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Abstract. The Notch signaling pathway is a crucial regulator of 
numerous fundamental cellular processes. Increasing evidence 
suggests that Notch signaling is involved in inflammation and 
oxidative stress, and thus in the progress of cerebrovascular 
diseases. In addition, Notch signaling in cerebrovascular 
diseases is associated with apoptosis, angiogenesis and the 
function of blood-brain barrier. Despite the contradictory 
results obtained to date as to whether Notch signaling is 
harmful or beneficial, the regulation of Notch signaling may 
provide a novel strategy for the treatment of cerebrovascular 
diseases.
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1. Introduction

Cerebrovascular diseases occur following acute cerebrovascular 
events whereby the arteries of the brain are blocked or a brain 
blood vessel ruptures. Poor blood flow to the brain subsequently 
results in cell death. There are three primary types of cerebro-
vascular diseases: Ischemic stroke, hemorrhagic stroke and 
transient ischemic attack (TIA). The high incidence of cerebro-
vascular diseases worldwide is largely due to failed management 
and prevention of modifiable risk factors, particularly in isch-
emic stroke, which accounts for >85% of total cerebrovascular 
diseases. Cerebrovascular diseases more commonly affect 
people who are overweight, aged ≥55, have a unhealthy lifestyle 
(limited exercise, heavy drinking, use of illicit drugs, smoking 
or poor work/life balance), and who have a family history of 
stroke, hypertension, moyamoya, vasculitis, arterial dissection 
or venous occlusive disease (1-6). Cerebrovascular disease is the 
leading cause of mortality and chronic disability in China, and 
the third leading cause of mortality and the leading cause of 
chronic disability in the USA (7,8).

Notch signaling is a major intercellular communication 
pathway, which is highly conserved in the majority of multicellular 
organisms. Notch signaling is a crucial regulator of numerous 
fundamental cellular processes, including proliferation, stem 
cell maintenance and differentiation, during embryonic develop-
ment in vertebrate and invertebrate organisms (9-11). In addition, 
Notch signaling is involved in cell differentiation, proliferation, 
inflammation (12), oxidative stress and apoptosis in a variety 
of cell types in adults (10,13). The primary mechanisms under-
lying the Notch signaling pathway in cerebrovascular disease 
have been well-established by extensive investigation (10,14,15), 
and include enhancing inflammation (16‑18), increasing oxida-
tive stress (19), promoting apoptosis (20) and mediating adult 
subventricular zone neural progenitor cell proliferation and 
differentiation following stroke (21). It has been demonstrated 
that activation of the Notch signaling pathway exacerbates 
ischemic brain damage, whereas inhibiting the Notch signaling 
pathway decreases the infarct size and improves the functional 
outcome in a mouse model of stroke (18,22).

The present review discusses the role of the Notch signaling 
pathway in the pathogenesis of cerebrovascular diseases. It 
primarily focuses on the association between Notch signaling 
and neuroinflammation, oxidative stress and apoptosis in 
cerebrovascular diseases. An overview is provided for the 
proposed pathogenic mechanism underlying Notch signaling 
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in stroke via regulation of angiogenesis and the function of the 
blood‑brain barrier (BBB). Finally, the efficacy of regulating 
Notch signaling as a novel therapeutic intervention for cere-
brovascular diseases is considered.

2. Notch signaling pathway

The Notch gene, discovered in the wings of Drosophila mela-
nogaster by Thomas Hunt Morgan in 1917 (23), is crucial for 
the regulation of various physiological processes (24,25). 
The Notch signaling pathway, comprised of Notch receptors 
(Notch1, Notch2, Notch3 and Notch4), Notch ligand and the 
transcription factor, CBF1/Suppressor of Hairless/LAG-1 (CSL) 
protein, is critical for numerous fundamental cellular processes, 
including proliferation, differentiation and survival, during 
embryonic and adult development (26-30). These effects are 
mediated by the transmembrane ligand-induced release of the 
Notch intracellular domain (NICD) and the interaction of this 
fragment with the CSL family of transcription factors within the 
nucleus (25,27,31). The Notch receptors are expressed on cell 
membrane surfaces, and thus can be cleaved by a disintegrin and 
metalloproteinase (ADAM) 17 or -10 and a presenilin-depen-
dent γ-secretase complex. The cleaved NICD translocates to 
the nucleus, where it interacts with the ubiquitous transcription 
factor CSL and recruits co-activator mastermind-like proteins 
and therefore activates downstream target genes (32-34). In 
addition, CSL may inhibit the expression of target genes by 
forming transcription complexes in the absence of NICD.

