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Abstract. We have studied the lateral mobility of class 
I major histocompatibility complex (MHC) proteins in 
the membranes of human Epstein-Ban" virus-trans- 
formed B cells using fluorescence photobleaching 
recovery. Class I MHC antigens were labeled with ei- 
ther W6/32 monoclonal antibody or its Fab fragment 
directly conjugated to fluorescein isothiocyanate. The 
diffusion coefficient of class I antigens labeled with 
Fab fragments of W6/32 was identical to that of a lipid 
analogue, fluorescein phosphatidylethanolamine, and 
was 10-fold greater than that of antigens labeled with 
intact W6/32. Furthermore, antigens labeled with Fab 
fragments but not with intact W6/32 had fractional 

mobilities identical to that of the lipid probe. The 
lateral mobility of class I antigens was dependent on 
the time of incubation with fluorescent antibody and 
on the presence of antibody microaggregates. Finally, 
class I MHC proteins labeled with intact W6/32 but 
not with Fab fragments were immobilized in the mem- 
branes of most cells grown in suspension at high cell 
density. These results suggest that, in the unperturbed 
state, class I MHC antigens diffuse as rapidly as mem- 
brane lipid, i.e., without cytoskeletal constraint. Cross- 
linking with bivalent ligand and growth to high cell 
density may trigger membrane events leading to slow- 
ing and immobilization of these proteins. 

H 
UMAN class I major histocompatibility complex 
(MHC) ] antigens comprise a family of polymorphic 
transmembrane cell surface glycoproteins present on 

all nucleated cells. The prototype molecule consists of a 
polymorphic 44-kD heavy chain that is noncovalently as- 
sociated with an invariant 12-kD light chain, ~ microglob- 
ulin. The heavy chain is comprised of a glycosylated extra- 
cellular domain ('0270 amino acid residues), a hydrophobic 
transmembrane segment ('025 residues), and a hydrophilic 
intracytoplasmic domain (,030 residues) (16). Proteins en- 
coded by the MHC are important recognition structures that 
control the cellular immune response. T cell specific recep- 
tors recognize MHC alloantigens or syngeneic MHC pro- 
teins in association with foreign antigens (30). The lateral 
mobility of MHC proteins in target cell membranes may 
affect recognition of these cells by T cells. In addition, the 
mobility of these proteins may reflect interactions with cell 
surface receptors (10, 26, 29) and/or cytoskeletal proteins (13, 
39). Such interactions may be important in signal transduc- 
tion across cell membranes (1). 

1. Abbreviations used in this paper: EBV, Epstein-Barr virus; f, fractional 
mobility; FI-PE, fluorescein phosphatidylethanolamine; FPR, fluorescence 
photobleaching recovery; HLA, human leukocyte antigens; MHC, major 
histocompafibility complex. 

Literature values for the lateral mobility of class I MHC 
proteins in biological membranes are variable. Human and 
mouse class I MHC antigens in lymphocyte and fibroblast 
cell membranes are reported to have fractional mobilities (f) 
of 0-80% and diffusion coefficients that range from 2 x 
10 -~ to 2 x 10 -9 cm 2 s -~ (6, 8, 9, 13, 25, 31, 38, 39). In 
general, these diffusion coefficients are one to two orders of 
magnitude less than those of lipid probes in the same cell 
membranes (7, 13, 25). The variation in lateral mobility has 
not been fully explained, although cytoskeletal interactions 
have been invoked (13, 39). 

We have examined the effects of mAb valency and of cell 
density on the lateral mobility of class I MHC antigens in 
plasma membranes of Epstein-Barr virus (EBV)-transfonned 
human B cells. Class I human leukocyte antigens (HLA) 
were labeled with fluorescein conjugates of either W6/32, a 
mAb that binds to a monomorphic determinant on all human 
class I antigens (24), or Fab fragments of W6/32. The lateral 
mobility of labeled molecules was measured by fluorescence 
photobleaching recovery (FPR). We observed that the valency 
of the mAb used for labeling influenced class I MHC antigen 
mobility. MHC antigens labeled with Fab fragments of W6/32 
diffused as fast as a phospholipid analogue in the same cell 
membrane, and ten times faster than MHC antigens labeled 
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with intact W6/32. Furthermore, MHC antigens labeled with 
Fab fragments but not with intact W6/32 had fractional mo- 
bilities identical to lipid. Microaggregates of intact IgG or 
Fab fragments, as well as increasing time of incubation with 
antibody, each caused the lateral mobility of class I MHC 
molecules to decrease. Finally, class I MHC antigens labeled 
with intact W6/32 but not with Fab fragments were immobi- 
lized in the membranes of most cells grown at high cell 
density. 

