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Abstract We develop a general framework for optimal
health policy design in a dynamic setting. We consider a
hypothetical medical intervention for a cohort of patients
where one parameter varies across cohorts with imperfectly
observable linear dynamics. We seek to identify the optimal
time to change the current health intervention policy and the
optimal time to collect decision-relevant information. We
formulate this problem as a discrete-time, infinite-horizon
Markov decision process and we establish structural prop-
erties in terms of first and second-order monotonicity. We
demonstrate that it is generally optimal to delay information
acquisition until an effect on decisions is sufficiently likely.
We apply this framework to the evaluation of hepatitis C
virus (HCV) screening in the general population determin-
ing which birth cohorts to screen for HCV and when to
collect information about HCV prevalence.
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1 Introduction

There is currently no guidance for determining the optimal
schedule for collecting additional information regarding a
decision to invest in a health program or technology [1, 2].
Current practice in the health decision science literature
assumes that model parameters are fixed across cohorts and
the value of additional information is calculated assum-
ing the information-collection effort is initiated immediately
[3–5]. However, in many cases the cost-effectiveness of a
health program or technology – and, therefore, the value of
additional information about one or more model parameters
– may be changing over time because of trends affecting
the cohort or the intervention [6]. In these cases, collecting
additional information immediately may not be optimal and
value-of-information calculations based on static parameter
assumptions are likely to be biased. Planning over longer
horizons is particularly important in health policy because,
once established, clinical practice is difficult to change due
to high switching costs (re-training and potentially new cap-
ital equipment expenditures), particularly if it appears that
the level of service is being reduced [7].

In this paper we apply a stochastic dynamic program-
ming approach to identify both the optimal time to change
the current health intervention policy and the optimal time to
collect decision-relevant information. We consider a hypo-
thetical medical intervention for a cohort of patients. At
each time, a new cohort of patients becomes eligible for
the intervention and one parameter varies across the cohorts
with imperfectly observable linear dynamics. We assume
that the value of the intervention is linear in the dynamic
parameter. In general, the (incremental) net monetary bene-
fit of an intervention is linear in parameters with a one-time
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effect (e.g., the prevalence of a disease at one point in time
or the outcome of a one-time screening test). When an effect
accrues over time, such as for a reduction in the annual tran-
sition rate of a disease complication or death, linearity is
often used as an approximation (see, e.g., [8]). At each time,
the policy-maker can choose to invest in the medical inter-
vention and/or to purchase sample information about the
uncertain dynamic parameter. We demonstrate that informa-
tion acquisition is best delayed until the signal is sufficiently
likely to affect the optimal policy decision.

We apply this framework to the evaluation of hepati-
tis C virus (HCV) screening. Prior to the development of
highly-effective treatments, HCV screening in the general
population was not considered cost-effective [9] and uni-
versal screening was not recommended [10]. The advent of
more effective therapy has changed the value of identify-
ing infected individuals early to initiate treatment [11–15].
Recently released guidance by the Centers for Disease Con-
trol and Prevention (CDC) and the US Preventive Services
Task Force (USPSTF) recommends one-time HCV screen-
ing for all individuals born between 1945 and 1965 [16, 17]
although screening individuals born after 1965 may also
be cost effective [13–15]. Based on our primary analysis
of the National Health and Nutrition Examination Survey
(NHANES), in the US general population, HCV prevalence
is highest in people born around 1956 and declines there-
after at a rate of approximately 11% per birth year. Since
HCV prevalence is decreasing across birth cohorts, HCV
screening will only be cost-effective for a limited time or
for a limited set of birth cohorts. We apply our model
to simultaneously evaluate the optimal HCV-screening and
information-acquisition policy.

