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Abstract

Δ9-Tetrahydrocannabinol (THC), the main bioactive compound found in the plant

Cannabis sativa, exerts its effects by activating cannabinoid receptors present in many

neural cells. Cannabinoid receptors are also physiologically engaged by endogenous

cannabinoid compounds, the so-called endocannabinoids. Specifically, the endo-

cannabinoid 2-arachidonoylglycerol has been highlighted as an important modulator

of oligodendrocyte (OL) development at embryonic stages and in animal models of

demyelination. However, the potential impact of THC exposure on OL lineage pro-

gression during the critical periods of postnatal myelination has never been explored.

Here, we show that acute THC administration at early postnatal ages in mice

enhanced OL development and CNS myelination in the subcortical white matter by

promoting oligodendrocyte precursor cell cycle exit and differentiation. Mechanisti-

cally, THC-induced-myelination was mediated by CB1 and CB2 cannabinoid recep-

tors, as demonstrated by the blockade of THC actions by selective receptor

antagonists. Moreover, the THC-mediated modulation of oligodendroglial differentia-

tion relied on the activation of the mammalian target of rapamycin complex

1 (mTORC1) signaling pathway, as mTORC1 pharmacological inhibition prevented
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the THC effects. Our study identifies THC as an effective pharmacological strategy

to enhance oligodendrogenesis and CNS myelination in vivo.
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cannabinoid receptors, cannabinoids, CB1, CB2, mTORC1, myelination, oligodendrocyte

precursor cells

1 | INTRODUCTION

In the mammalian CNS, the oligodendrocyte (OL) developmental pro-

gram begins with the specification of oligodendrocyte precursor cells

(OPCs), which emerge and expand in the late prenatal and postnatal

periods (Kessaris et al., 2006; Lu et al., 2002). OPCs differentiate

through a premyelinating stage to become the mature myelinating OL

cell, which generates axonal myelin to fine-tune neural circuitry

(Monje, 2018). Progression through the OL lineage is tightly regulated

by a multitude of intrinsic and extrinsic cues, which control mye-

lination both spatially and temporally during development, along with

adult lifespan and under pathological conditions (Elbaz &

Popko, 2019).

The endocannabinoid system (eCBS) is a lipid-based signaling sys-

tem constituted by at least two G protein-coupled receptors (CB1 and

CB2 cannabinoid receptors), their endogenous ligands (endo-

cannabinoids [eCB]), and the enzymes responsible for eCB synthesis

and degradation (Pertwee et al., 2010). Pharmacological and genetic

approaches have revealed the relevance of the eCBS in modulating

normal brain development (Galve-Roperh et al., 2013). eCBs, cannabi-

noid receptors and eCB-metabolizing enzymes are expressed from

early stages of neural development and guide major processes such as

neural progenitor proliferation, cell differentiation, cell migration, and

synaptogenesis (Galve-Roperh et al., 2013; Harkany et al., 2007;

Maccarrone, Guzman, Mackie, Doherty, & Harkany, 2014). In the con-

text of oligodendrogenesis, the eCB 2-arachidonoylglycerol (2-AG)

has been highlighted as an important modulator of OL functions in dif-

ferent physiopathological settings (Ilyasov, Milligan, Pharr, &

Howlett, 2018). Elevation of 2-AG levels by pharmacological inhibition

of the 2-AG-degrading enzyme monoacylglycerol lipase (MAGL)

induces cell proliferation in cultured OPC, whereas 2-AG enhances

OL maturation when OPCs are maintained under differentiating con-

ditions (Arevalo-Martin et al., 2007; Molina-Holgado et al., 2002).

MAGL pharmacological inhibition in vivo induces premature OL devel-

opment at embryonic stages (Alpar et al., 2014) and enhances OL

regeneration in the Theiler's murine encephalomyelitis virus progres-

sive mouse model of MS (Feliu et al., 2017). Increasing 2-AG levels

also attenuates myelin degeneration and inflammation in the

cuprizone animal model of primary demyelination and prevents

mitochondrial dysfunction upon excitotoxic insults in OL in vitro

(Bernal-Chico et al., 2015).

Δ9-Tetrahydrocannabinol (THC), the main cannabinoid compound

present in the plant Cannabis sativa, exerts most of its effects by

activating CB1 and CB2 cannabinoid receptors (Pertwee et al., 2010).

Besides the available evidence of eCBs modulating OL development

and survival, the capacity of THC to target OPC and modulate OL

development during CNS myelination has never been explored. Here,

by using transgenic reporter mouse lines, we studied the effect of

administering THC on OL development during the critical period of

postnatal CNS myelination. We show that acute THC administration

induces OL development in the postnatal white matter by promoting

OPC cell cycle exit and differentiation. THC administration also

favored OL maturation and CNS myelination. In summary, our findings

identify THC as a novel pharmacological candidate to enhance OL

development and CNS myelination in vivo.

2 | MATERIALS AND METHODS

2.1 | Animal procedures

All the experimental procedures used were ethically reviewed and

performed under the guidelines and with the approval of the Animal

Welfare Committee of Universidad Complutense de Madrid and Com-

unidad de Madrid, and under the directives of the European Commis-

sion (Directive 2010/63/EU). All animals, of either sex, used in this

work were bred into the C57BL/6J background. Mouse lines used

were from Jackson Laboratories: CNP-mGFP (Cnp-EGFP* 1Qrlu/J,

Cat# JAX:026105) (Deng et al., 2014), neuron-glial antigen 2 (NG2)-

dsRed (Cspg4-DsRed.T1 1Akik/J Cat# JAX:008241) (Zhu, Bergles, &

Nishiyama, 2008), NG2-CreERtm (NG2-Cre, Cspg4-cre/Esr1* BAkik/J,

Cat# JAX:008538) (Zhu et al., 2008), and Rosa-Ai6(B6.Cg-Gt(ROSA)

26Sortm6(CAG-ZsGreen1)Hze/J, Cat# JAX:007906) (Madisen et al., 2010).

