-based repertoires to cap-
ture the clonal composition of B cells in a sample. The IGH se-
quences in a sample can be organized into clones (or lineages),
that is, sequences that are expressed by B cells belonging to the
same B cell clone. B cell clones originate from a single naive B
cell that is activated and starts proliferating. This proliferation is
most often associated with somatic hypermutation and class
switching. Big lineages are therefore likely to be composed of
class-switched sequences with similar but not identical mutation
patterns. Also, they have highly similar CDR3 sequences that
can be used to group IGH sequences into lineages computational-
ly. We performed this analysis for AIRR-seq and R2C2-based
repertoires.

The lineages in the two repertoires were closely related (Fig.
6A). One hundred seventy-eight of the top 200 lineages in the
AIRR-seq repertoire were also present in the R2C2-based repertoire
withmissing lineages likely being explained by the lower depth of
the R2C2-based repertoire. As expected, most of these repertoires
had class-switched to the IGHA1 isotype and many contained ad-
ditional lineage-specific mutations.

CBA

Figure 4. R2C2 repertoires have advantages and disadvantages compared to AIRR-seq repertoires: (A) CDR3 lengths, (B) isotype distribution, and (C) V
segment usage for IGH repertoires are determined by AIRR-seq (top) and R2C2 (bottom). In C, different bar colors indicate different V segment alleles with
gray indicating ambiguous allele calls. Red arrows indicate V segments where AIRR-seq fails to identify an allele unambiguously but R2C2 succeeds. Black
arrows indicate rarely recombined V segments that AIRR-seq but not R2C2 detected.
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Next, we used thesemutations to confirm that IGH sequences
were not spuriously grouped into lineages. To this end, we deter-
mined the percentage of mutations in each IGH sequence that
are shared with other sequences within the same lineage or se-
quences in different sequences. For both R2C2 and AIRR-seq se-
quences, this percentage was much higher when comparing
sequences within the same lineage con-
firming the overall accuracy of our line-
age grouping approach (Fig. 6B).
Finally, to see whether AIRR-seq and
R2C2-based repertoires behave similarly
when grouped into lineages, we repeat-
edly subsampled the AIRR-seq repertoire
to the depth of the R2C2-based repertoire
before grouping the subsampled se-
quences into lineages (Fig. 6C). The re-
sulting AIRR-seq lineages were slightly
larger than R2C2-based lineages at the
same depth, indicating that the 2% resid-
ual sequencing error present in R2C2
reads causes some related sequences to
not be grouped into lineages.

Overall, analysis of AIRR-seq and
R2C2-based lineages shows high concor-
dance between the twomethods. Of clin-
ical relevance, R2C2-based lineages
should be more than capable of tracking
B cell cloneswithin and between samples
to, for example, track minimal residual
disease in leukemia.

Discussion

As genomic analysis of samples becomes
an integral component in clinical care,
minimizing the number of separate as-
says that have to be performed and max-
imizing the information extracted from
those assays that are performed should
be a top priority. Here, we showcase the
potential of our R2C2 full-length cDNA
sequencing approach for the in-depth
analysis of PMBCs isolated routinely
from blood. Smart-seq2 and R2C2 librar-
ies can be generated from <1 ng of total
RNAmaking it possible to use less sample
for transcriptome analysis. Further we re-
cently developed amethod for the deple-
tion of hemoglobin transcripts from
whole blood transcriptomes that would
allow this type of analysis to be econom-
ically performed on whole blood RNA
collected using, for example, PAXgene
tubes (Byrne et al. 2019). If implemented
on the ONT MinION, as we have done
here, R2C2 generates reads of full-length
cDNA at 98% accuracy at a cost of about
$200 per 1 million reads. We then show
that these full-length R2C2 reads can be
analyzed with the Mandalorion pipeline
to generate transcriptomes that can con-
tain clinically relevant isoform informa-
tion. R2C2 reads are also suitable to be

analyzed with other workflows for isoform determination like
FLAIR (Tang et al. 2020), which, using standard settings, requires
less read coverage to call isoforms and identifies more single
exon isoforms than Mandalorion (Supplemental Table S3).