Extensive evidence has revealed that the Notch signaling 
pathway is closely associated with the function and structure of 
the nervous system. In the central nervous system (CNS), the 
Notch signaling pathway regulates the normal development of 
neural progenitor cells, neurons, oligodendrocytes and astro-
cytes (35,36). Numerous diseases of the nervous system are 
associated with Notch mutations, including sporadic Alzheimer's 
disease (37,38), Down syndrome (39,40), Pick's disease (38) and 
cerebral autosomal dominant arteriopathy with subcortical 
infarcts and leukoencephalopathy (CADASIL) (41-44). The 
molecular and cellular mechanisms underlying the degeneration 
of brain cells affected by cerebrovascular disease are complex, 
involving bioenergetic failure, acidosis, excitotoxicity, oxidative 
stress and inflammation, and resulting in necrotic or apoptotic 
cell death (45,46). Various signaling pathways are involved, 
including Notch. For example, in cerebral ischemia, the activa-
tion of Notch regulates nerve damage repair, inflammation and 
angiogenesis in the vascular ischemic area via regulating prolif-
eration and development of neuronal precursor cells, mediating 
the release of inflammatory factors and promoting angiogen-
esis (47-50). Studies in vitro and in vivo have demonstrated 
that blood vessel angiogenesis, endothelial cell proliferation, 
and artery and vein differentiation are regulated by the Notch 
signaling pathway (51-53). Enhancing Notch signaling activity 
promotes arteriogenesis via vascular smooth muscle cell (VSMC) 
proliferation in the ischemic brain following stroke (51,54,55).

3. Notch signaling and neuroinflammation in cerebrovascular 
diseases

Inflammation is a complex cascade that protects the body 
from infection and injury. Similarly, neuroinflammation is a 

response to neurological damage and may be divided into acute 
and chronic process. A variety of inflammatory cytokines 
take part in the neuroinflammation. Evidence indicates that 
acute neuroinflammation is beneficial to damage repair in the 
nervous system, whereas chronic neuroinflammation aggra-
vates the pathological events occurring in the brain (56-59). 
In addition, neuroinflammation has been demonstrated to be 
crucial for the pathogenesis of cerebrovascular diseases (56). 
Various studies have revealed that the activation of Notch 
signaling promotes the neuroinflammatory response associ-
ated with cerebrovascular diseases (Fig. 1) (18,22,60).

Notch signaling and cytokines. Previous studies have demon-
strated that cerebral ischemia initiates an inflammatory 
response in the brain associated with the release of a variety 
of inflammatory cytokines, including tumor necrosis factor‑α 
(TNF-α), interleukin (IL)-1β, and IL-6 (55,61,62). Macrophages 
treated with Toll-like receptor (TLR) 3 or -4 agonists increase 
their production of interferon (IFN)-β, TNF-α, IL-12 and IL-23. 
Activation of glial cells and their release of neurotoxic factors 
enhance inflammation in cerebrovascular disease. In addition, 
activated glial cells increase the expression of inflammatory 
cytokines in cerebral ischemia, including TNF-α, IL-1β, IL-6, 
transforming growth factor β (TGF-β) and IL-8.

Notch signaling is evolutionarily conserved and critical for 
the development and homeostasis of various tissues. Activation 
of Notch signaling promotes macrophage polarization to the 
IFN-γ‑producing M1 (inflammatory) subtype (63). Inhibition 
of Notch signaling by γ-secretase inhibitors (GSI) reduces 
nuclear factor-κB (NF-κB) activity and suppresses inflamma-
tory responses. Previous studies have demonstrated that GSI 
significantly decreases peptidoglycan and poly (I:C)‑induced 
secretion of M1 (TNF-α, IL-6, IFN-γ and IL-1α) and the 
anti-inflammatory subtype M2 (IL-10) cytokines (63,64). 
Notch signaling is activated in response to TLR ligands, thus 
amplifying the inflammatory response by enhancing NF‑κB 
signaling. Activation of Notch signaling has been revealed to be 
involved in the sustained activation of NF-κB and the resulting 
enhancement of inflammatory responses (65). It is becoming 
apparent that Notch signaling is central to chronic inflammatory 
events involved in the pathogenesis of cerebrovascular diseases, 
and Notch may therefore provide a novel target for therapeutic 
strategies (15,16,18-20,22,63,65). An ischemic stroke rat model 
induced by a 90-min occlusion of the right middle cerebral 
artery demonstrated that inhibiting Notch activation with N-[N- 
(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl 
ester (DAPT) limited NICD release, and production of IL-6 
and IL-1β in the ischemic penumbral cortex (18). Notch 
mutations may result in a predisposition to stroke and cere-
brovascular atherosclerosis, and Notch mutations may also be 
involved in inflammation process, as genes encoded by Notch 
mutations include the IL-1 receptor and paraoxonase-1 (66).

Notch signaling and inflammatory mediators. Inflammatory 
mediators from plasma or cells, exert their effects via binding 
to specific receptors on target cells. Mediators may have one or 
numerous target cell types, and may even have varying effects 
in distinct cell and tissue types. It has been demonstrated that 
Notch signaling may reprogram mitochondrial metabolism for 
proinflammatory macrophage activation, inducing the release 
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of inflammatory mediators (67). Nitric oxide (NO), which 
is produced by cells that express NO synthase (NOS), is a 
prevalent inflammatory mediator that may inhibit the activity 
of Notch1 signaling (68,69). A previous study indicates that 
inducible NOS (iNOS) is directly involved in the generation 
of NO and the inhibition of Notch1 signaling, and that NO 
inhibits the binding of Notch1-IC and CSL protein tran-
scriptional complexes to a specific target sequence (69). The 
dysfunction of Notch signaling pathway increases the vulner-
ability of neurons and interacts with NF-κB to enhance the 
inflammatory response following cerebral ischemia (70,71). 
Numerous signaling pathways involved in neurodegenerative 
disorders are activated in response to reactive oxygen species 
(ROS), which induce apoptosis and increase NICD release and 
the expression of hairy and enhancer of split-1 (HES-1) in cere-
bral ischemia (71-73). The potential role of Notch signaling in 
stroke via inflammatory mediators is summarized in Table I.