By crossing the NG2-Cre with Ai6 mouse lines we generated the

NG2-Cre:Rosa-Ai6 mouse line (referred to here as NG2-Cre:Ai6). THC

(3 mg/kg), SR141716 (SR1, 2 mg/kg), SR144528 (SR2, 2 mg/kg) or

vehicle (100 μL Tween/NaCl (1:18, vol/vol) and 1% (vol/vol)

dimethylsulfoxide) were administered by intraperitoneal injection to

the animals. The Rapamicine analog temsirolimus (Tem) was dissolved in

0.9% NaCl and administered by intraperitoneal injection at 2.5 mg/kg.

Vehicle, SR1, SR2, or Tem were administered 30 min before THC, once

a day for four consecutive days. 5-Bromo-20-deoxyuridine (BrdU)

administration in vivo was performed as described previously

(Palazuelos, Klingener, & Aguirre, 2014). Briefly, when THC was used to

conduct cell cycle exit experiments (Ki67/BrdU ratios), BrdU was first

administered at 100 mg/kg; 3 hr later, animals received THC or vehicle
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twice a day for two consecutive days, and brain tissue was analyzed

48 hr later.

2.2 | FAC-sorting

FAC-sorting purification of NG2-Cre:Ai6 cells was performed as

previously described (Palazuelos et al., 2014). Six-day-old NG2-

Cre:Ai6 pups received Tamoxifen (37.5 mg/kg) for two consecutive

days, and subcortical white matter tissue was microdissected 24 hr

after the last Tamoxifen injection and processed for single-cell dis-

sociation. Cell suspensions were analyzed for light forward and

side scatter using a FACS Aria cell sorter, (BD Bioscience). Purified

NG2-Cre:Ai6+ cells were frozen until processed for RNA

extraction.

2.3 | Organotypic cerebellar slice culture

Cerebellar organotypic slice cultures were prepared by using brain

tissue isolated from P8 C57BL/6J or CNP-mGFP animals, as

described (Rutkowska, Sailer, & Dev, 2017). Briefly, mouse pups

were decapitated, and their brains were dissected into ice-cold

Hank's Balanced Salt Solution (HBSS). Cerebellar 300-μm sagittal

slices were cut with a tissue chopper and placed on Millicell culture

inserts with 0.45 μm pore size (Millipore) in medium containing

50% Minimal Essential Medium with Earle's Salts, 25% HBSS, 25%

horse serum, 25 mM HEPES buffer, UltraGlutamine, penicillin–

streptomycin, amphotericin B, and 5 mg/ml glucose. Media were

changed every 2 days.

2.4 | Sudan black staining

Floating sections were mounted on to TESPA-coated glass slides.

After air-drying, sections were dehydrated in 70% ethanol and stained

with 0.5% Sudan black in 70% ethanol for 30 min. Excess staining was

removed by washing the slides in 70% ethanol and finally rinsed with

water. Samples were examined under light microscopy in a Zeiss

Axioplan2 microscope.

2.5 | Immunofluorescence

For the characterization of OL lineage cells and myelination, brain tis-

sue was processed as previously described (Palazuelos, Klingener,

Raines, Crawford, & Aguirre, 2015). In brief, 30-μm-thick coronal free-

floating brain sections obtained from paraformaldehyde-perfused

mice were washed in PBS, blocked with 10% goat serum, and then

incubated with the indicated primary antibodies (overnight at 4�C).

The following day, sections were washed and fluorescent secondary

antibodies were used. Antigen retrieval for Olig2 and Ki67

immunostainings was performed with citric acid (10 mM, pH 6, 60�C

for 25 min), and for BrdU immunostaining with hydrochloric acid

(2 M, 37�C for 30 min). Immunofluorescence analysis of organotypic

slices was performed by firstly washing the slices in PBS and then fix-

ing and permeabilizing them by incubation in 4% paraformaldehyde

for 10 min on ice. Slices were then washed twice for 10 min in PBS

and incubated for 4 hr in PBS supplemented with 0.5% Triton-X100

and 10% goat serum. Primary antibodies were applied for 48 hr at

4�C and subsequently incubated with the appropriate Alexa Fluor-

conjugated secondary antibodies for 4 hr at room temperature. Nuclei

were stained with DAPI. The primary antibodies used were the fol-

lowing: anti-CC1 (1:400, Millipore, Cat#OP80, RRID:AB_2057371),

anti-Olig2 (1:250, Millipore Cat#AB9610, RRID:AB_570666), anti-

GSTπ (1:200, MBL International Cat#312, RRID:AB_591792), anti-

MAG (1:500, Abcam, Cat#ab89780, RRID:AB_2042411), anti-MBP

(1:200, BioLegend, Cat#836504, RRID:AB_2616694), anti-myelin oli-

godendrocyte glycoprotein (MOG; 1:500, Abcam Cat#ab32760,

RRID:AB_2145529), anti-BrdU (1:200, Abcam Cat#ab6326, RRID:

AB_305426), anti-Ki67 (1:400, Thermo Fisher Scientific Cat#RM-

9106-S0, RRID:AB_2341197), anti-pAkt (Thr308) (1:500, Cell Signal-

ing Technology, Cat#9275, RRID:AB_329828), anti-pS6 (Ser240/244)

(1:800, Cell Signaling Technology, Cat#5364, RRID:AB_10694233),

and FluoroMyelin (1:300, Thermo Fisher Scientific Cat#F34652,

RRID:AB_2572213). The appropriate mouse, rat, and rabbit highly

cross-adsorbed Alexa Fluor 488, Alexa Fluor 547, and Alexa Fluor

647 secondary antibodies (1:1,000, Invitrogen) were used.