Specifically, we apply our model to the policy deci-
sion of whether or not to perform one-time HCV screening
in successive cohorts of healthy 50-year olds, who have
not previously been tested for HCV, at a routine preven-
tive health visit. Applying a traditional health economics
framework, the policy-maker could decide today how many
cohorts will be screened (e.g., each cohort of 50-year olds
until those born in 1965 turn 50) or, to inform this decision,
the policy-maker may seek additional information to be
collected immediately. Our framework differs from the tra-
ditional paradigm in that each year the policy-maker makes
a decision about whether to continue the one-time HCV
screening program (whether or not to screen the new cohort
of healthy 50-year olds) and whether to collect information
about disease prevalence in this current cohort. If informa-
tion is never collected, the optimal policy does not differ
across frameworks. However, in our framework, the imme-
diate decision is not limited to the decision of when to
change policies, but it also includes when to collect infor-
mation to inform a future change of policy. For example,
the (immediately) optimal policy might be to screen each

cohort of 50-year olds for the next 6 years and then collect
information about HCV prevalence to inform future deci-
sion making. Delaying information acquisition until a time
that the information is sufficiently likely to affect the deci-
sion increases the value of the information. In addition, from
a practical perspective, collecting information years before
it is likely to influence a policy change wastes immedi-
ate resources and, should something occur in the lag-time
between the information-acquisition effort and the policy
change, implementing the pre-determined policy change
may not be optimal.

1.1 Related literature and contribution

The relevant literature spans technology adoption, dynamic
decisions in healthcare, and the value of information in
healthcare.

Technology adoption In technology-adoption models, a
decision-maker considers the adoption of a technology of
unknown profitability. Jensen [18] introduced a model in
which information about a new technology is costlessly
observed and the decision-maker can decide to adopt the
new technology at any point in time. McCardle [19] pre-
sented a model in which collecting information is associated
with a fixed cost; in each period the decision-maker can
defer and collect information, or make a final decision to
accept or reject the new technology. The optimal policy
in each period is characterized by two thresholds: if the
expected benefit is above the upper threshold, it is optimal
to adopt the technology; if the expected benefit is below
the lower threshold, it is optimal to reject the technology;
and, if the expected benefit is between these two thresholds
the optimal strategy is to gather information. Uncertainty
about the technology’s value decreases over time and the
two thresholds converge to the cost of adoption. Smith
and McCardle [20] provided several meta-results, some of
which we use, describing how properties of the value func-
tion of a stochastic dynamic program are preserved and
propagated through finite-horizon Markov-reward and deci-
sion processes. Ulu and Smith [21] extended this work
by relaxing the assumption that the decision-maker’s value
of the technology can be summarized by the expected
benefit, and they use more general monotone-comparative-
statics techniques in terms of likelihood orders to generalize
the class of signals that are observed prior to making an
adoption decision.

Another line of research considered technologies, like
ours, with uncertain and changing value. Rosenberg [22]
found that expectation of technological improvement may
delay a firm’s irreversible technology investments. Bessen
[23] calculated the option value of delay for such a problem.
Kornish [24] considered the choice between two uncertain
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technologies where each is subject to a positive network
effect and explored the impact of the network effect on
the optimal adoption policy. Chambers and Kouvelis [25]
formulated a technology-adoption problem incorporating
expected learning-curve effects.