Beyond isoform annotation and analysis, we show that
whole-transcriptome analysis by R2C2 can be used to replace or

A

B

Figure 5. Somatic hypermutation can be characterized within R2C2-based IGH repertoires. (A)
Mismatch mutations per IGH sequence as determined by IgBLAST are shown as swarm plots separated
by isotype (IGHM, IGHA1), isoform (membrane-bound, secreted), and technology (R2C2, AIRR-seq) and
compared to TRB sequences. Averages are indicated by colored lines. (B) The pattern of mutation loca-
tions in V segments in AIRR-seq, TMI-seq, and R2C2 sequences is shown for 1000 randomly sampled
IGHA1 or TRB sequences.

B

C

A

Figure 6. Clonal lineages can be measured by R2C2-based repertoires. (A) Lineages shared between
AIRR-seq and R2C2-based repertoires are indicated by connections within a circular plot. Abundance of
each lineagewithin each repertoire is shownas ahistogramon the outsideof the circle.Colorof connecting
lines and histogrambars indicates the isotype of a lineage: (red) IGHA; (black) IGHM; (blue) IGHG; (green)
IGHD. (B) The distribution of the percentage of mutations in an IGH sequence being shared with IGH se-
quences within the same or different lineages is shown as swarm plots for R2C2-based and AIRR-seq rep-
ertoires. (C ) The size of lineages ordered by rank is shown for the R2C2-based repertoire (red) and 100
repertoires subsampled from the AIRR-seq repertoire to match the R2C2-based repertoires depth (gray).
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enhance specialized assays for the analysis of the complex tran-
scriptomes of human immune cells.

First, we show that R2C2 full-length cDNAdata can be used to
identify allele-specific expression of isoforms. Identifying allele-
specific expression of isoforms represents a formidable challenge
for RNA-seq data alone, making long reads basically indispensable
for this type of analysis (Deonovic et al. 2017). For our approach,
we chose to use highly accurate RNA-seq data to call heterozygous
SNPs with the gold-standard GATK workflow (Van der Auwera
et al. 2013). This represents a complementary approach to either
investigating allele-specific expression in a fully haplotype-re-
solved sample (GM12878) (Workman et al. 2019) or using long
reads themselves to call SNPs (Tilgner et al. 2014). With the accu-
racy and throughput of our R2C2 method, as well as Pacific
Biosciences circular consensus sequencing (PacBio CCS) steadily
improving (Wenger et al. 2019), short-read sequencing may soon
no longer represent the most accurate way to call SNPs thereby
making RNA-seq entirely dispensable for this type of analysis.

Second,we introduce aworkflow that can complement short-
read RNA-seq data to generate accurate allele-resolved full-length
isoforms including the isoforms of all major HLA genes. In the sin-
gle individual we analyzed, this approach appeared to enable accu-
rate high-resolution HLA typing. However, to establish whether
this approach is as reliable and accurate as DNA-based HLA typing
will require follow-up studies involving the analysis of manymore
individuals. We also believe that this approach will be very power-
ful for the identification of new HLA alleles present in the human
population as it does not rely on databases of knownHLA alleles as
short-read-based HLA typing methods do.

Third and finally, we identified tens of thousands of full-
length adaptive immune receptor transcripts in our R2C2 data
that can be compiled into repertoires containing a plethora of
valuable data about the state of the adaptive immune system
(Weinstein et al. 2009). R2C2-based repertoires therefore represent
a convenient alternative to specialized AIRR-seq assays for the gen-
eration of AIRR data that has been used in conjunction with spe-
cialized software (Vander Heiden et al. 2014; Ralph and Matsen
2016) to detectminimal residual disease (Logan et al. 2011) and or-
gan rejection (Vollmers et al. 2015), or for basic research to track B
cell clonal lineages or analyze immune aging (de Bourcy et al.
2017a) or class-switching (Horns et al. 2016). In contrast to
AIRR-seq methods, generation of R2C2-based repertoires requires
no specific primer sets, which makes it a powerful tool for the in-
vestigation of not only human but vertebrate adaptive immune re-
ceptor diversity.