2.6 | Confocal microscopy

A confocal laser-scanning microscope TCS-SP8 (Leica DMI6000 B

instrument) was used for image acquisition of green fluorescent pro-

tein (GFP), dsRed protein, Alexa 488, 547, and 647. Optical sections

(z = 0.5 μm) of confocal epifluorescence images were sequentially

acquired using a ×20 or ×63 objectives, with Leica Application Suite X

(LAS X) software. Merged images were processed in Photoshop Cs6

software with minimal changes of contrast. At least four different

brains for each strain and each experimental condition were analyzed.

Cell counting was performed blindly, and tissue sections were mat-

ched across samples. For subcortical white matter analysis, a minimum

of six correlative slices from a 1-in-10 series located between +1 and

−1 mm from bregma was analyzed. All cell quantification data were

obtained by using ImageJ (NIH), and results are presented as the mean

cell number per mm2 or as the percentage of positive cells within

Olig2+ or in BrdU+ populations. CC1+ and NG2+ or CC1+ in Olig2 or

BrdU cell quantifications were performed in the corpus callosum (CC) of

the specified regions. When counting the percentage of Olig2+ cells

that expressed either NG2-dsRed or CC1, only NG2-dsRed+CC1neg and

NG2-dsRednegCC1+ cells were included. Double-positive NG2-dsRed+/

CC1+ cells were excluded from quantifications. GSTπ+, CNP-mGFP+,

and MAG+ cell quantifications were performed in the CC and cingulum

areas. All digital images were acquired using the same exposure param-

eters. To quantify FluoroMyelin, MBP, MOG, and proteolipid protein

(PLP) immunofluorescence levels pixel intensity was measured. For
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quantification of organotypic cultures, apical ends of each lobe and

slices with integral cytoarchitecture were chosen. Three to five slices

per condition and three to five images per slice were analyzed per

experiment.

2.7 | Western blot

SCWM tissue from wild-type and transgenic mice was microdissected

from 300-μm-thick coronal sections, processed for whole-protein

extraction using RIPA lysis buffer (0.1% SDS, 0.5% sodium

deoxycholate, 1% NP40, 150 mM NaCl, 50 mM Tris–HCl, pH 8.0, in

PBS) containing PMSF, protease inhibitors, and sodium orthovanadate

(Sigma). Protein samples (2–15 μg total protein) were separated on

12% acrylamide (Bio-Rad) gels and transferred to polyvinylidene

difluoride membranes (Millipore). The primary antibodies used for

detection of the indicated proteins were the following: anti-CNPase

(1:1,000, BioLegend, Cat#836404, RRID:AB_2566639), anti-MBP

(1:1,000, BioLegend, Cat#836504, RRID:AB_2616694), anti-MAG

(1:2,000, Abcam, Cat#ab89780, RRID:AB_2042411), anti-MOG

(1:2,000, Abcam Cat#ab32760, RRID:AB_2145529), anti-PLP (1:2,000,

Abcam, Cat#ab28486, RRID:AB_776593), anti-pAkt (Thr308) (1:500,

Cell Signaling Technology, Cat#9275, RRID:AB_329828), anti-pP70S6

kinase (Thr389) (1:500, Cell Signaling Technology, Cat#9206, RRID:

AB_2285392), anti-p4E-binding protein 1 (BP1) (Ser65) (1:500, Cell Sig-

naling Technology, Cat#9451, RRID:AB_330947), anti-pS6

(Ser240/244) (1:1,000, Cell Signaling Technology, Cat#5364, RRID:

AB_10694233), and anti-α-tubulin (1:5,000, Sigma-Aldrich, Cat#T9026,

RRID:AB_477593). Primary antibodies were used in combination with sec-

ondary horseradish peroxidase-conjugate antibodies to detect the protein in

question using an enhanced chemiluminescence substrate mixture (ECL Plus;

GE Healthcare; Santa Cruz Biotechnology; 1:5,000). Protein levels were quan-

tified using Adobe Photoshop software. Protein levels were normalized to the

internal control α-tubulin, referred to the Veh-treated group, and expressed

as arbitrary units (a.u.).

2.8 | Real-time PCR

RNA was extracted from NG2-Cre:Ai6+ FAC-sorted cells using Arctu-

rus PicoPure isolation kit (Thermo Fisher Scientific). RNA from each

sample was reverse-transcribed using the SuperScript First-Strand

cDNA Synthesis kit (Invitrogen). Mouse gene-specific primers were

obtained from Integrated DNA Technologies. Semiquantitative PCR

was performed with DreamTaq Mastermix (Thermo Fisher Scientific)

using the following conditions: 93�C for 2 min, and 35 cycles (1 min at

95�C, 1 min at 58�C, 1 min at 72�C). After a final extension step at

72�C for 5 min, PCR products were separated on 1.5% agarose gels.

GAPDH was used as a positive control. The sequences of the primers

used are the following:

CB1-F: 50-TCTCTGGAAGGCTCACAG-30 and CB1-R: 50-TGTCTG-

TGGACACAGACATG-30 (508 bp PCR product);

CB2-F: 50-CTCATGGGGTGGACTTGTTG-30 and CB2-R: 50-ACCT-

TGGGCCTTCTTCTTTC-30 (500 bp PCR product);

GAPDH-F: 50-GGGAAGCTCACTGGCATGGCCTTCC-30 and GAP-

DH-R: 50-CATGTGGGCCATGAGGTCCACCAC-30 (318 bp PCR product).