Stochastic dynamic programs in healthcare Sequential
decisions under uncertainty are common in healthcare [26,
27]. Most healthcare applications of stochastic dynamic
programs have focused on optimizing the timing of inter-
ventions for an individual patient: the decision to accept
or reject an offered kidney for transplantation [28]; the
optimal treatment plan for mild spheroctosis [29]; the opti-
mal surveillance and management of ischemic heart disease
[30]; the optimal time to perform a living-donor liver trans-
plant [31, 32]; the optimal time to initiate treatment for
HIV [33, 34]; the optimal timing and frequency of HCV
testing from the patient perspective [35]; the optimal use
of statins in patients with type 2 diabetes [36, 37]; the
optimal prostate biopsy referral [38]; and, optimal can-
cer screening programs [39, 40]. Dynamic programming
has also been applied to complex appointment scheduling
problems in healthcare, including problems with patients
of different clinical types/priority [41, 42]; incorporating
patient no-shows [43]; and problems of sequential appoint-
ment scheduling with the objective of closely adhering to a
prescribed schedule (e.g., sequential chemotherapy appoint-
ments [44]) or with the objective of satisfying patient
preferences [45, 46]. Fewer examples of application to
population-level policy exist. Kornish and Keeney [47] and
Özaltın et al. [48] formulated the influenza-strain selection
problem in a finite-horizon optimal-stopping framework.
Similar to our problem, the influenza-vaccine composition
decision is also an optimal-stopping problem with informa-
tion acquisition; however, it has many unique characteristics
that distinguish it from the problem discussed here such
as an inventory deadline (finite horizon), a product useful
for one season only, and a time-consuming production pro-
cess. Similar to many of the technology-adoption models
discussed above but unlike our framework, in the influenza-
vaccine composition models, information is collected in
every period in which a final decision has not yet been
made.

Health economics and value of information in health-
care Cost-effectiveness analysis is an economic method for
comparing the lifetime discounted costs and health bene-
fits associated with two or more medical interventions or
health programs [1, 2]. In theory, the optimal allocation of
resources across a portfolio of health interventions is deter-
mined by solving a constrained optimization problem with
the objective of maximizing health benefits subject to a
budget constraint [49–51]. In reality, regional and national

health policy bodies routinely compare the incremental
cost effectiveness ratio of candidate interventions to a pre-
determined threshold intended to approximate the shadow
price of the budget to determine if the intervention is ‘cost-
effective’ as one component of their policy-making process
[52]. Cost-effectiveness analysis is widely used to evaluate
general population screening for relatively rare conditions
because these programs impose a small cost on everyone
who is screened and provide substantive healthcare gains
for only a small number of individuals who are identified
(or identified earlier than they would be otherwise); calcu-
lating the population-level costs and benefits can require
detailed natural history models, extensive model calibration
and validation, and thorough analysis.

Bayesian decision theory approaches to value-of-
information assessment were first introduced by Raiffa and
Schlaifer [53]. Weinstein [54] proposed the widespread
adoption of value-of-information analysis to research prior-
ity setting in health policy and medicine. Hornberger et al.
[55], Claxton and Posnett [56], and Claxton [57] introduced
a Bayesian approach to identifying the optimal trial sam-
ple size and to assessing the value of additional information
for technology-adoption assessments. Several approaches to
increasing the accuracy of value-of-information calculations
continued to relax assumptions implicit in the original for-
mulation (see examples in [58–62]). One common assump-
tion in these studies is that the currently estimated per-
person value of information can be applied to individuals in
all future cohorts. Recognizing some of the implications of
this assumption, Philips et al. [6] discussed the impact that
intervention-horizon uncertainty, price changes, and tech-
nological development can have on the per-person value
of information for future cohorts. They find that delaying
information collection may be desirable but do not provide
a framework for determining the optimal time to collect
information.

Contribution In this paper, we extend the technology-
adoption literature by allowing for a technology that is
changing in value over time, for the opportunity to ‘wait’
without collecting information, and for the possibility of
optimally determining the collected amount of information
in each period. We also incorporate the possibility of an
imperfect information-collection technology. We broaden
the scope of applications of stochastic dynamic programs
in the area of healthcare in an important way – focus-
ing on population policy rather than patient-level decisions.
We extend the health decision science literature on value-
of-information assessment by developing an approach to
identify the optimal information-acquisition policy when
model parameters are varying across cohorts. Finally, as an
example, we apply our framework to the timely public pol-
icy problem of developing a population screening program
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for HCV. We find that considering the opportunity to collect
information in the future leads to a substantially different
policy recommendation than current guidelines because it
explicitly considers and addresses the parameter uncertainty
which is changing over time.