In summary, R2C2 full-length cDNA is a promising approach
for the in-depth analysis of the human immune system and has
the potential to replace or enhance specialized RNA-seq, HLA typ-
ing, and AIRR-seq approaches in the analysis of clinical samples.
Although future studies are still needed to validate this proof-of-
concept study as well as establish the scalability of its approach,
we hope it provides a stepping-off point for clinical and research
assays to leave behind the limitations that short-read RNA-seq im-
posed on data generation and analysis.

Methods

Sample collection and preparation

All experiments were approved by the Internal ReviewBoard at the
University of California Santa Cruz. Two whole blood samples
were collected from a healthy human adult volunteer by the

University of California Santa Cruz Student Health Center
∼6 mo apart. Samples were processed by Ficoll gradient (GE
Healthcare) to extract PBMCs, which were stored in liquid
Nitrogen. RNA was extracted from one PBMC sample using the
RNeasy mini kit (Qiagen). DNA was extracted from the other
PBMC sample using the MagAttract HMW DNA kit (Qiagen).

HLA typing

HLA typing was performed at the Immunogenetics and
Transplantation Laboratory at University of California, San
Francisco.

Sample preparation

DNA was quantified with NanoDrop (Thermo Fisher Scientific)
and adjusted to a concentration of 30 ng/μL. Quality of DNA was
assessed by measuring absorbance at A230, A260, and A280. DNA
samples were amplified by long-range PCR using the Omixon
Holotype HLA genotyping kit, generating full-length gene
amplicons for HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DRB3,
HLA-DRB4, HLA-DRB5, HLA-DQA1, HLA-DQB1, HLA-DPA1, and
HLA-DPB1 loci. Following PCR, amplicons were cleaned with
Exo-SAP (Affymetrix), quantified with QuantiFluor dsDNA system
(Promega), and normalized to ∼70 ng/μL.

Library preparation and sequencing

Sequencing libraries were generated for each sample using the
Omixon Holotype HLA genotyping kit (Omixon, Inc.). In brief, li-
braries from individual HLA ampliconswere prepared by enzymat-
ic fragmentation, end repair, adenylation, and ligation of indexed
adapters. The indexed libraries were pooled and concentrated with
Ampure XP beads (Beckman Coulter) before fragment size selec-
tion using a PippinPrep (Sage Science), selecting a range of frag-
ments between 650 and 1300 bp. The size-selected library pool
was quantified by quantitative PCR (qPCR; Kapa Biosystems) and
adjusted to 2 nmol/L. The library was then denatured with
NaOH and diluted to a final concentration of 8 pmol/L for optimal
cluster density and 600 μL was loaded into the MiSeq reagent car-
tridge (v2 500 cycle kit). The reagent cartridge and flow cell were
placed on the Illumina MiSeq (Illumina) for cluster generation
and 2×250-bp paired-end sequencing. Samples were demulti-
plexed on the instrument and the resulting FASTQ files were
used for further analysis. HLA genotyping was assigned using
Twin version 2.0.1 (Omixon, Inc.) and IMGT/HLA database ver-
sion 3.24.0_2, using 16,000 read pairs.

Transcriptome sequencing library preparation

Approximately 200 ng of total RNA was used to generate full-
length cDNA using a modified Smart-seq2 protocol (Volden et al.
2018). In short, RNA was reverse transcribed using SMARTscribe
RT (Clontech) and ISPCR-Oligo(dT) primer ISPCR-TSO (Supple-
mental Table S1). Remaining RNAandprimer dimerswere digested
and cDNAwas PCR amplified using RNase A, Lambda Exonuclease
(NEB), and Kapa Biosystems HiFi HotStart ReadyMix (2X) (KAPA)
with the following heat-cycling protocol: for 30 min at 37°C,
for 30 sec at 95°C, followed by 12 cycles of (20 sec 98°C; 15 sec
67°C; 10 min 72°C). The reaction was then purified using SPRI
beads at a 0.85:1 ratio and eluted in H2O. The resulting full-length
cDNAwas then used as input into Smart-seq2, R2C2, and Smar2C2
library preparation protocols.
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Smart-seq2