Notch signaling and glial cells (microglia and astrocytes). 
Microglia are mononuclear phagocytes with various func-
tions in the CNS, with the stage and function of microglia 
indicated by morphological characteristics. The phagocytic 
function of microglia is critical for the removal of hematoma 
and other debris; however, they additionally produce inflam-
matory mediators (93). Microglia are typically classified into 
three forms: Ameboid, ramified and activated. Microglia, as 
the resident immune cells of the CNS, continually sample 
the environment. Under normal conditions, they exist in a 
ramified form and phagocytose debris (94). Previous studies 
indicate that Notch signaling may regulate the different forms 
of microglia under different conditions (71,95-97). Notch 
signaling damages neurons by activating microglial cells and 
stimulating the infiltration of proinflammatory leukocytes (98). 
Following stroke, microglia are activated, become amoeboid 
and release inflammatory cytokines (M1 subtype). However, 

Figure 1. Potential underlying mechanisms by which the activation of Notch signaling may contribute to the pathogenesis of neuroinflammation in cerebro-
vascular diseases.

Table I. Potential role of Notch signaling in stroke via inflammatory mediators.

Mediator Source Potential role in stroke References

Histamine and Mast cells, platelets Enhancing vascular leakage, regulating cell 74-76
serotonin  proliferation and differentiation
Bradykinin Plasma substrate Enhancing vascular leakage and pain 77
C3a Plasma protein via liver Enhancing vascular leakage and the formation 78
  of opsonic fragment (C3b)
C5a  Macrophages Enhancing vascular leakage, chemotaxis and 79
  leukocyte adhesion and activation
Prostaglandins Mast cells from membrane Potentiating other mediators, vasodilation, pain 80,81
 phospholipids and fever
Leukotriene B4 Leukocytes Leukocyte adhesion and activation 82
Oxygen metabolites Leukocytes Endothelial damage and tissue damage 22,83-85
IL-1 and TNF-α Macrophages, other Acute phase reactions, enhancing vascular 18,65,68,
  leakage and endothelial and tissue damage 86-89
Chemokines Leukocytes, others Leukocyte activation, enhancing vascular leakage 90-92
  and endothelial and tissue damage
Nitric oxide Macrophages, endothelium Vasodilation and cytotoxicity  71

C, complement component; IL-1, interleukin-1; TNF-α, tumor necrosis factor α. 
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microglia may be differentially activated, subsequently 
limiting inflammation and destroy tissue debris through 
phagocytosis (M2 subtype) (63,99). Microglia secrete various 
inflammatory molecules, including IL-1, IL-6, IFN-γ and 
TNF-α (22). Furthermore, Notch signaling may be involved 
in regulating microglia activation following hypoxia, partially 
via the TLR4/Myeloid differentiation primary response 
gene 88/TNF receptor associated factor 6/NF-κB signaling 
pathway (71,100). A model of focal ischemic stroke using mice 
transgenic for antisense Notch or wild-type mice treated with 
GSI demonstrated that inhibiting Notch activation reduced 
brain cell damage and improved functional outcome. This 
suggests that Notch activation exacerbates brain damage and 
functional outcome in ischemic stroke (98). Therefore, Notch 
signaling may be a potential target for inhibition of microglia 
activation implicated in brain damage (101).

Notch signaling and neuroinflammation in cerebrovascular 
diseases. Various studies have indicated that Notch activa-
tion induces NF-κB‑mediated expression of proinflammatory 
genes in hypoxic astrocytes (102). Notch signaling regulates the 
activation state of microglia, thus contributing to the control of 
inflammatory reactions in the CNS (18,96). Notch‑1 signaling 
is activated in hypoxic astrocytes, verified by increased NICD 
and HES-1, regulating astrocytic proliferation and activa-
tion via the suppression of the vascular endothelial growth 
factor (VEGF) or NF-κB signaling pathways. Dysregulation 
of Notch may exert effects following stroke via the activa-
tion of microglia and astrocytes (63,72,87,103). NF-κB is 
crucial in promoting ischemic brain damage following stroke. 
Activation of NF-κB induces the expression of proinflam-
matory cytokines, the adhesion and migration of leukocytes, 
thus increasing the inflammatory response (102). The Notch1 
signaling pathway regulates the NF-κB signaling pathway 
via Jagged1 and inhibitor of κB α (IκBα). The dysfunc-
tion of the Notch signaling pathway occurs with NF-κB 
following cerebral ischemia via activating microglia to 
produce inflammatory mediators (71,101,104). In addition, 
Notch activation enhances postischemic inflammation by 
directly modulating the microglial innate response (22,104). 
In rats with cerebral ischemia and in activated BV-2 microglia, 
Notch signaling induces the migration and morphological 
transformation of activated microglia (16). An ischemic rat 
model using middle-cerebral-artery occlusion demonstrated 
that Notch-Jagged signaling is involved in dysfunction of 
astrocyte-associated capillary network (103).