2 The model

A policy-maker faces recurring decisions for cohorts arriv-
ing at times t ∈ {0, 1, 2, . . .} about whether to invest in a
health intervention delivered once per cohort (of size N).
By cohort we mean a group of individuals with a certain
medical presentation (i.e., individuals with a new diagno-
sis of cancer) or of a certain status (i.e., individuals who
turned 50 this year). The policy-maker’s objective is to
maximize net monetary benefit from a societal perspective.
The per-person incremental net monetary benefit (INMB)
of performing the intervention compared to the status quo is
assumed to be affine in an uncertain parameter p̃t that varies
across the cohorts, with realizations in [0, 1] and known
dynamics. So INMBt = θp̃t − γ , for all t ≥ 0, where
θ is the marginal INMB (with respect to the parameter p̃t )
and −γ is the fixed INMB, both measured on a per-person
basis.

At the beginning of period t , the policy-maker simultane-
ously decides whether to invest in a medical intervention for
the individuals in cohort t and whether to conduct a study
of sample size nt over the period to obtain a better esti-
mate of the uncertain parameter p̃t . Information, if sought,
arrives at the end of the current period and is used, together
with the known dynamics of p̃t , to inform the intervention
decision for future cohorts. Let dt ∈ D = {0, 1} denote
the intervention decision at time t , where dt = 0 indicates
‘No intervention’ and dt = 1 indicates ‘Intervention.’ The
amount of information collected is measured in terms of the
sample size nt ∈ N = {0, . . . , N}; it is obtained at the
cost K(nt ), where K(·) is an increasing function including
a fixed and a variable cost when nt > 0 and K(0) = 0.
Thus, at each time t the policy-maker implements the con-
trol ut = (dt , nt ) ∈ D × N . The per-person current reward
for the cohort in period t is

g(p̃t , ut ) = dt (θp̃t − γ ) − K(nt )

N
. (1)

The application in Section 4 features the decision prob-
lem of when to stop a once-in-a-lifetime disease-screening
program where p̃t is the uncertain disease prevalence in the
t-th cohort which, in expectation, is geometrically decreas-
ing over time; θ > 0 denotes the marginal benefit of early

diagnosis and treatment for an affected individual, γ > 0
is the per-person cost of the program, and the current-
period INMB g is increasing in p̃t . Beyond our leading
example, the framework can accommodate a wide variety
of problems. As formulated, the uncertain parameter needs
to lie in a compact interval (which can be mapped via
bijection to [0, 1]). Thus, the parameter can represent not
only a probability but also other model parameters, such
as a quality-of-life weight or cost. Additionally, our anal-
ysis assumes that the parameter value is decreasing over
time. To model a situation where the expectation of the
uncertain parameter is increasing (e.g., obesity prevalence),
the problem can be formulated as one in which a parame-
ter of opposite definition is decreasing (e.g., prevalence of
individuals who are not obese). Our exposition involves an
example of when to stop a health intervention. However,
the framework can also be used in situations in which the
decision-maker wishes to identify the optimal time to initi-
ate a new intervention (e.g., when to adopt a new surgical
technique). More broadly, our framework can be applied in
settings in which the decision-maker wishes to identify the
optimal time to stop the current intervention or initiate a
new intervention; the uncertain parameter is geometrically
increasing or decreasing across intervention cohorts; and
the current-period reward function is linearly increasing or
decreasing in the uncertain parameter. Examples are shown
in Table 1.