Full-length cDNA was then tagmented with Tn5 enzyme (Picelli
et al. 2014a) custom loaded with Tn5ME-A/R and Tn5ME-B/R
adapters. The Tn5 reaction was performed using 50 ng of cDNA
in 5 µL, 1 µL of the loaded Tn5 enzyme, 10 µL of H2O, and 4 µL
of 5× TAPS-PEG buffer and incubated for 5 min at 55°C. The Tn5
reaction was then inactivated by the addition of 5 µL of 0.2%
sodium dodecyl sulphate and 5 µL of the product was then nick-
translated for 6 min at 72°C and further amplified using KAPA
HiFi Polymerase (KAPA) using Nextera_Primer_A and Nextera_
Primer_B (Supplemental Table S1) with an incubation of 30 sec
at 98°C, followed by 13 cycles of (for 10 sec at 98°C, for 30 sec
at 63°C, for 2 min at 72°C) with a final extension for 5 min at
72°C. The resulting Illumina library was size selected on an agarose
gel to be within 200–400 bp and sequenced on an Illumina
NextSeq 2×150 run.

R2C2

Splint generation

To generate the splint, 23 µL ofH2O, 25 µL of Kapa BiosystemsHiFi
HotStart ReadyMix (2×) (KAPA), 1 µL of UMI_Splint_Forward (100
µM), and 1 µL of UMI_Splint_Reverse (100 µM) were incubated for
3min at 95°C, for 1min at 98°C, for 1min at 62°C, and for 6min at
72°C. The DNA splint was then purifiedwith the Select-a-size DNA
Clean and Concentrator kit (Zymo) with 85 µL of 100% EtOH in
500 µL of DNA binding buffer.

Circularization of cDNA

Next, 200 ng of cDNAwasmixedwith 200 ng of DNA splint and 2×
NEBuilder HiFi DNA Assembly Master Mix (NEB) was added at the
appropriate volume. Thismixwas incubated for 60min at 50°C. To
this reaction we added 5 µL of NEBuffer 2, 3 µL Exonuclease I, 3 µL
of Exonuclease III, and 3 µL of Lambda Exonuclease (all NEB), and
adjusted the volume to 50 µL using H2O. This reaction was then
incubated for 16 h at 37°C followed by a heat inactivation step
for 20 min at 80°C. Circularized DNA was then extracted using
SPRI beads with a size cutoff to eliminate DNA <500 bp (0.85
beads:1 sample) and eluted in 40 μL of ultrapure H2O.

Rolling circle amplification

Circularized DNAwas split into four aliquots of 10 μL, and each al-
iquotwas amplified in its own50-μL reaction containing Phi29 po-
lymerase (NEB) and exonuclease resistant random hexamers
(Thermo Fisher Scientific) [5 μL of 10× Phi29 Buffer, 2.5 μL of 10
mM (each) dNTPs, 2.5 μL random hexamers (10 µM), 10 μL of
DNA, 29 μL ultrapurewater, 1 μL of Phi29]. Reactionswere incubat-
ed overnight at 30°C. T7 Endonuclease was added to each reaction
and then incubated for 2 h at 37°C with occasional agitation. The
debranchedDNAwas then extracted using SPRI beads at a 0.5:1 ra-
tio and eluted in 50 μL of H2O.

Oxford Nanopore Technologies sequencing

The resulting DNA was sequenced across four separate ONT
MinION 9.4.1 flow cells. For each run, 1 µg of DNA was prepared
using the LSK-109 kit according to themanufacturer’s instructions
with only minor modifications. End-repair and A-tailing steps
were both extend from 5 min to 30 min. The final ligation step
was also extended to 30 min. Each run took 48 h and the resulting
data in Fast5 format were base called using the high accuracymod-
el of the GPU accelerated Guppy algorithm (version 2.3.5 +
53a111f, config file: dna_r9.4.1_450bps_flipflop.cfg). To generate

R2C2 consensus reads, the resulting raw reads were processed us-
ing our C3POa pipeline (https://github.com/rvolden/C3POa).