4. Notch signaling and oxidative stress in cerebrovascular 
diseases

Oxidative stress is broadly defined as a disturbance in 
the balance between ROS production and antioxidant 
defenses (105-107). In this state, abnormal levels of ROS, 
including free radicals (hydroxyl, nitric acid and superoxide) 
and non-radicals (hydrogen peroxide and lipid peroxide) 
result in oxidative damage to cells or tissue (105,108-111). The 
oxidation state is the sum of all redox processes producing 
ROS, reactive nitrogen species and other reactive intermedi-
ates (106,108,112-114). ROS are crucial for physiological 
processes, including apoptosis, regulation of neurotransmitters 

and chemotaxis (114-116). ROS may destroy cell function and 
promote injury to cellular lipids, nucleic acids and proteins, 
thus inducing apoptosis. Oxidative stress is associated with 
the pathological process of atherosclerosis, diabetes, neuro-
degenerative disorders including Alzheimer's disease and 
Parkinson's disease (117,118), hypertension (119,120), cardio-
vascular diseases (121) and cerebrovascular diseases (122,123). 
These diseases may promote the production of ROS (105,107).

Oxidative stress and cerebrovascular diseases. Oxidative 
stress is involved in the pathogenesis of ischemic and hemor-
rhagic stroke (124-130) and appears to be a typical feature 
in diverse models of cerebrovascular disease. Additionally, 
oxidative stress may be involved in the pathogenesis of acute 
ischemic stroke (131-136). Oxidative stress regulates cerebral 
blood flow and controls permeability of the BBB (115,137). 
A high quantities of superoxide, NO and peroxides are 
generated during cerebral ischemia/reperfusion, and cellular 
macromolecules are destroyed by oxygen radicals, resulting 
in apoptosis (138-142). Oxygen radicals activate matrix metal-
loproteinases, resulting in the degradation of collagen and 
laminin proteins in the basilar membrane, and destroying the 
integrity of the vessel wall (143). In addition, ROS may induce 
cell death through oxidative modification and fragmenta-
tion of DNA mediated by nucleate endonuclease (144-146). 
Furthermore, oxidative stress promotes transmigration of 
neutrophilic granulocytes from peripheral blood to the CNS 
and the release of enzymes that degrade the blood vessel 
basement membrane, resulting in increased permeability of 
blood vessels (147-149). Oxidative stress may result in the 
dysregulation of endothelial cell function, caused by hyper-
glycemia, dyslipidemia and hyperinsulinemia, leading to 
impaired vasoregulation, inflammation and altered BBB func-
tion (150-152). The described pathological processes result 
in cerebral parenchymal hemorrhage, vasogenic brain edema 
and neutrophil infiltration, thus, aggravating cerebral ischemic 
injury (142,153,154).

Notch signaling and oxidative stress in cerebrovascular 
diseases. Studies have revealed that oxidative stress may 
activate multiple signaling pathways associated with cell 
death; the Notch signaling pathway is closely associated with 
oxidative stress following cerebral ischemia, suggesting that 
dysregulation of Notch signaling contributes to the occur-
rence of oxidative stress (Fig. 2) (155-158). Notch activation 
results in cell proliferation and metastasis, accompanied by a 
decrease in B-cell lymphoma-2 (Bcl-2) associated protein X 
(Bax), Bcl-2 antagonist/killer, cytochrome c and caspase-3 and 
p53 expression and an increase in Bcl-2 expression (159). It 
has been reported that inhibiting Notch signaling abrogated 
cerebral ischemia/reperfusion injury via inhibiting oxidative 
stress (68,160,161). Inhibiting the Notch signaling pathway 
attenuates endothelial oxidative stress injury (158), suggesting 
that Notch inhibition protects against cerebrovascular 
diseases via decreasing oxidative stress-induced endothelial 
injury (158). A mutation in Notch3 has been associated with 
mitochondrial disease, in which oxidative stress caused by 
chronic hypoxia results in cerebral arteriopathy (162).

Ischemia/reperfusion injury increases the oxidative stress 
levels in tissue. The role of the Notch signaling pathway in the 
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oxidative stress-associated pathogenesis of cerebrovascular 
diseases has been researched extensively (163). Further inves-
tigations to elucidate the underlying molecular mechanisms 
of the Notch signaling pathway in cerebrovascular disease 
may uncover potential drug targets for the treatment of 
Notch-associated diseases. However, decreasing the activity of 
Notch1 increases the production of superoxide anion, iNOS, 
NO, nitrotyrosine and phosphatase and tensin homolog deleted 
on chromosome 10 in mice subjected to ischemia/reperfusion 
injury, whereas the phosphorylation levels of NOS and protein 
kinase B (Akt) are decreased (68,163,164). As the inhibition or 
activation of Notch signaling may be beneficial for the treat-
ment of cerebrovascular diseases, Notch signaling may exert 
distinct functions under different conditions. Therefore, further 
studies are required to elucidate the mechanisms underlying 
the role of Notch signaling in cerebrovascular diseases.