2.1 The information-acquisition problem

The policy-maker’s prior belief about p̃t at t = 0 is
beta-distributed with distribution parameters x0 = (a0, b0).
The posterior distribution when a beta-density is updated
in a Bayesian manner with information collected using an
imperfect information-collection technology is a mixture of
beta-densities. Thus, in general, the policy-maker’s prior
beliefs about p̃t at time t are in P where P denotes the set of
measures which are a mixture of beta-densities. Specifically
if p̃t ∈ P , then there exists parameters xt,i = (at,i , bt,i) ∈
R

2++ for all i where 1 � i � m,m ∈ R++, and a set of
non-negative weights ωi such that

∑m
i=1 ωi = 1, where the

distribution of p̃t is a mixture of beta-densities of the form∑m
i=1 ωi beta(at,i , bt,i).
The policy-maker has the option to update his beliefs

about the parameter p̃t by testing nt individuals at cost
K(nt ). The information-collection technology has binary
test characteristics q = (q1, q2), where q1 is the sensi-
tivity, q2 is the specificity, and q1 + q2 > 1 (indicating
the test is properly labeled). The terms ‘sensitivity’ and
‘specificity’ are often used to describe test accuracy in
the medical literature. For clarity, we state their relation-
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Table 1 Examples of alternative cases in which our framework applies

Case Uncertain time-
varying parame-
ter p̃t = 1 − q̃t

INMBt of “Inter-
vention” vs. “No
Intervention”∗

Setting† Example‡

A p̃t , decreasing in t INMBt is increasing in
p̃t θ, γ > 0

μp(x0) >
γ
θ

“Interven-
tion” is currently imple-
mented. Optimal stop-
ping problem.

“Intervention”: General population HCV screen-
ing at age 50 (Section 4). Period reward function:
INMBt = θp̃t − γ ; p̃t , prevalence of HCV in
cohort t ; θ , marginal benefit of early diagnosis and
treatment for an infected individual; γ , fixed cost
of screening.

B p̃t , decreasing in t INMBt is decreasing in
p̃t θ, γ < 0

μp(x0) >
γ
θ

“Inter-
vention” not currently
implemented. Optimal
starting problem.

“Intervention”: New surgical device vs. old device.
Period reward function: ˆINMBt = −θ̂ p̃t + γ̂ ;
p̃t , probability of an adverse event in device itera-
tion t ; θ̂ , incremental cost of an adverse event; γ̂ ,
benefit of surgical intervention without an adverse
event. Problem transformation to framework: θ =
−θ̂ , γ = −γ̂ .

C q̃t , increasing in t INMBt is decreasing in
q̃t (increasing in p̃t )
θ, γ > 0

μq(x0) < 1 − γ
θ

⇒
μp(x0) >

γ
θ

“Interven-
tion” is currently imple-
mented. Optimal stop-
ping problem.

“Intervention”: Pap smear for early identifica-
tion of pre-cancerous lesions on the cervix from
HPV infection. Period reward function: ˆINMBt =
−θ̂ q̃t + γ̂ ; q̃t , prevalence of HPV vaccine cov-
erage in cohort t ; θ̂ , difference in benefit of Pap
smear in a vaccinated person (compared to an
unvaccinated person); γ̂ , value of Pap smear in
an unvaccinated person. Problem transformation
to framework: p̃t = 1 − q̃t , θ = θ̂ , γ = −γ̂ + θ̂ .

D q̃t , increasing in t INMBt is increasing in
q̃t (decreasing in p̃t )
θ, γ < 0

μq(x0) < 1 − γ
θ

⇒
μp(x0) >

γ
θ

“Inter-
vention” not currently
implemented. Optimal
starting problem.

“Intervention”: Peanut-free spaces regulation (in
schools, airplanes, etc.). Period reward function:

ˆINMBt = θ̂ q̃t − γ̂ ; q̃t , prevalence of severe peanut
allergy at time t ; θ̂ , benefit of peanut-free spaces to
individuals with peanut allergies; γ̂ , fixed cost of
creating and enforcing peanut-free public spaces.
Problem transformation to framework: p̃t = 1 −
q̃t , θ = −θ̂ , γ = γ̂ − θ̂ .