Smar2C2

Library prep for this protocol is highly similar to Smart-seq2, how-
ever instead of cDNA, it uses the debranched rolling circle ampli-
fied DNA that is composed of cDNA concatemers. Fifty
nanograms of this DNA was tagmented with Tn5 enzyme (Picelli
et al. 2014a) custom loaded with Tn5ME-A/R and Tn5ME-B/R
adapters. The Tn5 reaction was performed using 50 ng of cDNA
in 5 µL, 1 µL of the loaded Tn5 enzyme, 10 µL of H2O and 4 µL
of 5× TAPS-PEG buffer and incubated for 5 min at 55°C. The Tn5
reaction was then inactivated by the addition of 5 µL of 0.2%
sodium dodecyl sulphate, and 5 µL of the product was then
nick-translated for 6 min at 72°C and further amplified using
KAPA HiFi Polymerase (KAPA) using Nextera_Primer_A and
Nextera_Primer_B (Supplemental Table S1) with an incubation
for 30 sec at 98°C, followed by 13 cycles of (10 sec at 98°C,
30 sec at 63°C, 2 min at 72°C) with a final extension for 5 min at
72°C. The resulting Illumina library was size selected on an agarose
gel to be within 200–400 bp and sequenced on an Illumina
NextSeq 2× 150 run.

AIRR-seq

Two hundred nanograms of total RNA was used for cDNA
SMARTscribe (Clontech) first-strand synthesis using a primer
pool specific to the first exon of all IGH isotypes (IGHM, IGHD,
IGHG1-4, IGHA1-2, IGHE) (Supplemental Table S1). In a two-cycle
PCR reaction, second and third cDNA strands were synthesized us-
ing Kapa Biosystems HiFi HotStart ReadyMix (2×) and two modi-
fied primer pools complementary to the beginning of the
Framing region 1 (FR1) of the V segment and∼100 bp into the first
exon of all IGH isotypes. All primers used in this two-cycle PCR re-
action were modified to have unique molecular identifiers
and partial Nextera sequences on their 5′ end. cDNA was purified
and size selected to >300 nt using Select-a-size DNA Clean and
Concentrator kits (Zymo). In a 20-cycle PCR reaction, the cDNA
is then amplified with primer completing Nextera sequences as
well as Illumina i5 and i7 indexes to enable multiplexing of the li-
braries. Libraries were then sequenced on the Illumina MiSeq us-
ing a 2×300 run.

Data analysis

Gene expression

R2C2 reads were aligned to the hg38 version of the human ge-
nome using minimap2 (Li 2018) using “-ax splice ‐‐secondary=
no” flags and other standard settings. Smart-seq2 and Smar2C2
reads were aligned to the same genome sequence using STAR (ver-
sion 2.7.1a) (Dobin et al. 2013) and an index built using the
GENCODE v29 annotation GTF file. Read alignments were con-
verted in gene expression counts using featureCounts (Liao et al.
2014).

Identifying Smar2C2 reads that contain transcript ends

To identify Smar2C2 reads covering transcript 5′ ends (TSO reads),
we determined whether a read contained the sequence of the tem-
plate switch oligo, which, absent premature template switching,
should indicate the 5′ end of a transcript.

To identify Smar2C2 reads covering transcript 3′ ends (Oligo
[dT] reads) we analyzed read pairs. First, we determined whether
one read of a pair contained the sequence of the Oligo(dT) primer
including a stretch of Ts making the other read of that pair a
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candidate.We then determinewhether a candidate read contained
a stretch of Ts which, absent mispriming of the Oligo(dT) primer,
should indicate the 3′ end of a transcript.

Isoform analysis

R2C2 reads were analyzed to identify isoforms using version 3 of
Mandalorion (Byrne et al. 2017; Volden et al. 2018) and standard
settings. Isoformswere categorized using the sqanti_qc.py script of
the SQANTI (Tardaguila et al. 2018) program with slight modifica-
tions to make it compatible with Python3 and using the
GENCODE (v29) annotation of the human genome. Isoform fea-
tures were extracted from the categorized isoforms using the
ProcessSqantiClassification.py (Mandalorion utility) script as fol-
lows. To identify transcript features not matching the GENCODE
annotation, we relied on SQANTI classification:

1. Nonmatching 5′ ends and 3′ ends were identified in isoforms
classified as “full-splice_match,” “novel_in_catalog,” “and nov-
el_not_in_catalog” and had to be locatedmore than 10 nt away
from an annotated TSS or poly(A) site.