Materials and Methods 

Cell Lines and Culture 

The EBV-transformed B cell line JY (HLA A2,2; B7,7; DRw4,w6; DQ1,3; 
DP2,4) was maintained in RPMI-1640 medium (M. A. Bioproducts, 
Walkersville, MD) supplemented with 10% heat-inactivated FBS (Gibco, 
Grand Island, NY), 100 U/ml penicillin (Gibco), 100 I.tg/mi streptomycin 
(Gibco), 10 raM Hepes (M. A. Bioproducts), 2 raM glutamine (Gibco), and 
25 gM 2-mereaptoethanol (Sigma Chemical Co., St. Louis, MO). Unless 
otherwise stated, cells were split 1:10 every 3 d to maintain log phase of 
growth. 

Purification and Digestion of Monoclonal Antibodies 
The mAb W6/32 (the kind gift of Dr. Peter Parham [Stanford University, 
Stanford, CA], and American l~pe Culture Collection, Rockvitle, MD) 
recognizes a monomorphic determinant on HLA-A,B,C molecules (24). 
The antibody was purified from ascitic fluid of pristane-primed BALB/c 
mice by passage over a protein A-Sepharose 4B (Pharmacia Fine Chemicals, 
Div. Pharmacia, Inc., Piscataway, NJ) column at pH 9.0 and eluting from 
the washed column atpH 4.0, as described (22). Monovalent Fab fragments 
were prepared from purified W6/32 by papain digestion (22). Papain (Sigma 
Chemical Co.), I mg/ml, was activated by incubation in I00 mM sodium ace- 
tate, I00 mM dithiothreitol, 100 mM EDTA, pH 5.5, for I0 min. W6/32, 
1 mg/mi, was added and the mixture incubated at 370C for 1 h. The reaction 
was stopped by addition of 25 mM iodoacetic acid. Alternatively, papain, 
5 mg/ml, was coupled to Sepharose 4B. After activation with dithiothreitol, 
the papain-coupled beads were washed three times in 100 mM sodium ace- 
rate buffer and then added to purified antibody, 5 rag mAb per mi of papain 
beads. The mixture was incubated at 37~ for 6 h. Protease-modified anti- 
body was passed over a protein A-Sepharose 4B affinity column which 
bound the Fc fragment and any remaining intact antibody. Fractions contain- 
ing the nonbinding Fab fragment were assessed by Coomassie Blue and sil- 
ver staining (Bio-Rad Chemical Division, Bio-Rad Laboratories, Rich- 
mond, CA) (21) after electrophoresis on a 5-15% linear gradient SDS 
polyacrylamide gel (17). Under nonreducing conditions, a single protein 
band at Mr 50,000 was seen; under reducing conditions, two protein bands 
with Mr '~25,000 were observed. Protein concentrations were determined 
by the method of Lowry (18). 

Conjugation of Fluorescein to Monoclonal Antibodies 
Intact mAb and Fab fragments were conjugated to FITC (Sigma Chemical 
Co.) as described (22). Ftuoresceinated antibodies were dialyzed against 
PBS, 10 mM glycine, pH 7.2, and exhaustively against PBS. Alternatively, 
FHC was dissolved in dimethyl sulfoxide (Fisher Scientific Co., Fair Lawn, 
NJ) at 3 mg/ml. Four 10-ttl aliquots of this mixture were added at 5-rain 
intervals at 4~ to a 0.67 mg/ml solution of W6/32-Fah in 100 mM carbonate 
buffer, pH 9.2. After a 2-h incubation at 23*{2, the mixture was applied to 
a Bio-C-et P-100 (Bio-Rad Laboratories) column eluted with PBS, pH 7.2. 
To remove antibody aggregates, labeled antibodies were centrifuged at 
100,000 g (Airfuge; Beckman Instruments, Inc., Palo Alto, CA) for 20 rain, 
and the antibody remaining in the supernatant was stored at -20~ mAb 
was again centrifuged at 100,000 g for 20 min within 6 h of use in FPR ex- 
periments, unless otherwise stated. 