*When θ ≤ 0 ≤ γ , the “Intervention” is dominated by the alternative for all realizations of p̃t . For γ ≤ 0 ≤ θ , the “Intervention” dominates the
alternative for all realizations of p̃t
†
μp(x0) is the expectation of the initial belief p̃0; μq(x0) is the expectation of the initial belief q̃0; μp(x0) = 1 − μq(x0)

‡
In each of the examples, the period reward function is linear in the time-varying parameter. That the mean and variance of the time-varying

parameter satisfy the dynamics presented in Section 2.3 should be verified empirically for each case

ship to Type I and Type II error: ‘Specificity’ = 1 −
‘Type I error’ = 1−‘False positive rate’ and ‘Sensitivity’ =
1 − ‘Type II error’ = 1 − ‘False negative rate’. The num-
ber of positive samples is an uncertainty ṽt with realization
vt ∈ {0, . . . , nt }. Based on the collected information the
policy-maker updates his beliefs about p̃t in a Bayesian
manner.

Proposition 1 If the policy-maker’s prior belief fp(·) is a
mixture of beta-densities, i.e., fp ∈ P , then for any num-
ber of positive observations ṽt = vt from nt samples, the
Bayesian posterior belief fp|v(·|vt ) is also a mixture of
beta-densities, i.e., fp|v is in P .

Proof See Appendix A1.

If p̃t is a mixture of m ≥ 1 beta-densities and if
the information-collection technology is imperfect (i.e.,
min{q1, q2} < 1), then the true posterior distribution
is also a mixture of beta-densities, containing between
m + nt and m × (nt + 1) unique beta-distributions (see
Appendix A.2.1). The resulting probability density function
(pdf) is

fp|v(p|xt ,nt ,vt ,q)=
vt∑

j=0

nt−vt∑

k=0

m∑

i=1

ω′
j,k,i

×beta(at,i+j+k,bt,i +nt−j−k), (2)
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with updated weights

ω′
j,k,i =

ωiq
j
1 (1−q2)

vt −j (1−q1)
kq

nt −vt −k

2 �(at,i+bt,i )�(at,i+j+k)�(bt,i+nt−j−k)

�(j+1)�(vt−j+1)�(k+1)�(nt−vt−k+1)�(at,i )�(bt,i )�(at,i+bt,i+nt )

vt∑

r=0

nt−vt∑

s=0

m∑

i=1

ωiq
r
1(1−q2)

vt −r (1−q1)
sq

nt −vt −s

2 �(at,i+bt,i )�(at,i+r+s)�(bt,i+nt−r−s)

�(r+1)�(vt−r+1)�(s+1)�(nt−vt−s+1)�(at,i )�(bt,i )�(at,i+bt,i+nt )

.

Explicit expressions for the conditional mean and vari-
ance, μp|v and σ 2

p|v , are provided in Appendix A.2.2.

Remark 1 If p̃t follows a mixture of m ≥ 1 beta-densities
and the information-collection technology is perfect (i.e.,
q1 = q2 = 1), then the distribution of sample information,
ṽt , is a mixture of m beta-binomial distributions with the
same weights ωi . Updating results in a posterior distribution
that is a mixture of m beta-densities with pdf

fp|v(p|xt ,nt ,vt ,q=(1, 1))

=
m∑

i=1

ω′ibeta(at,i +vt , bt,i +nt −vt ), (3)

with updated weights

ω′
i =

ωi
�(at,i+bt,i )�(at,i+vt )�(bt,i+nt−vt )

�(at,i )�(bt,i )�(at,i+bt,i+nt )

m∑

j=1
ωj

�(at,j +bt,j )�(at,j +vt )�(bt,j +nt−vt )

�(at,j )�(bt,j )�(at,j +bt,j +nt )

,

for all i ∈ {1, . . . , m}.