5. Notch signaling and apoptosis in cerebrovascular 
diseases

Programmed cell death by apoptosis is crucial for the 
development of multicellular organisms, and defects in apop-
tosis are associated with a wide variety of diseases (165). 
Inappropriate apoptosis results in tissue atrophy, whereas a 
failure of apoptosis, as occurs in cancer, leads to uncontrolled 
cell proliferation. Certain factors, including Fas receptors 
and caspases, induce apoptosis, whereas others, including 
certain Bcl-2 family members, suppress it (166). Apoptosis is 
induced by either the extrinsic or intrinsic pathways (167,168). 
Extrinsic stimuli include the binding of ligands to cell surface 
death receptors, hormones, TNF-α, growth factors, NO and 
cytokines (169-171). Intrinsic signals result from cellular 
stress, including heat, radiation, nutrient deprivation and viral 
infection. The expression of pro- and anti-apoptotic proteins, 
the strength of the stimulus and the cell cycle stage all alter the 
response of the cell to the extrinsic or intrinsic trigger (172,173).

Apoptosis and cerebrovascular diseases. In vivo and in vitro 
studies suggest that apoptosis is critical for the pathogenesis 
of cerebrovascular diseases (174-179). Increased expression of 

apoptotic proteins, including phosphorylated (p)-Arabidopsis 
serine/threonine kinase 1 (ASK1), p-c-Jun N-terminal kinase 
(JNK), p-p38, cleaved caspase-3 and cytochrome c in the 
ischemic penumbra has been observed following stroke (177). 
Studies have reported that the inhibition of apoptosis may 
prevent the development of cerebral ischemia/reperfusion 
injury (166,180-185). Thioredoxin-1 (Trx1) small interfering 
RNA increases ASK1 activation in response to apoptotic 
stress, Trx1 may therefore be anti-apoptotic and suppress 
cerebral ischemia/reperfusion injury (186-188), potentially via 
inhibition of the ASK1-JNK/p38 signaling pathway.

Notch signaling and apoptosis. Notch is involved in various 
physiological processes, via NICD translocation into the 
nucleus and binding to target genes (189-191), including 
apoptosis (172). During apoptosis of tumor cells, microRNA 
(miR)-100 was demonstrated to mediate Notch signaling (192). 
A previous study demonstrated that a Notch cis-regulatory 
element is responsive to loss and gain of Drosophila p53 (Dp53) 
function and that overexpression of Dp53 upregulates Notch 
mRNA and protein expression levels (165). Dp53-induced 
Notch activation and proliferation was revealed to occur even 
when apoptosis was inhibited, and Dp53 may have a dual role 
in regulating cell death and proliferation gene networks, to 
control the balance between apoptosis and proliferation (165). 
In addition, Notch may be important in the apoptosis- and 
drug-resistance of chronic lymphocytic leukemia cells. 
Notch signaling has a cardioprotective effect by regulating 
apoptosis via inhibiting Bcl-2 and the activation of caspase-3 
and -9. Furthermore, the Notch signaling pathway mediates 
high-glucose-induced podocyte apoptosis via the Bcl-2 and 
p53 pathways (193-195). It has been reported that miR-34c 
overexpression increases the expression of anti-apoptotic 
Bcl-2, and decreases the expression of pro-apoptotic Bax and 
cleaved caspase-3 via targeting of Notch1 and Jaggged1 (193).

Notch signaling and apoptosis in cerebrovascular diseases. 
The Notch signaling pathway leads to apoptosis of nerve cells 
and glia. Cell death in the brain following stroke is the result 
of an alteration in the balance between pro- and anti-apoptotic 

Figure 2. Potential underlying mechanisms by which activation of Notch signaling may contribute to the pathogenesis of oxidative stress in cerebrovascular 
diseases. ROS, reactive oxygen species; RNS, reactive nitrogen species.
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factors (196). Neurons undergo apoptosis and necrosis. The 
Notch signaling pathway is activated by various brain insults, 
including cerebrovascular diseases (20,47,197), and is associ-
ated with the apoptosis involved in the pathogenesis of stroke 
(Fig. 3). Following stroke, activation of the Notch signaling 
pathway may result in apoptosis of neurons via NF-κB and 
hypoxia inducible factor-1α (HIF-1α) (20,197,198). In addition, 
Notch signaling may affect mitogen-activated protein kinase 
(MAPK)-associated signaling pathways. However, the role of 
Notch signaling in MAPK activation following stroke remains 
to be fully elucidated. In wild-type and NICD1-overexpressing 
HEK and SH-SY5Y cell lines, ischemic conditions increased 
the expression levels of NICD1, JNK, p38-MAPK and cleaved 
caspase-3; this increase in NICD1 and JNK was attenuated by 
GSI (198). NICD overexpression increased JNK expression 
levels, resulting in enhanced cell death. Therefore, the Notch 
signaling pathway may contribute to ischemic stroke via the 
JNK signaling pathway (198), and the use of GSIs may be a 
potential strategy for the treatment of ischemic stroke.