2.9 | Statistics

Data shown represent the mean ± SEM and the n number of animals

and experiments indicated in every case. Statistical analysis was per-

formed by unpaired Student's t test using a confidence interval of

95% for pairwise comparisons or by one-way ANOVA, followed by

uncorrected Fisher's LSD or Bonferroni's post hoc test, for compari-

sons of more than two groups (GraphPad Prism 7).

3 | RESULTS

3.1 | THC induces OPC cell cycle exit and
differentiation

To evaluate the potential capacity of THC to modulate OPC cell fate

in vivo, we studied the effect of an acute administration of THC in the

process of oligodendrogenesis during the critical periods of postnatal

CNS myelination. For this purpose, we used the NG2-dsRed reporter

mouse line (Zhu et al., 2008), in which the fluorescent red protein is

expressed under the control of the NG2 gene promoter, an OPC

marker thus allowing a strong fluorescence intensity in cells bodies for

high-resolution characterization of the differentiation state of the oli-

godendroglial population. THC (3 mg/kg) or vehicle was administered

daily at postnatal Day 6 (P6) to NG2-dsRed mouse pups for two or

four consecutive days, and brain tissue sections were analyzed at P8

and P15 (Figure 1a). OL differentiation was analyzed by immunofluo-

rescence in the CC by using OL-lineage (oligodendrocyte transcription

factor 2, Olig2), OPC (NG2-dsRed), and immature/mature OL (CC1,

anti-adenomatous polyposis coli) markers. We found increased CC1+

OL cell densities in the CC of THC-treated-pups as fast as 2 days after

the first THC administration as compared to the vehicle-treated group

(Figure 1b,c). These differences were maintained at later stages of

development. Moreover, THC-treated mice showed an increased per-

centage of Olig2+ cells that co-expressed the OL marker CC1 and a

reduced percentage of NG2-dsRed+ OPCs in the CC at P8 and P15

(Figure 1d–f), indicating that THC administration promoted OL differ-

entiation. To complement these data, we performed organotypic cere-

bellar cultures from P8 NG2-dsRed mice (Figure 1g–i). Cerebellar

slices were incubated with THC (1 μM) for 2 days and the number of

Olig2+ cells that express OPC or OL markers was quantified. Immuno-

fluorescence analysis showed that THC increased the proportion of

Olig2+ cells that express the OL differentiation marker CC1, with a

concomitant reduction of NG2-dsRed+ OPCs, as compared to controls

(Figure 1h,i), thus indicating that THC also induced OPC differentia-

tion in the cerebellar white matter ex vivo.
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To further study oligodendrogenesis upon THC treatment, we

performed OPC cell cycle exit experiments by administering BrdU

before THC, in order to label proliferating OPCs and track cell cycle

exit and differentiation dynamics in the developing CC. Immunofluo-

rescence analysis at 2 days after THC administration showed a

reduced percentage of proliferating Ki67+ or NG2+ cells concomitant

F IGURE 1 Legend on next page.
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with an increased percentage of CC1+ cells within the BrdU+Olig2+

population, in the CC at P8, as compared to their controls (Figure 1j–

l). Together, these data support that THC induces OPC cell cycle exit

and OL differentiation in the postnatal CNS.

3.2 | THC enhances OL maturation

The complete process of oligodendrogenesis compromises the

transition through multiple developmental stages before the gener-

ation of mature fully differentiated myelinating cells. Thus, we eval-

uated whether THC administration not only induces OL

differentiation but also enhances the generation of mature

myelinating OLs. To address this question, we used the CNP-mGFP

reporter mouse line (Deng et al., 2014), in which the mGFP expres-

sion is driven by the 20-30-cyclic nucleotide 30-phosphodiesterase

(CNP) promoter, that is expressed in the myelinating cell lineage,

thus allowing the identification of mature myelinating OLs pro-

cesses, but also the inner layers of myelin sheaths for quantifying

CNS myelination. Thus, 6-day-old CNP-mGFP mouse pups were

injected with THC or vehicle for four consecutive days, and brains

were collected at different time points (P10 and P15). We per-

formed immunofluorescence analysis and quantified the state of

OL maturation in the SCWM, including the CC (Figure 2a–c), and

cingulum (Figure 2d). We found an increased density of mature

myelinating OLs, as reflected by the higher number of CNP-

mGFP+CC1+ double-positive cells (Figure 2c), in concert with a

higher percentage of CC1+ OLs that expressed the mature marker

GSTπ (glutathione-S-transferase π) and higher density of myelin-

associated glycoprotein (MAG+) cells in the SCWM of THC-treated

mice (Figure 2d–g). In sum, these data show that THC-induced OL

differentiation is accompanied by an enhanced OL maturation dur-

ing postnatal development.

To complement these observations, we analyzed the impact of

THC on organotypic cerebellar slices obtained from P8 CNP-mGFP

pups (Figure 2h). Immunofluorescence analysis revealed an increased

maturation of the OL population in the white matter of THC-treated

cerebellar slices as compared to controls, measured as the percentage

of CNP-mGFP+ or GSTπ+ cells within CC1+ cells, and as MAG+ cell

density (Figure 2i–l). Overall, these findings show that THC induces

OPC differentiation and enhances OL maturation.