Labeling of Cells with Fluorescent Antibodies and a 
Lipid Analogue 
The incorporation of the phospholipid analogue fluorescein phosphatidyl- 
ethanolamine (FI-PE) into cell membranes has been described (12). Briefly, 

10-40 ttl of FI-PE, 200 gg/mi in PBS, was added to 400 ~tl of JY cells, 1-5 
• 105 cells/mi. The mixture was incubated in the dark at room tempera- 
ture for 30 min, washed twice in PBS containing 1% BSA, and once in Dul- 
becco's PISS supplemented with 2% BSA, I% essential amino acids, I00 
U/mi penicillin, 100 ttg/ml streptomycin, 2 mM glutamine, and I0 mM glu- 
cose (D-PBS/BSA). The lateral diffusion rote of FI-PE in JY cell mem- 
branes was constant for labeling concentrations of 5-20 ttg/mi. In fluores- 
cent antibody experiments, 5 ttl of antibody, 0.5 mg/ml, was incubated with 
150 gl of cells, 5 • 10 s eells/ml, in the dark on ice for 20 rain, and the 
cells were washed twice at 4~ Whshed, labeled cells were resuspended 
in 100 Ill D-PBS/BSA, and 5 ttl of suspension was placed on a PBS/BSA- 
coated microscope slide, covered with a PBS/BSA-coated coverslip, and 
sealed with vacuum grease (12). Unless otherwise stated, cells were used 
in FPR experiments within 30 min of labeling, and measurements were 
completed within 60 rain of labeling. 

Fluorescence Photobleaching Recovery 
Our FPR apparatus and analytical methods have been described in detail 
(12). FPR is a technique used to measure the lateral mobility of fluorescently 
labeled proteins and lipids in membranes (2). Briefly, a Gaussian laser beam 
is focused to a waist at the sample plane of a fluorescence microscope. After 
a brief, intense photobleaching pulse, the recovery of fluorescence is mea- 
sured. Recovery results from the lateral diffusion of unbleached molecules 
into the bleached area. Nonlinear least squares analysis of fluorescence 
recovery curves yields both the fractional recovery (f) ,  which represents 
that fraction of labeled molecules free to diffuse laterally on the time scale 
of the experiment, and the diffusion coefficient (D) of the mobile fraction 
(12). The Gaussian beam radius at the sample plane was determined daily 
as described (12), and its mean value was between 0.8 and 1.2 ~m with 
SD < 5 %. The photobleaching power at the sample was •100 ttW, and the 
measuring beam intensity was '~0.2 gW. The bleaching time was typically 
25 ms for diffusion measurements on cells labeled with intact W6/32, and 
5 ms for experiments on cells labeled with Fab fragments or FI-PE. Fluores- 
cence in the medium was <2% of cell-associated fluorescence for cells la- 
beled with intact mAb or FI-PE, and 2-10% of membrane fluorescence for 
Fab fragment-labeled cells, and this background was subtracted from the 
measured fluorescence. Autofluoreseence, determined with unlabeled cells, 
was <'I % of the fluorescence of all labeled cells. Temperature was controlled 
to 23 + 0.1~ try a thermal microscope stage. 

Unless otherwise stated, experiments wen: repeated at least three times 
each on different days. Results of experin~nts performed under identical 
conditions were pooled unless significant differences between the results on 
different days were observed. 

Results 

FI-PE Distribution and Lateral Mobility 
By fluorescence microscopy, FI-PE was uniformly dis- 
tributed on the surface of JY cells, an EBV-transformed B 
lymphocyte cell line. The diffusion coefficient at room tem- 
perature was 2.3 + 0.2 x 10 -9 cm 2 s -~ (mean + SEM), and 
the fractional mobility was 89 + 3 % (n = 27) (Table I). The 
diffusion coefficient at 37~ was 4.9 + 0.8 x 10 -9 cm 2 s -1, 
and the fractional mobility was 93 + 2 % (n = 8). 