Neuronal cell apoptosis associated with Notch signaling 
occurs in ischemic penumbra and ischemia/reperfusion injury 
following ischemic cerebrovascular disease (85,199-201). 
Notch signaling may contribute to apoptosis via the NF-κB, 
Bcl-like protein 11 and caspase pathways (202). Calsenilin, 
the expression of which is increased in the brain following 
experimental ischemic stroke, was revealed to enhance the 
γ-secretase-mediated cleavage of Notch and to contribute 
to apoptosis (203). Peptidyl-prolyl cis-trans isomerase 
NIMA-interacting 1 (Pin1) contributes to the pathogenesis 
of ischemic stroke by promoting Notch signaling in vitro and 
in a mouse stroke model, suggesting that Notch signaling 
activation is involved in the pathogenesis of stroke, and that 
inhibition of Pin1 may be a novel strategy for the treatment 
of ischemic stroke (204). However, Notch1 may inhibit 
neuronal apoptosis in cerebral ischemia/reperfusion injury 

via increasing the phosphorylation of Akt and promoting 
inactivation of Bcl-2-associated death promoter. Notch1 may 
be neuroprotective in the immature brain against ischemic 
injury, and future studies and clinical trials are required to 
investigate the suitability of Notch1 inhibitors as a treatment 
for perinatal ischemia. Inhibiting Notch2 was demonstrated to 
alter the levels of apoptosis-regulating proteins and slow the 
process of apoptosis in cerebral ischemia/reperfusion-induced 
mice (199). Loss-of-function mutations in Notch3 have been 
identified as the underlying cause of CADASIL (205,206), 
in addition to complex regulation of multiple pathways, 
including the Wnt/β-catenin signaling pathway, TGF-β and 
Notch-induced apoptosis (207).

In summary, the role of Notch signaling in stroke remains 
controversial. The majority of studies suggest that Notch 
signaling activation is damaging following stroke, promoting 
inflammation and apoptosis (20,83,98,202,206,208). However, 
certain studies have indicated that enhancing Notch signaling 
may improve stroke pathology (209-211). The effect of Notch 
on apoptosis is summarized in Table II. Therefore, further 
studies are required to fully elucidate the role of Notch 
signaling in stroke.

6. Notch signaling and angiogenesis in cerebrovascular 
diseases

Angiogenesis is a pathophysiological process of vessel 
branching to form a new capillary network via vascular 
endothelial cell proliferation and migration, and the 
sprouting and division of blood vessels (233-236). The vascu-
lature is primarily comprised of vascular endothelial cells, 
VSMCs and extracellular matrix, the structure and activity of 
which affect the morphology and function of blood vessels. 
Angiogenesis is the result of the interaction between endothe-
lial cells, stromal cells and cytokines mediated by a variety 
of positive and negative angiogenic modulators. Studies 
have revealed that VEGF/VEGF receptor (VEGFR) (237), 
Delta-like ligand 4 (DLL4)/Notch are the two primary 
pathways involved in the promotion and coordination of 
angiogenesis (Fig. 4) (238,239).

Lumen formation is required to establish mature blood 
vessels with complete structure and function. Vascular endo-
thelial cells are divided into acute (tip cell) and lotus cells 
(trunk cell) depending on their location and characteristics, 
and are involved in the formation of lumen. High concentra-
tions of VEGF-A induce endothelial cells to differentiate into 
tip cells. Tip cells extend filopodia through the extracellular 
matrix, along the VEGF-A gradient, providing direction to 
the new blood vessel branch. The proliferation of trunk cells 
behind the tip cell induces vascular sprouting, and the forma-
tion of the lumen and extended vascular network. High levels 
of VEGF induce the synthesis of DLL4 by tip cells, and thus 
increase Notchl expression in the adjacent trunk cells. The 
activation of the DLL4/Notchl signaling pathway promotes 
lumen formation (240,241). DLL4 expression in mouse tip cells 
was reduced and angiogenesis attenuated following treatment 
with VEGF antagonists or gene silencing (242,243). Studies 
have indicated that DLL4/Notch regulate tip and trunk cell 
number and differentiation, to control blood vessels sprouting 
and branching. Vascular sprouting and branching proceeds 

Figure 3. Potential association between apoptosis and Notch signaling 
following stroke. MAPK, mitogen-activated protein kinase; NICD, Notch 
intracellular domain; HIF-1α, hypoxia inducible factor-1α; JNK, c-Jun 
N-terminal kinase; NF-κB, nuclear factor-κB.
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following Notch inhibition, however, these new blood vessels 
are dysfunctional (243,244).

Angiogenesis is a complex process regulated by numerous 
factors. The most well-known of these regulators is VEGF, 
which increases vascular permeability, promotes degradation 
of the extracellular matrix and migration and proliferation of 
vascular endothelial cells to induce angiogenesis. The expression 

of VEGF is controlled by multiple factors, including fibroblast 
growth factor, angiopoietins/Tie receptors, platelet-derived 
growth factor, TGF-β, hepatocyte growth factor, HIF-1α, fork-
head box (Fox) c1/Foxc2, TNF-α, epidermal growth factor and 
matrix metalloproteinases (Table III).