3.3 | THC promotes CNS myelination

Then, we assessed whether THC-induced OL differentiation is fully

accomplished and translates into enhanced myelination. Thus, THC or

vehicle was administered to P6 CNP-mGFP pups for four consecutive

days, and SCWM myelination was analyzed during the critical periods

of postnatal myelination. Quantification of FluoroMyelin (Figure 3a),

Sudan black staining (Figure 3b), GFP signals from the CNP-mGFP

transgenic line, as well as the expression of the myelin proteins MBP

(myelin basic protein) and MOG (Figure 3c) showed increased myelin

and myelin-associated proteins levels in the THC-treated mouse

groups when compared to controls. In addition, we quantified myelin-

associated protein levels in SCWM extracts from THC-treated and

control mice at P10 and P15 by western blot analyses. We found

increased MBP, PLP, CNP, MOG, and MAG protein levels in SCWM

extracts from THC-treated mice as compared to their controls

(Figure 3d,e).

We extended these data by performing cerebellar organotypic

slice culture experiments (Figure 3f). Cerebellar slices from 8-day-old

CNP-mGFP pups were exposed to THC (1 μM) or vehicle for four con-

secutive days. Immunofluorescence analysis revealed increased immu-

noreactivity to MBP, MOG, and CNP-mGFP in the cerebellar white

matter of THC-treated slices as compared to controls (Figure 3f). Alto-

gether, these observations indicate that acute administration of THC

at early postnatal stages enhances OL maturation and CNS

myelination.

3.4 | THC modulates CNS myelination through
CB1 and CB2 cannabinoid receptor activation

In order to address the mechanism by which THC modulates OL

development during postnatal myelination, we first sought to analyze

CB1 and CB2 receptor expression in OLs in vivo. For this purpose,

NG2-Cre mice were bred with Rosa-Ai6 mice, an inducible reporter

strain, thus allowing Cre-dependent ZsGreen expression in OPC-

derived cells. RT-PCR analysis of SCWM FAC-sorted cells at P8

evidenced CB1 and CB2 receptor transcript expression in OLs lineage

cells (Figure 4a). In order to address the possible contribution of both

receptors to THC-induced CNS myelination we administered cannabi-

noid CB1 receptor (SR141716A, SR1) and CB2 receptor (SR144528,

F IGURE 1 THC induces OPC cycle exit and differentiation. (a) Timeline of THC (3 mg/kg) or Veh administration at postnatal ages, from P6 to
P9, and oligodendrogenesis was analyzed in the CC at P8, P10, and P15. (b–f) Immunofluorescence analysis of OL (CC1), OPC (NG2-dsRed), and
OL-lineage (Olig2) markers in CC sections from NG2-dsRed mice at P8 or P15. Representative confocal images at P15 (b,d) and quantification of
CC1+ cell densities (c) and the percentage of CC1+ OLs (e) or NG2-dsRed+ OPCs (f) within the Olig2+ population. (g–i) Cerebellar organotypic slice
cultures from P8 NG2-dsRed mice were incubated with THC (1 μM) for 2 days. (h,i) Immunofluorescence analysis and quantification of the
percentage of Olig2+ cells that expressed OPC (NG2-dsRed) or OL (CC1) markers. (j) Cell cycle exit experiments were performed by administering
BrdU before THC at P6 and quantifying the percentage of BrdU+ cells that were actively dividing at P8 (Ki67+). (k,l) Immunofluorescence analysis
and quantification of Ki67+ (k), NG2+ or CC1+ (l) cells within the BrdU+Olig2+ population at P8. Results are expressed in cell number per mm2 or
percentage of cells. Data are shown as mean values ± SEM. n = 3 (P8) or n = 6 (P15) animals for (c,e,f), n = 3 experiments for (i) and n = 3 animals
for (k,l). Scale bars: (b,d,h,j) = 10 μm. *p < .05, **p < .01, ***p < .001. BrdU, 5-bromo-20-deoxyuridine; CC, corpus callosum; OL, oligodendrocyte;
OPC, oligodendrocyte precursor cell; THC, Δ9-tetrahydrocannabinol; Veh, vehicle
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SR2) selective antagonists, at 2 mg/kg, alone or in combination with

THC, at 30 min before THC, once a day from P6 to P9 to CNP-mGFP

pups, and analyzed OL differentiation and SCWM myelination at P15.

Immunofluorescence analysis of OL markers in SCWM sections rev-

ealed that either CB1 or CB2 receptor antagonist prevented the accel-

eration of OL differentiation induced by THC (Figure 4b–e). Western

blot analysis of SCWM extracts at P15 showed that both receptor

antagonists prevented the THC-induced increase in myelin protein

levels in the SCWM, such as MAG, MOG, or CNP (Figure 4f,g). These

findings indicate that THC induces OPC differentiation and SCWM

myelination by activating CB1 and CB2 cannabinoid receptors.

3.5 | THC modulates CNS myelination by
activating the Akt/mTORC1 axis

In recent years, several studies have reported the role of the

Akt/mTORC1 (protein kinase B, PKB/mammalian target of rapamycin

F IGURE 2 THC accelerates oligodendrocyte maturation. THC administration at early postnatal ages induces OL maturation in the SCWM.
THC (3 mg/kg) or Veh was administered from P6 to P9 into CNP-mGFP mice and oligodendrocyte maturation was analyzed in the SCWM at P10
and P15. (a–g) Immunofluorescence analysis of brain sections from CNP-mGFP mice stained for OL (CC1), mature OL (GSTπ, or MAG), and OL-