Intact lgG Binding Restricts the Lateral Mobility of 
Class I MHC Antigens 
JY cells were labeled with fluorescein-conjugated W6/32 
mAb. As shown in Table I, the diffusion coefficient of W6/ 
32-FITC-labeled proteins was 3.2 + 0.5 x 10 -~ cm 2 s -1, 
and the fractional mobility was 54 + 3% (n = 128). Class 
I HLA antigens were also labeled with Fab fragments pre- 
pared from W6/32. The diffusion coefficient of FITC-Wt/32- 
Fab-labeled antigens was 2.1 + 0.2 x 10 -9 cm 2 s -1, and the 
fractional mobility was 90 + 2% (n = 63). The binding of 
each probe was blocked by excess unlabeled W6/32. Both 
W6/32 and its fluoresceinated Fab fragment immunoprecipi- 
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Table L Lateral Mobility of Class I MHC Antigens 
Labeled with Intact W6/32, W6/32 Fab Fragments, and 
a Phospholipid Analogue in JY Cells 

Fluorophore* D f N 

(xltY ~ crrd s -~) % 
W6/32-FITC 3.2 + 0.5 .1 54 + 32 
FITC-W6/32-Fab 21 4" 21'3 90 + 22'4 
FITC-W6/32-Fab + 

(Fab)'2 GAM 1.3 4" 0.33 59 4- 64 
F1-PE 23 4- 2 89 + 3 

D, diffusion coefficient; f, fractional mobility; N, number of measurements. 
* Fluorophore centrifuged at 100,000 g for 20 rain within 6 h of use in FPR 
experiments. 

Mean + SEM. 
~.2,3,4 p < 0 .001,  Student two-tailed t test. 

tated two polypeptide proteins, of Mr 44,000 and 12,000, 
from the surface of radioiodinated JY cells. These molecular 
weights correspond to those of the HLA heavy chain and 132 
microglobulin, respectively. By analysis on a fluorescence 
activated cell sorter (FACS II; Becton-Dickinson & Co., 
Mountain View, CA), W6/32-FITC and FITC-W6/32-Fab 
each labeled JY cells brightly, but failed to label Daudi (HLA 
A-,B-,C-; DRw6, DQ1, DP2,4) and K562 (HLA A-,B-,C-; 
DR-,DQ-,DP-), two cell lines that do not express class I HLA 
molecules. These data suggest that the fluoresceinated Fab 
fragment of W6/32 binds specifically to HLA-A,B,C and not 
to a lipid component on the cells. No diminution in the 
fluorescence intensity of FITC-W6/32-Fab-labeled cells was 
observed over the 60-min FPR experimentation period, im- 
plying the fluoresceinated Fab fragment binding is stable as 
well as specific. 

In an attempt to mimic the effect of bivalent antibody, 
cells were labeled with FITC-W6/32-Fab and then incubated 
in the dark for 20 rain on ice with a fluoresceinated (Fab)'2 
goat anti-mouse antibody fragment. The second antibody 
fragment was titrated up to a concentration at which the 
fluorescence of the doubly labeled cells was just increased 
over that of cells labeled with F1TC-W6/32-Fab. Both the 
diffusion coefficient and fractional mobility of the doubly la- 
beled class I MHC proteins decreased to values similar to 
those observed on cells labeled with W6/32-FITC (Table I). 
Taken together, these data suggest that antigen cross-linking 
by bivalent mAb induces constraints on the mobility of class 
I MHC antigens. 

Lateral Mobility o f  Class I Antigens 
Is Restricted by Microaggregates of  Intact W6/32 
or W6/32 Feb Fragments 

mAb was centrifuged for 20 rain at either 9,000 g (Micro- 
fuge; Eppendorf; Brinkmann Instruments, Inc., Westbury, 
NY) or 100,000 g (Airfuge; Beckmann Instruments, Inc.) 
within 6 h of use in FPR experiments. Cells in log phase of 
growth were labeled with mAb. The fractional mobility of 
class I MHC antigens labeled with W6/32-FITC was sig- 
nificantly increased by centrifugation of antibody at 100,000 
g for 20 min (Table ID. In addition, a time dependent 
decrease in both diffusion coefficient and fractional mobility 
was observed upon incubation of cells with W6/32-FITC 
that had been centrifuged at 9,000 g for 20 rain (Fig. 1). An- 
tibody centrifuged at 100,000 g for 20 min did not show this 

Table IL Effect of mAb and Fab Fragment Centrifugation 
on the Lateral Mobility of Class I MHC Antigens 