2.2 Approximate Bayesian inference

For practically relevant sample sizes nt and an imper-
fect information-collection technology, the number of beta-
densities in the posterior distribution can become very
large, thus requiring approximation. The need for dis-
tributional approximations in decision models has been
recognized by Smith who proposed moment matching to
replace continuous distributions by appropriate discrete
ones [63]. More recently, moment-matching methods have
also been used in a Markovian setting, to approximate
vector-autoregressions [64]. In our Markov dynamic pro-
gramming setting, we apply moment matching to approx-
imate the exact posterior distribution which is a mix-
ture of beta-densities with a single beta-distribution. This
greatly simplifies the belief propagation compared to deal-
ing with mixtures of beta-densities which feature an increas-
ingly large number of coefficients with each information-
collection effort and ultimately an infinite-dimensional state
space.

Thus, instead of carrying forward full distribution infor-
mation about the posterior mixture of beta-densities caused
by an imperfect information-collection technology, the
policy-maker’s posterior belief about p̃t is approximated
by a single beta-distribution with the same mean and
variance as the exact posterior distribution. The policy-
maker’s prior belief is represented by the distribution
parameters xt = (at , bt ) and the posterior belief incor-
porating any information collected at time t is repre-
sented by the updated parameters x̂t = (ât , b̂t ). Using
the mean and variance of the exact posterior distribution,
μp|v and σ 2

p|v , the approximate posterior belief param-
eters are determined using the one-to-one relationship
between the standard parameters of the beta-distribution
and its mean and variance1. We let ψ(xt , nt , vt , q) denote
the function that generates the approximating parameters,
with

x̂t =
[

ât

b̂t

]

=ψ(xt , nt , vt , q)

=
(

μp|v(1−μp|v)
σ 2

p|v
−1

)[
μp|v

1−μp|v

]∣
∣
∣
∣
∣
(xt ,nt ,vt ,q)

.

In the case of a perfect information-collection technol-
ogy, the preceding relations describe the policy-maker’s
posterior beliefs exactly.

Mixtures of beta-distributions can be fitted to any contin-
uous distribution on [0, 1]. Thus, a single beta-distribution
with the same mean and variance as a distribution formed
by the mixture of beta-densities, will not always provide a
satisfactory approximation. However, we focus on the spe-
cial case where the time-t belief p̃t has been obtained via
Bayesian updating from a single beta-prior. In this special
case, approximating the mixture of beta-densities with a
single beta-distribution with the same mean and variance

1A beta-distribution with parameters (a, b) has mean μ = a
a+b

and

variance σ 2 = ab

(a+b)2(a+b+1)
. Through direct substitution and rear-

rangement, it can be shown that a beta-distribution with mean μ and

variance σ 2 has parameters a = μ
(

μ(1−μ)

σ 2 − 1
)

and b = (1 −
μ)

(
μ(1−μ)

σ 2 − 1
)

.
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maintains unimodality2 and stationarity of the state space
over time.

We assessed the approximation quality using simu-
lation in the policy-relevant region for our application
(Appendix A.3). We found that the maximum distance
between the cumulative density function of the exact poste-
rior distributions and that of the approximation with match-
ing mean and variance were generally small (< 2%), but
became large when the mean was approaching zero and the
standard deviation was relatively large. The quality of the
approximation was very good (< 0.5%) when the mean
was greater than 2%. We deemed the approximation to
be of sufficiently high quality for our numerical analysis
because our initial conditions and predicted trajectory with-
out information acquisition rely on the regions in which
the approximation is good. Also, because of relatively high
fixed costs associated with information acquisition, opti-
mal sample sizes in our numerical analysis tended to be
sufficiently large that information would likely only be col-
lected once which reduces concerns about compounding the
approximation error over successive information-collection
efforts.