VEGF, a growth factor expressed in vascular endothelial 
and other cells, acts directly on vascular endothelial cells to 
promote mitosis, induce proliferation and migration, maintain 
the integrity vessels and increase vascular permeability, and is 
thus critical for angiogenesis. VEGF-A is the most well-char-
acterized of the VEGF family, and its receptor VEGFR2 is 
the primary receptor involved in angiogenesis (237). The 
mammalian Notch signaling pathway, comprised of four 
homologous Notch receptors (Notchl, Notch2, Notch3 and 
Notch4) and five cognate ligands (DLL1, DLL3, DLL4, 
Jaggedl and Jagged2) (254-256), is important for angiogen-
esis. High concentrations of VEGF induce DLL4 expression, 
thus, increasing Notchl expression on neighboring cells. The 
activation of DLL4-Notchl signaling pathways promotes angio-
genesis (47,257,258). Studies have revealed that DLL4/Notch 
signaling mediates negative feedback; the expression of DLL4 
may suppress the proliferation and migration of endothelial 
cells through the inhibition of VEGFR2 by HES-related protein 
1 (259,260). VEGF, as a positive regulator of angiogenesis, 
initiates and promotes angiogenesis, whereas Notch signaling 
may negatively regulate the process to prevent endothelial 
cell hyperplasia and, in conjunction with VEGF, promote the 
formation of a well-differentiated vascular network (261-266).

Injection or nasal feeding of rats with human recombi-
nant VEGF following focal cerebral ischemia in the middle 
cerebral artery promoted neovascularization of the ischemic 
area and the recovery of neurological function (267,268). In 

Table II. Associations between apoptosis biomarkers and Notch signaling.

Apoptosis biomarker Notch Effect on apoptosis References

p53 Notch (↑) Inhibiting 195,212,213
Bcl-2 Notch1, Notch2 (↓) Anti-apoptosis 195,202,214
Bax (↑) Notch 1 (↑) Apoptosis (↑) 215
Caspase-9 and -3 (↑) Notch (↓) Initiating 216,217
JNK/p38 Notch (↑) Apoptosis (↑) 198,218
Ca2+ (↑) Notch 2 (↑) Apoptosis (↑) 219,220
ERK Notch (↑) Apoptosis (↑) 221
miR-100 (HS3ST2↑) Notch (↑) Initiating 192,222
NF-κB NICD (↑) Apoptosis (↑) 188
EGFR Notch-1 Positive correlation 223,224
Jagged2, angiopoietin 1, eNOS (↓) Notch2, Notch4, Caspase 8 (↑) 225
 Notch3 (jagged1) 
P21/cyclin D Notch 2 (↑) Apoptosis (↑) 226
PI3K/Akt (↑) Notch (↓) Podocyte apoptosis (↓) 193,194,226,227
ROS Notch (↑) Apoptosis (↑) 228-230
GSIs Notch (↓) TRAIL (↑) 231,232

Bcl-2, B-cell lymphoma-2; Bax, Bcl-2 associated X protein; EGFR, epidermal growth factor receptor; eNOS, endothelial nitric oxide synthase; 
ERK, extracellular signal-regulated kinase; miR, microRNA; GSI, γ-secretase inhibitor; ROS, reactive oxygen species; PI3K, phosphatidylino-
sitol 3-kinase; Akt, protein kinase B; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand.

Figure 4. VEGF and DLL/Notch regulation of angiogenesis. VEGF, vascular 
endothelial growth factor; VEGFR, vascular endothelial growth factor 
receptor; DLL4, Delta-like ligand 4; HES, hairy and enhancer of split; HEY, 
hairy and enhancer of split-related protein.
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addition, delayed treatment with VEGF alleviates brain injury, 
enhances endothelial cell proliferation and augments total 
vascular volume following neonatal stroke (269). Furthermore, 
the overexpression of VEGF in close proximity to intracere-
bral hemorrhage lesions in mice undergoing transplantation 
of F3 human neural stem cells (NSCs) facilitated differen-
tiation and survival of the grafted human NSCs, and resulted 
in renewed angiogenesis in the host brain and functional 
recovery of mice (270). Studies have revealed that strategies to 
enhance angiogenesis following focal cerebral ischemia may 
improve recovery from stroke (271-274). The VEGF/Notch 
signaling pathway is the primary signaling pathway regulating 
angiogenesis following cerebral ischemia (47,275,276). VEGF 
and Notch are upregulated in brain tissue following cerebral 
ischemia, which may significantly promote angiogenesis in 
the ischemic region (277-280). Therefore, regulating the Notch 
signaling pathway may provide a potential strategy for the 
treatment of cerebrovascular diseases (281).

7. Notch signaling and BBB in cerebrovascular diseases

The BBB is a highly selective permeable barrier separating 
circulating blood from the brain extracellular fluid, to regulate 
the CNS microenvironment. The BBB is formed of a complex 
network of endothelial cells, astroglia, pericytes, perivascular 
macrophages and a basal membrane. Under physiological 
conditions, BBB integrity is primarily maintained by endo-
thelial cells, through tight junctions, and the basal lamina; 
however, the structural and functional integrity of the BBB is 
markedly altered during CNS disorders, including neoplasia, 
ischemia, trauma, inflammation and bacterial and viral 
infections.

Cerebrovascular BBB dysfunction is closely associated 
with stroke, including intracranial hemorrhage and brain 
ischemia disorders. Endothelial cells are critical for numerous 
neurovascular functions, including angiogenesis, BBB 
formation and maintenance, vascular stability and removal 
of cellular toxins. Cerebrovascular endothelial cells interact 
with pericytes to maintain a stable cerebral circulation in the 

CNS. A number of studies have revealed that endothelial cell 
dysfunction in the CNS results in breakdown of the BBB and 
brain hypoperfusion, leading to neurodegeneration. It has 
been reported that disruption of Smad4 signaling, the central 
intracellular mediator of TGF-β signaling (14), in endothelial 
cells leads to the pathogenesis of intracranial hemorrhage and 
BBB breakdown (14,282), indicating that Smad4 maintains 
cerebrovascular integrity and that TGF-β/Smad signaling is 
involved in the pathogenesis of cerebrovascular dysfunction. 
Notch signaling is also critical in controlling BBB integrity 
via regulating the normal function of endothelial cells and 
pericytes. However, the underlying mechanisms regulating 
cerebral endothelial cell functions remain to be elucidated.