Fluorophore Centrifugation D f N 

(xlO ~~ crrd s -1) % 
W6/32-FITC 9,000 g, 20 min 5.2 + 1.8 t 51 + 102 8 

128 100,000g, 20min 9.6 + 1.81 88 +72 5 
63 FITC-W6/32-Fab 9,000 g, 20 min 6.3 + 1.33 98 + 24 8 
18 100,000 g, 20 min 17.7 4, 3.23 79 + 124 4 

27 D, diffusion coefficient; f, fractional mobility; N, number of measurements. 
* Mean + SEM. 
~,4 p > 0.05,  Student two-tailed t test. 
2 p < 0.05, Student two-tailed t test. 
3 p < 0.01, Student two-tailed t test. 

time dependence. The diffusion coefficient of proteins la- 
beled with FITC-W6/32-Fab was significantly increased by 
centrifugation of antibody at 100,000 g for 20 min, and the 
fractional mobility of these proteins was maximal under 
both centrifugation conditions (Table 1I). The cell surface 
fluorescence distribution was uniform on cells labeled with 
W6/32-FITC or FITC-W6/32-Fab that had been centrifuged 
at either 9,000 or 100,000 g and incubated with JY cells on 
ice for 20 min, and this distribution did not change over the 
60-min FPR experimentation period at room temperature. 

Lateral Diffusion of  Class I Antigens Is Dependent on 
the l ime of  Incubation with W6/32 or Its Feb Fragment 

The time of incubation with both intact mAb and Fab frag- 
ments influenced the lateral mobility of class I MHC anti- 
gens. Antibodies centrifuged at 100,000 g were used in this 
study. 4-h incubation with intact W6/32 resulted in nearly 
complete immobilization of class I MHC antigens, while 
6-h incubation with Fab fragments caused a significant 
decrease in the fractional mobility but not the diffusion 
coefficient. Data from representative experiments are shown 
in Table HI. These observations suggest that constraints on 
protein mobility may be induced by monovalent as well as 
divalent ligand binding. By fluorescence microscopy, punc- 
tate fluorescence was observed after a 4-h incubation with 

Figure 1. Diffusion coefficient 
(top), (xl0 ~~ crn 2 S -I) and frac- 
tional mobility (bottom) (%) 
of class I MHC antigens la- 

. ~ i I  .] beled with W6/32-FITC, as a 
i 15 " function of time of incubation. 

W6/32-FITC was centrifuged 
1 at 9,000 g for 20 rain immedi- 

g ately before cell labeling. JY 
'o " " cells in log phase of growth 

o . . . .  " ,. , were labeled with W6/32- 
FITC for 20 min at 0~ 

~1oo! ~ . ! washed twice at 4~ and re- 

8o~ o,I suspended at room tempera- ture in D-PBS-BSA (see Ma- 
eo~ ~ ~ terials and Methods). FPR 

2o~ time between resuspension of 
the cells in D-PBS/BSA and 

o- 6 1'o 1'5 2o 25 30 the first lateral mobility mea- 
Time (rnin) surement (t = 0) was ~5 min. 
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Table IlL Effect of Time of lncubation with mAb or Fab 
Fragments on Lateral Mobility of Class I MHC Antigens 

Incubation 
Fluorophore* time D f N 

h ( x 101 ~ ctrF s -I) % 

W6/32-FITC 0 10 + 55 77 + 51 8 
4 -w 18 + 10 J 4 

FITC-W6/32-Fab 0 23 5:62 89 + 43 13 
6 25 + 82 40 + 113 7 

D, diffusion coefficient; f,  fractional mobility; N, number of measurements. 
* Fluorophore centrifuged at 100,000 g for 20 rain within 6 h of use in FPR 
experiments. 
5 Mean + SEM. 
w Diffusion coefficient cannot be measured for f < 20%. 
L3 p < 0.001, Student two-tailed t test. 
2 p > 0.05, Student two-tailed t test, 

intact mAb. The fluorescence pattern on Fab-labeled cells, 
in contrast, remained uniform at 6 h. 