lineage (Olig2) markers in the SCWM at P10 and P15. Representative confocal images at P10 (a) or P15 (b,d,f) and quantification of mature OLs
CC1+CNP-mGFP+ (c) and MAG+ (g) cell densities, and the percentage of GSTπ+ cells within the CC1+ population (e). Results are expressed in cell
number per mm2 or percentage of cells. (h–l) Organotypic slice cultures from P8 CNP-mGFP mice were stimulated with THC (1 μm) or Veh for
4 days and processed for immunofluorescence analysis. (i,k) Representative confocal images and (j,l) quantification of CNP-mGFP+ and GSTπ+ cells
in CC1+ cells or MAG+ cell densities in the cerebellar white matter. Data are shown as mean values ± SEM. n = 5 animals for (c), n = 3 animals for
(e,g), and n = 3 experiments for (j,l). **p < .01, ***p < .001. Scale bars: (a,b,d,f,i) = 10 μm, (k) = 15 μm. CC, corpus callosum; CNP, 20-30-cyclic
nucleotide 30-phosphodiesterase; OL, oligodendrocyte; MBP, myelin basic protein; MAG, myelin-associated glycoprotein; MOG, myelin
oligodendrocyte glycoprotein; PLP, proteolipid protein; SCWM, subcortical white matter; THC, Δ9-tetrahydrocannabinol; Veh, vehicle
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complex 1) signaling pathway as an essential modulator of OL differ-

entiation and CNS myelination (Gaesser & Fyffe-Maricich, 2016;

Wood et al., 2013). Indeed, the cannabinoid CB1 and CB2 G protein-

coupled receptors regulate this signaling pathway in several neural cell

types, including neurons, neuroblasts, glioma cells, neural progenitor

cells, and OPCs (Blazquez et al., 2015; Diaz-Alonso et al., 2015;

Gomez et al., 2015; Palazuelos, Ortega, Diaz-Alonso, Guzman, &

Galve-Roperh, 2012; Puighermanal et al., 2009; Salazar et al., 2009).

Therefore, we explored the involvement of the Akt/mTORC1 signal-

ing pathway in THC-induced OL development and CNS myelination.

F IGURE 3 THC induces CNS myelination. THC (3 mg/kg) was administered from P6 to P9 to CNP-mGFP mouse. (a,c) Immunofluorescence
analysis of myelin in the SCWM. (a) FluoroMyelin staining at P15 and reactivity quantification both at P10 and P15 in the SCWM of THC or Veh-
treated mice. (b) Sudan black staining in the CC of THC or Veh-treated mice at P15. (c) Veh or THC-treated CNP-mGFP mice at P15 were
immunostained for MBP and MOG. (d) Representative western blots scan images and (e) quantification of myelin protein levels in SWCM extracts
from Veh or THC-treated mice at P10 and P15. Protein levels were normalized to the internal control α-tubulin, referred to the Veh-treated
group, and expressed as arbitrary units (a.u.) (f) Organotypic slice cultures from P8 CNP-mGFP mice were stimulated with THC (1 μM) or Veh for
four consecutive days and immunofluorescence analysis was performed. Representative confocal images and quantification of MBP and MOG
immunoreactivity (I.R.) expressed in arbitrary units (a.u.) in the white matter of THC or Veh-treated cerebellar slice cultures. Data are shown as
mean values ± SEM. n = 3 animals for (a), n = 3–6 animals for (e) and n = 3 experiments for (f). *p < .05, **p < .01, ***p < .001. Scale bars: (a,
c) = 150 μm, (b) = 220 μm, and (f) = 120 μm. CC, corpus callosum; CNP, 20-30-cyclic nucleotide 30-phosphodiesterase; MBP, myelin basic protein;
MAG, myelin-associated glycoprotein; MOG, myelin oligodendrocyte glycoprotein; PLP, proteolipid protein; SCWM, subcortical white matter;
THC, Δ9-tetrahydrocannabinol; Veh, vehicle
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THC or vehicle was administered to P6 pups for four consecutive

days, and SCWMs were analyzed at P15. Western blot analysis of

SCWM extracts revealed increased phosphorylation levels of several

representative Akt/mTORC1 axis readout proteins, such as Akt, p70

ribosomal protein S6 kinase (p70S6K), ribosomal protein S6 and

eukaryotic translation initiation factor 4E-BP1 in THC-treated mice as

compared to vehicle-treated animals (Figure 5a,b). Consistent with

these data, immunofluorescence characterization showed that THC

administration increased pAkt+ (Figure 5c) and pS6+ (Figure 5d,f)

CC1+ OLs in the SCWM, as compared to the control group. Hence,

THC administration activates the Akt/mTORC1 signaling pathway in

cells of the OL lineage in vivo.

In order to evaluate the involvement of mTORC1 signaling in

THC-induced OL differentiation, we administered the mTORC1 inhibi-

tor temsirolimus (Tem, 2.5 mg/kg), alone or in combination with THC

(at 30 min before THC), once a day for four consecutive days, and

analyzed postnatal oligodendrogenesis and SCWM myelination.

Immunofluorescence analysis in the SCWM showed that mTORC1

pharmacological blockade prevented the effect of THC on OL devel-

opment. Thus, temsirolimus administration abrogated the THC-

induced increase in CC1+ cell densities and pS6+ cell numbers in the

CC1+ cell population (Figure 5d–g). Finally, Temsirolimus also effi-

ciently prevented the THC-induced increase in CNP-mGFP reactivity

in tissue sections (Figure 5d,h) and myelin protein levels in the SCWM

(Figure 5i,j). In summary, these findings indicate that THC modulates

OL development and SCWMmyelination, at least in part, by activating

the Akt/mTORC1 signaling pathway in cells of the OL lineage.