2. Nonmatching exons were identified from isoforms classified as
“novel_not_in_catalog” and had to have no overlap with anno-
tated exons.

Allele-specific isoforms

SNPs present in the sample donor’s genome were identified using
RNA-seq (Smart-seq2+ Smar2C2) read alignments and GATK (ver-
sion 3.8-1-0-gf15c1c3ef) following the standard RNA-seq SNP
identification workflow (https://software.broadinstitute.org/gatk/
documentation/article.php?id=3891). Heterozygous SNPs were
phased using R2C2 reads and the new Mandalorion utility
TurboPhaser.py, taking advantage of R2C2 reads spanning entire
gene loci and grouping SNPs that appeared in the same reads.
TurboPhaser.py also sorted R2C2 reads and RNA-seq reads into al-
leles based on the SNPs they contained. The sorted R2C2 reads
were then used in theMandalorion pipeline to identify isoform se-
quences. The sequences were then error-corrected using Pilon
(Walker et al. 2014) and RNA-seq reads aligned to the isoform se-
quences using minimap2 with the “-x sr” preset.

HLA typing

Using the HLAtyping.py script allele-specific error-corrected iso-
form sequences were aligned to the human genome using mini-
map2 (“‐‐secondary =no -x splice”). Isoforms aligning to HLA
loci were then realigned to HLA transcript sequences retrieved
from the IPD-IMGT/HLA database (Robinson et al. 2015, 2000) us-
ing minimap2 (“-ax splice -N 100”). For each HLA gene and allele,
the best full-length match was reported. For RNA-seq-only ap-
proaches, Smart-seq2 reads and Smar2C2 reads were pooled and
processed as required by seq2HLA and arcasHLA and the programs
were run with standard settings.

AIRR analysis

R2C2 reads aligning to adaptive immune receptor loci were ex-
tracted using SAMtools (Li et al. 2009). The sequences were then
analyzed using IgBLAST (Ye et al. 2013) with V, D, and J segments
retrieved from IMGT (Lefranc et al. 2004). For the in-depth analysis
of BCR IGH repertoires, this output was then parsed using custom
scripts to report CDR3 length and V segment, as well as the posi-
tions of mismatches in the V segments. Isotype and isoform (se-
creted vs. membrane-bound) of each sequence were determined
by comparing the part of extracted R2C2 reads corresponding to
the constant region to a database of isotype and isoform sequences
and, if it was high quality enough, the best match was used.

Sequences were then grouped into lineages using a simple single
linkage clustering approach using a 90%CDR3 nucleotide similar-
ity cutoff.

Code access

Mandalorion and its utilities for isoform identification and se-
quence determination are available on GitHub (https://github
.com/rvolden/Mandalorion-Episode-III). The Mandalorion pack-
age also contains scripts for processing SQANTI classification, sort-
ing R2C2 reads into alleles, and HLA typing.

C3POa is available on GitHub (https://github.com/rvolden/
C3POa). The C3POa GitHub also contains scripts for identifying
and merging reads with matching UMIs. Scripts for the parsing
and grouping AIRR data into lineages is available at GitHub
(https://github.com/christopher-vollmers/AIRR). Analysis scripts
not published previously are also available as Supplemental
Scripts.

Data visualization

All data visualization was done using Python/Numpy/Scipy/
Matplotlib (https://www.scipy.org) (Hunter 2007; Oliphant
2007; van der Walt et al. 2011). Schematics were drawn in
Inkscape (https://inkscape.org/en/).

Data access

The R2C2 and RNA-seq data generated in this study have been sub-
mitted to the NCBI BioProject database (https://www.ncbi.nlm
.nih.gov/bioproject/) under accession number PRJNA559668.
The TMI-seq generated for a previous study have been submitted
to the NCBI BioProject database under accession number
PRJNA559668. Processed data are available at https://users.soe
.ucsc.edu/~vollmers/PBMC_data/R2C2_reads.fa and https://users
.soe.ucsc.edu/~vollmers/PBMC_data/AIRRseq_reads.fa.
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