Fractional Mobility of  Class I Antigens Labeled with 
Intact W6/32 Is Dependent on Cell Density 

Cell density profoundly influenced the lateral diffusion of 
class I HLA antigens labeled with bivalent mAb. Cells were 
maintained in log phase of growth, 1-5 x 105 cells/ml, by 
serially splitting the culture 1:10 every 2-3 d, and 1 d before 
FPR measurements. Alternatively, cells were grown at high 
cell density, 2-3 x 10 ~ cells/ml, by exchanging the growth 
medium every day for 4 d before FPR measurements. Both 
log phase and high density cell preparations were 100 % via- 
ble by trypan blue exclusion. Cells were labeled with identi- 
cal preparations of W6/32-FITC or FITC-W6/32-Fab. The 
fractional mobility of class I HLA antigens labeled with 
bivalent antibody in cells maintained in log phase of growth 
was 67 + 7 % (n = 19), whereas the fractional mobility of 
similarly labeled antigens in cells grown at high cell density 
was 12 + 3 % (n = 20) (Table IV). The distribution of the 
fractional mobility data is shown in Fig. 2. There was no 
significant difference in the fluorescence intensity of cells in 
the two populations, and it is therefore unlikely that the 
difference in fractional mobility can be explained by dif- 
ferential expression of class I HLA antigens. Cell density 
did not affect the diffusion coefficient and fractional mobili- 
ty of class I HLA proteins labeled with Fab fragments of 
W6/32 (Table IV). 

Discussion 

In this report, we have shown that Fab fragment-labeled 
class I HLA molecules diffuse as rapidly and as completely 
as a lipid analogue, FI-PE, in plasma membranes of human 
EBV-transformed B cells. The diffusion coefficient of class 
I MHC antigens is reduced by an order of magnitude when 
the molecules are cross-linked either by intact mAb or by 
Fab fragments and second antibody. Studies using competi- 
tion with unlabeled antibody, immunoprecipitation, fluores- 
cence-activated cell sorter analysis, and fluorescence mi- 
croscopy suggest that Fab fragment binding is both specific 
and stable. The measured diffusion coefficient of Fab frag- 
ment-labeled proteins, 2.1 x 10 -9 cm 2 s -~, and fractional 
mobility, 90%, therefore reflect the mobility of the class I 

Table IV. Effect of Cell Density on the Lateral 
Mobility of Class I MHC Antigens 

Fluorophore* Cell growth D f N 

W6/32-FITC 

FITC-W6/32-Fab 

( x l O  1~ c ~  s -I) % 

Log phase 6,0 + 2.2 67 + 7 J 19 
High density - 12 + 31 20 

Log phasell 17 + 2 89 5- 3 11 
High densityll 18 + 5 101 + 5 8 

Log phase�82 19 -F 3 95 + 4 8 
High density�82 16 + 2 89 + 6 8 

D, diffusion coefficiem; f,  fractional mobility; N, number of measurements. 
* Fluorophore centrifuged at 100,000 g for 20 rain within 6 h of use in FPR 
experiments. 
$ Mean + SEM. 
w Diffusion coefficient cannot be measured for f < 20%. 
II Cells labeled with 20 ~1 FITC-W6/32-Fab. 
�82 Cells labeled with 10 gl FITC-W6/32-Fab. 

P < 0.001, Student two-tailed t test, 

MHC molecules and not that of fluorophore bound nonspe- 
cifically to the membrane. In addition, the concordance be- 
tween the lateral mobility of Fab fragment-labeled molecules 
and FI-PE suggests that class I MHC molecules, under these 
conditions, are constrained in their mobility only by forces 
intrinsic to the lipid bilayer itself. Cross-linking of class I 
molecules may induce a change in cytoskeletal or membrane 
skeletal organization which results in significant slowing and 
immobilization of these transmembrane proteins. 

Our results are similar to measurements of histocompati- 
bility antigen mobility in membranes of rat spleen cells in 
suspension labeled either with Fab fragments alone or with 
Fab fragments and second F(ab)'2 antibody fragments (39). 
Other studies have reported no apparent dependence of 
histocompatibility antigen mobility on antibody valence, al- 
though the purity and aggregation state of Fab fragments and 
the cell density used in these studies were not discussed (6, 
9, 31). Smith et al. found that the diffusion coefficient of class 
I HLA antigens on the surface of JY cells ranged from 3.5 
to 10.9 • 10 -~ em 2 s -~, depending on the particular mAb 
used to label HLA molecules (31). This threefold variation 
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Figure 2. Fractional mobility 
(%) of class I MHC antigens 
labeled with W6/32-FITC, as 
a function of cell density. JY 
cells were maintained in log 
phase of growth, 1-5 x 105 
cells/ml, by serially splitting 
the culture 1:10 every 2-3 d, 
or maintained at high cell den- 
sity, 2-3 x 10 ~ cells/ml, by 
exchanging the growth medi- 
um every day for 4 d, before 
FPR measurements. Cells 
were washed, resuspended at 