4 | DISCUSSION

In the present study, we show that THC induces OPC differentiation

and CNS myelinization in vivo, which, in line with previous in vitro evi-

dence, allows extrapolating the effect of cannabinoid compounds dur-

ing cell-culture oligodendrogenesis to the developing mouse brain.

THC typically binds and activates both CB1 and CB2 cannabinoid

receptors, and OPCs express both receptors (Arevalo-Martin

et al., 2007; Gomez et al., 2015; Mato, Alberdi, Ledent, Watanabe, &

Matute, 2009; Molina-Holgado et al., 2002). Our finding on the pres-

ence of both receptors in NG2-Cre:Rosa-Ai6+ OL lineage cells in the

postnatal CNS are consistent with previous RNA sequencing studies

of purified CNS cell types (Zhang et al., 2014) or single-cell RNA

sequencing on cells of the OL lineage from the mouse juvenile and

adult CNS (Marques et al., 2018). Specifically, Cnr1 transcripts were

reported in 11 out of 12 identified OL populations, ranging from

OPCs to myelin-forming oligodendrocytes, suggesting that CB1 recep-

tors regulate cell function at multiple stages of OL lineage progression.

Moreover, our results are in line with previous findings in which syn-

thetic CB1/CB2 receptor-mixed agonists and eCBs were found to

modulate OPC functions, and blocking pharmacologically either of the

two receptors prevented those effects (Feliu et al., 2017; Gomez

et al., 2011). This may raise the question of whether there is a func-

tional and/or physical interaction between both receptors, and what

F IGURE 4 THCmodulates CNSmyelination through CB1 and CB2

cannabinoid receptors activation. (a) FAC-sorting plot of the ZsGreen
population of SCWMdissected fromNG2-Cre:Ai6mice at Postnatal Day 8
(P8, Tamoxifen at P6 and P7). RT-PCR analysis showed the presence of
CB1 and CB2 receptor mRNA in FAC-sortedOL lineage cells. (b–g) SR1
(SR-141716A) or SR2 (SR-144528), selective CB1 or CB2 cannabinoid
receptors antagonists, respectively, were administered at 2mg/kg 30 min
before THC to P6 CNP-mGFPmouse pups for four consecutive days (P6–
P9) and tissuewas analyzed at P15 in the SCWM. (b) Immunofluorescence
analysis and quantification of CC1+ cell densities (c), the percentage of
CC1+ in Olig2+ cells (d), and CC1+CNP-mGFP+ cell densities (e) at P15 in
the SCWM. (f,g)Western blot analysis and quantification of myelin protein
levels in SCWMextracts at P15. Protein levels were normalized to the
internal control α-tubulin, referred to the Veh-treated group, and expressed
as arbitrary units (a.u.). Data are shown asmean values ± SEM. n = 3–4
animals for (b,c,d), and n = 3–6 animals for (f,g). *p < .05, **p < .01,
***p < .001 versus Veh-treatedmice; #p < .05, ##p < .01, ###p < .001 versus

THC-treatedmice. Scale bars: (a) = 20 μm. SCWM, subcortical white
matter; THC,Δ9-tetrahydrocannabinol; Veh, vehicle
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F IGURE 5 THC modulates CNS myelination by activating Akt/mTORC1 signaling pathway. The mTORC1 inhibitor temsiolimus (Tem) was
administered at 5 mg/kg 30 min before THC to P6 pups for four consecutive days, and tissue was analyzed at P15 in the SCWM. (a,b) Western
blot analysis and quantification of the activation of several Akt/mTORC1 axis proteins (pAkt, pP70S6K, pS6, and p4E-BP1) of SCWM extracts
from Veh- or THC-treated mice at P15. (c) CNP-mGFP mice were immunostained for pAKT and CC1. (d–h) Immunofluorescence analysis with
anti-CC1 and pS6 antibodies and quantification of CC1+ cell densities (e), the percentage of pS6+ in CC1+ cells (f), percentage of CC1+ in
Olig2+cells (g), and CNP-mGFP immunoreactivity (IR) (h) in the SCWM of CNP-mGFP-treated mice at P15. (i,j) Western blot analysis and
quantification of myelin protein levels (MAG, MOG, CNP) in SCWM extracts from treated mice at P15. Protein levels were normalized to the
internal control α-tubulin, referred to the Veh-treated group, and expressed as arbitrary units (a.u.). Data are shown as mean values ± SEM. n = 3
animals per experimental group. Scale bars: (c) = 5 μm, (d) = 20 μm. *p < .05, **p < .01, ***p < .001 versus Veh-treated mice; ##p < .01, ###p < .001
versus THC-treated mice. mTORC1, mammalian target of rapamycin complex 1; SCWM, subcortical white matter; temsirolimus, Tem; THC,
Δ9-tetrahydrocannabinol; Veh, vehicle
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the physiopathological significance of these effects may be. In post-

mortem human MS samples, CB1 receptors were present in certain

subpopulations of OPC and differentiated OLs in active plaques, while

CB2 receptor expression was not studied in cells of the oligodendrog-

lial lineage (Benito et al., 2007). Therefore, the potential presence and

cross talk of CB1 and CB2 receptors in human oligodendroglial cells in

health and disease needs further analysis. An extensive number of

studies have pointed out some similarities in the mode of action of

the molecules that modulate oligodendrogenesis during postnatal

development and in the adult CNS (Itoh, Maki, Lok, & Arai, 2015;

Patel & Klein, 2011). Indeed, chronic cannabis use has been associated

with structural differences in the gray matter, but more prominently in

white matter tracts (Manza, Yuan, Shokri-Kojori, Tomasi, &

Volkow, 2019; Orr, Paschall, & Banich, 2016), with greater functional

connectivity in orbitofrontal cortex network and increased structural

connectivity of the forceps minor of cannabis users, which in turn has

been suggested to reflect better myelination and/or intact axons

(Filbey et al., 2014; Song et al., 2002). Therefore, the identification in

this study of THC as a potent inductor of OPC differentiation in vivo

opens the possibility that this molecule could potentially modulate

CNS myelination in the adult human brain.