The Notch signaling pathway is involved in blood vessel 
integrity and BBB stability and function in the mammalian 
vasculature (75,283-285). In vitro studies have correlated 
BBB endothelial dysfunction with decreased Notch4 expres-
sion (286). Upon activation, the constitutively expressed 
endothelial cell membrane protein Notch4 appears to become 
primarily involved in the stability and growth of mature 
endothelium (287). Permanent ischemia leads to the redistri-
bution of claudin decomposition fragments, zona occludens 1 
and occludin protein from the membrane to the cytoplasm in 
BBB. Additionally, the GSI, DAPT protects against permanent 
ischemia-induced BBB damage, potentially via the modulation 
of Notch/NICD/calpastatin homeostasis pathway in vascular 
endothelial cells.

8. Conclusion and perspective

Increasing evidence indicates that Notch signaling is critical 
in the pathogenesis of stroke, exerting effects via the following 
underlying mechanisms: Neuroinflammation, oxidative stress, 
apoptosis, angiogenesis and BBB function. Thus, regulating 
Notch signaling may be an effective strategy for the prevention 
and treatment of cerebrovascular diseases.

Studies have demonstrated that the activation of Notch 
signaling is harmful and contributes to the pathogenesis of cere-
brovascular diseases including stroke (20,98,202,204,288-290). 

Table III. Factors regulating VEGF expression.

Regulator Mechanisms References

Ang-1,2,3 Controls growth, maturation and stability of blood vessels; Ang-2, destabilizes. 245
FGFa/b Promotes EC proliferation and migration; induces vascular branching. 237
PDGF Recruits perithelial cells, vascular aging. 246
TGF-β Bidirectional regulation: Low concentrations of TGF-β promote blood vessel formation,  247,248
 high concentrations of TGF-β inhibit EC growth, and promote smooth muscle cell 
 differentiation and basement membrane formation. 
HGF Promotes EC proliferation, improves VEGF secretion in ECs and induces angiogenesis 249
HIF-1α Interacts with NICD to increase the response to hypoxia and upregulates DLL4 250
Foxc1/Foxc2 Activates DLL4 expression 251
Angiopoietins/Tie Increases expression of Ang-2/1 252,253

VEGF, vascular endothelial growth factor; Ang, angiopoietin; FGF, fibroblast growth factor; PDGF, platelet‑derived growth factor; TGF‑β, 
transforming growth factor β; HGF, hepatocyte growth factor; HIF-1α, hypoxia-inducible factor 1α; Fox, forkhead box; EC, endothelial cell; 
NICD, Notch intracellular domain; DLL4, Delta-like ligand 4.
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Acute inhibition of Notch signaling has been revealed to 
rescue cerebral hypoperfusion, reduce apoptosis in penumbra, 
decrease brain infarct size, elicit certain morphologic features, 
including neurogenesis and angiogenesis, associated with brain 
repair and functional recovery, and enhance vascular densities 
in penumbra in the neonatal rat brain following stroke (288).

However, activation of the Notch signaling pathway may 
have a neuroprotective role via enhancing endogenous neurore-
generation and brain arteriogenesis following stroke (51,291). 
In a murine transient global cerebral ischemia/reperfusion 
model, the neuroprotective effects of preconditioning were 
mediated via the Notch signaling pathway, and the expression 
of Notch1, NICD and HES-1 was upregulated (209). Notch 
signaling is widely accepted to be a fundamental pathway 
controlling cell fate acquisition through the regulation of adult 
neurogenesis. Studies have demonstrated that Notch signaling 
is crucial for the maintenance, proliferation and differen-
tiation of NSCs in the developing brain (292,293). Notch 
signaling induces the neuronal expansion and differentiation 
following stroke (21). Increasing the expression level of Notch 
signaling components may facilitate intrastriatal transplanta-
tion therapy for ischemic stroke by promoting endogenous 
regeneration in the hippocampus (294). Promoting Notch 
signaling activity may facilitate increased arteriogenesis in 
a middle cerebral artery occlusion stroke rat model (54). In 
addition, Notch-induced rat and human bone marrow stromal 
cell grafts inhibited ischemic cell loss and abrogated behav-
ioral deficits in chronic middle cerebral artery occlusion 
stroke rats (295).

Therefore, the results on the effect of Notch signaling on 
the pathogenesis of cerebrovascular diseases are contradictory. 
Notch signaling may be damaging, as it promotes inflamma-
tion, oxidative stress and apoptosis. However, the activation of 
the Notch signaling pathway may exert neuroprotective effects 
via enhancing endogenous neuroregeneration and brain arte-
riogenesis following stroke. What is the exact role of Notch 
signaling? Clarifying this question has potentially important 
implications for the treatment of cerebrovascular disease, and 
will provide novel strategies for future studies.
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