5 x 105 cells/ml, and labeled with W6/32-FITC for 20 min. W6/ 
32-FITC was centrifuged at 100,000 g for 20 rain immediately be- 
fore use. Cells were again washed and resuspended, and FPR was 
performed at 23~ The fractional mobility of class I MHC antigens 
in cells in log phase of growth, 67 + 7% (mean + SEM), was 
significantly different from that in cells grown at high cell density, 
12 5- 3 % (P < 0.001, Student two-tailed t test). 
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in diffusion coefficient is consistent with our observation that 
bivalent mAb labeling may itself perturb HLA mobility. 

The diffusion coefficient of F1-PE in the present study is 
lower than that observed in studies on JY cells using the lipid 
probe 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine 
(25). This difference may reflect real differences in the lipid 
environment sampled by the probes. Alternatively, it may be 
due to disruption of membrane architecture by the carbocya- 
nine probe itself (3, 12, 14). 

Theoretical and experimental considerations support the 
conclusion that Fab fragment-labeled class I MHC mole- 
cules are free from protein-protein interactions that could 
retard lateral diffusion. The limiting diffusion rate of a trans- 
membrane protein is thought to be determined by interac- 
tions between the membrane-spanning region of the protein 
and membrane bilayer lipid. Such interactions depend on the 
size of the transmembrane segment (28, 36, 37). Assuming 
that the membrane-spanning portion of a class I HLA mole- 
cule consists of a single a-helical segment, the diffusion rate 
of this molecule, in the absence of extrabilayer interactions, 
should be approximately equal to that of a phospholipid mol- 
ecule (11, 28). The M13 phage coat protein has a single 
membrane-spanning domain consisting of •20 amino acid 
residues, similar to class I HLA molecules. In fluid-phase 
model membranes containing only phospholipid, choles- 
terol, and reconstituted M-13 coat protein, the diffusion of 
this protein is as rapid as that of a phospholipid analogue 
(32). Since we have found that the diffusion coefficients of 
Fab fragment-labeled class I MHC molecules and FI-PE are 
identical in JY cell membranes, the diffusion of class I mole- 
cules under these conditions is unlikely to be constrained by 
cytoskeletal or other extramembranous interactions. The use 
of FI-PE to probe cell membrane phospholipid mobility as- 
sumes that the lipid analogue does not itself perturb mem- 
brane organization. Interactions between, for example, the 
fluorescein moiety of the lipid probe and a more slowly 
diffusing membrane component could theoretically retard 
lateral mobility. If this were the case, then the lateral mobil- 
ity of class I MHC proteins might not be controlled by the 
viscosity of the bilayer alone, but rather by constraints simi- 
lar to those governing F1-PE diffusion. 

In peripheral blood lymphocytes (25), EBV-transformed B 
cell lines (31), murine lymphocytes (6, 13), and murine 
fibroblasts (8, 9) significant variation in class I MHC antigen 
mobility has been observed. A number of factors may in- 
fluence the mobility of histocompatibility antigens. In both 
isolated plasma membranes (33) and intact fibroblast mem- 
branes (8), mobility is increased by treatment with either cal- 
cium ionophore or high phosphate buffer. Our data suggest 
that some of the variation may be explained by cell culture 
and cell labeling conditions, mAb microaggregates may also 
influence the mobility of class I MHC antigens. Although we 
did not observe clustering or patching of fluorescently la- 
beled class I HLA molecules by fluorescence microscopy, it 
appears that microaggregates ofmAb may induce a reduction 
in the mobility of these molecules on the surface of JY cells. 
This effect was observed with both intact mAb and Fab frag- 
ments, and was eliminated by high-speed centrifugation of 
the antibody. Oligomers but not monomers of IgE have re- 
cently been shown to induce a reduction in IgE receptor 
lateral mobility (20), and this reduction in protein mobility 
correlates with cell triggering and degranulation (19). 