While many studies have shown the capacity of temsirolimus to

cross the blood–brain barrier (BBB) at the preclinical (Zhao

et al., 2012) and clinical levels (Galanis et al., 2005), some studies have

reported poor BBB permeability of cannabinoid receptor antagonists

following administration to adult mice, specifically SR2 (Bouchard

et al., 2012; Soethoudt et al., 2017). However, as in the mammalian

brain, and in particular in rodents, it is generally assumed that BBB

properties probably require some refinement during the 2–3 weeks of

age, later developmental stages than period used in this study

(Engelhardt & Liebner, 2014). In any event, we cannot exclude the

possibility that at least part of the effect observed in this study with

cannabinoid receptor antagonists may be non-centrally mediated.

The process of OL development during different physiological

and pathological settings needs the proper coordination of many

intracellular signaling pathways to drive the processes of OPC differ-

entiation and CNS myelination (Gaesser & Fyffe-Maricich, 2016).

Among them, the Akt/mTORC1 axis has been highlighted as a central

route controlling these processes (Figlia, Gerber, & Suter, 2018; Wood

et al., 2013). Akt/mTORC1 exerts an essential function in modulating

the initial steps of OPC differentiation and myelination (Bercury

et al., 2014; Narayanan, Flores, Wang, & Macklin, 2009;

Tyler et al., 2009; Wahl, McLane, Bercury, Macklin, & Wood, 2014;

Wood et al., 2013). Upstream Akt/mTORC1, the main extracellular

factors identified at the moment that positively modulate OL differen-

tiation and/or CNS myelination are insulin-like growth factor, Neu-

regulin/erb2, and thyroid hormone (Gaesser & Fyffe-Maricich, 2016;

Wood et al., 2013). Our study points to cannabinoid receptors as

important regulators of OL development in vivo and identifies the

Akt/mTORC1 as an intracellular pathway mediating these effects. In

the context of cannabinoid signaling, exogenous and endogenous can-

nabinoid molecules and their receptors have been shown to modulate

many processes within the CNS by controlling the Akt/mTORC1 axis.

Thus, for example, during development, cannabinoid signaling through

Akt/mTORC1 modulates neural progenitor cell proliferation, specifica-

tion, and pyramidal neuron generation (Diaz-Alonso et al., 2015;

Palazuelos et al., 2012). Moreover, deregulation of the eCBS contrib-

utes to an overactive mTORC1 signaling in focal cortical dysplasia

(Garcia-Rincon et al., 2018) and to mTORC1-mediated loss of striatal

neuron protection from excitotoxic injury (Blazquez et al., 2015). In

the context of OLs, in vitro evidence has implicated the Akt/mTORC1

axis in mediating the effect of endogenous or synthetic cannabinoids

on both OPC proliferation and OL differentiation (Gomez et al., 2011;

Gomez et al., 2015). Hence, this study provides new evidence for a

pivotal role of the Akt/mTORC1 axis as a mediator of OL differentia-

tion by cannabinoid compounds in vivo.

The globally increasing recreational use of cannabis has stressed

the potentially harmful effects of consumption during pregnancy.

Many studies have also evidenced the relevance of the eCBS in mod-

ulating essential processes during CNS development. Thus, for exam-

ple, THC exposure during embryonic development has been linked to

psychiatric disorders, such as depression and anxiety (Fried &

Smith, 2001; Volkow, Baler, Compton, & Weiss, 2014). In mice, canna-

binoid exposure during pregnancy leads to an epileptogenic pheno-

type in the adult, at least in part by modulating basal progenitor

expansion, as well neuronal differentiation and migration at specific

embryonic stages (Bara et al., 2018; de Salas-Quiroga et al., 2015;

Diaz-Alonso et al., 2012; Diaz-Alonso et al., 2015). Moreover, admin-

istration at early postnatal ages induces developmental alterations

and behavioral defects in adult mice, such as altered social interaction,

or spontaneous behavior (Philippot, Nyberg, Gordh, Fredriksson, &

Viberg, 2016; Trezza et al., 2008). In the context of OL and mye-

lination, increasing evidence has linked deregulated developmental

myelination to impaired cognitive functions and neuropsychiatric alter-

ations (Fields, 2008; Nave & Ehrenreich, 2014). Specifically, alterations

in postnatal myelination have been associated with altered motor func-

tion (Ishii, Furusho, Dupree, & Bansal, 2014; Schneider et al., 2016),

memory (Poggi et al., 2016), social interaction (Poggi et al., 2016; Roy

et al., 2007), and anxiety (Carson et al., 2015; Chen et al., 2015;

Roy et al., 2007). Thus, the effect of THC administration at postnatal

ages observed in OL development and CNS myelination reported in this

study suggests that at least part of these developmental and neuropsy-

chiatric alterations observed after THC exposure may be due to an

impact on the OL lineage.

Overall, our study identifies THC as a potent inductor of OPC dif-

ferentiation and CNS myelination in vivo and supports the relevance

of cannabinoid receptors in modulating OL functions and myelination

during postnatal myelination in mice. It also suggests that THC admin-

istration may potentially modulate OL functions in other contexts,

such as OL turnover or myelin homeostasis during adulthood, as wells

as control OPC functions and enhance OL regeneration and CNS

remyelination under demyelinating conditions.
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