In EBV-transformed B cell membranes, class I MHC pro- 
tein mobility is affected by both antibody valence and micro- 
aggregation. The same bivalent antibody probe used in the 
present study, W6/32-FIIE, has been used to measure the 
lateral mobility of class I MHC proteins in membranes of 
interferon-y-treated human dermal fibroblasts. 2 In these 
cells, neither the diffusion coefficient nor the fractional mo- 
bility of class I HLA molecules was dependent on the time 
of incubation with antibody. Further, both W6/32-FITC-la- 
beled molecules and the lipid probe F1-PE had fractional mo- 
bilities of 95-100 % and diffusion coefficients of 1-5 x 10 -9 
cm 2 s -~ in human dermal fibroblast membranes. 2 Together 
with the present study, these observations suggest that cross- 
linking of class I MHC proteins induces constraints on the 
mobility of these molecules in B lymphoblastoid but not hu- 
man dermal fibroblast cell membranes. Differential effects of 
W6/32-FFI'C on class I HLA molecule mobility may reflect 
differences in the biological responses of these two cell types 
to multivalent ligands for HLA molecules. 

The extracellular substrate to which cultured endothelial 
cells are adherent affects the diffusion coefficient of plasma 
membrane lipid (23). In addition, the extracellular matrix 
and cell density affect the mobility of HLA antigens in adher- 
ent cultured fibroblasts (38). Here we report that cell density 
also influences the mobility of HLA antigens labeled with 
bivalent antibody in JY cells cultured in suspension. Ceils 
grown in log phase or at high cell density were labeled with 
bivalent antibody and resuspended in identical solutions be- 
fore lateral mobility measurements, eliminating the possibil- 
ity that differences in fluorescent label concentration, phos- 
phate concentration, pH, or ionic composition of the buffer 
contributed to the change in mobility, as has been observed 
in other systems (7, 8, 20, 33, 34, 39). There was no differ- 
ence in MHC antigenic density, determined by fluorescence 
intensity measurements, between the cell populations. The 
absence of punctate fluorescence in cells grown either in log 
phase or at high cell density strongly suggests that W6/32- 
FITC-labeled class I MHC proteins were not spontaneously 
internalized into cytoplasmic vesicles. Consistent with this 
finding, others have reported that labeled class I MHC anti- 
gens are not internalized in either resting or activated B cells 
(35). Factors in addition to the extracellular substrate appear 
to alter the mobility of class I antigens. Such factors may in- 
clude cell density-dependent changes in interactions be- 
tween, for example, transmembrane class I molecules and 
cytoskeletal or membrane skeletal elements. Antigen cross- 
linking by bivalent antibody is required to induce immobili- 
zation of HLA antigens in cells grown to high cell density. 
The mechanism underlying this synergism between trans- 
membrane protein cross-linking and growth to high cell den- 
sity remains to be elucidated. 

Specific interactions between class I MHC antigens and 
membrane hormone receptors, such as insulin receptors and 
epidermal growth factor receptors, have been demonstrated 
(10, 26, 29). These interactions suggest that MHC antigens 
may, under certain conditions, be distributed nonrandomly 
in the membrane. An association between MHC antigens 
and cytoskeletal proteins has been demonstrated by copurifi- 
cation of H-2 (15) and HLA-A2 (27) antigens with actin, but 

2. Stolpen, A. H., J. S. Pober, C. S. Brown, and D. E. Golan, manuscript 
submitted for publication. 

Bierer et al. Modulation of  Class 1 MHC Mobility 1151 



this association may be related to preparative conditions. A 
stable association between MHC antigens and cytoskeletal 
components has been difficult to document. MHC antigens 
are relatively resistant to capping (4) and do not associate 
with the detergent-insoluble cytoskeletal matrix as readily as 
surface immunoglobulin (5). Class I MHC antigens are not 
clustered in the plasma membrane as determined by the tech- 
nique of fluorescence energy transfer (6). We have shown 
that the lateral mobility of MHC antigens labeled with 
purified, monovalent Fab fragments, which have been cen- 
trifuged to remove microaggregates, is identical to that of a 
lipid probe. Cross-linking of the surface molecules and 
growth to high cell density induce constraints on the lateral 
mobility of these transmembrane proteins. 
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