2.3 System dynamics

The belief state xt , containing the parameters of the distri-
bution of p̃t , represents the policy-maker’s current beliefs
about the uncertain parameter and follows a law of motion
of the form

xt+1 = φ(x̂t ) =
[

z 0
1 − z 1

]

x̂t , (4)

2The posterior distribution is a weighted sum of component beta-
distributions; see Eq. 2. The weights of the exact posterior distribution
are generated by the convolution of two binomial distributions; see
Eq. 13. The convolution of two binomial distributions creates uni-
modal weights over the ordered set of component beta-distributions
in the mixture (ordered in terms of increasing first parameter). For
example, consider a prior xt = (3, 7). Given a sample size nt = 5,
there are 6 possible true outcomes, by which we mean the potentially
unobservable number of actual positive samples in the study. These
true outcomes correspond to 6 possible unique beta-distributions with
parameters (3, 12), (4, 11), (5, 10), (6, 9), (7, 8), and (8, 7) forming
the components of the exact posterior distribution. Because the infor-
mation technology is imperfect, we have a belief over these possible
outcomes equal to the distribution of the actual number of positives
given a specific number of observed positives. We can compute this
distribution using the weights in Eq. 2, where j is the number of actual
positives among the vt observed positives, and k is the number of
actual positives among the nt − vt observed negatives. The probability
that the actual number of positives in the sample is W is determined
by summing all the weights for which j + k = W . The unimodal-
ity of the weights over the ordered component distributions ensures
the unimodality of the posterior distribution. To complete the numer-
ical example, consider the case where there are 3 observed positives,
vt = 3, and q = (0.9, 0.85), which results in weights of 0.028, 0.141,
0.346, 0.414, 0.067, 0.004 over the component beta-distributions in the
mixture.

where z ∈ (0, 1) is the decay rate. These dynamics imply a
geometrically decreasing expected value, increasing coeffi-
cient of variation, and decreasing variance for μ(x0) � 1

1+z

(Fig. 1). In the mean-variance space, the equivalent state
dynamics become

μ(xt+1) = zμ(x̂t ) and σ 2(xt+1)

= σ 2(x̂t )

(

z + z(1 − z)

(
μ(x̂t )

1 − μ(x̂t )

))

.

Derivations of these equations are presented in
Appendix A.4. The features of these dynamics can repre-
sent a wide variety of settings in which the expectation of
a parameter is geometrically decreasing over time (e.g., a
health condition that is decreasing in prevalence over time;
see Section 4). To model a situation where the expectation
(and variance) of the uncertain parameter is increasing
(e.g., obesity prevalence), the problem can be re-formulated
as one in which a parameter of opposite definition is
decreasing (e.g., prevalence of individuals who are not
obese).

2.4 The policy-maker’s problem

Given a social discount factor δ ∈ (0, 1), the policy-
maker’s objective is to maximize the net present value
of the stream of expected INMBs, given the initial belief
x0 = (a0, b0) and admissible policy decisions U ∈ U =
{(ut )t∈N : ut = (dt , nt ) ∈ D × N }. To achieve the objec-
tive, the policy-maker seeks to find the best of all possible
policies πt (·), t ≥ 0, with ut = πt (xt ) for all xt ∈ R

2++,
which at each time t maps the state space to admissible
current-period actions ut , so that the implemented path of
actions U = (u0, u1, . . .) lies in the control-constraint

Fig. 1 Sample state trajectory with decay z = 0.8, with (dashed)
and without (solid) information acquisition at time t (for nt = 50),
respectively
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set U . The number of positive observations in the testing
sample of nt is a random variable ṽt (nt ) with realization
vt ∈ {0, . . . , nt }. Based on the collected information the
policy-maker updates his beliefs about p̃t in an (approxi-
mate) Bayesian manner using the function ψ(xt , nt , vt , q).
Because of the decreasing trend of the uncertain parameter
(z < 1), it is never optimal to restart an optimally stopped
program.3 We consider stationary policies π : R

2++ →
D × N to solve the optimal control problem

max
π(·)

E

[ ∞∑

t=0

δt g(p̃t , π(xt ))| x0

]

,

subject to xt+1 = φ(ψ(xt , nt , ṽt (nt ), q)), x0 given,

ut = π(xt ) ∈ D × N . (5)

Provided the value function V (x) satisfies the Bellman
equation,

V (x) = max
(d,n)∈D×N

{d(θμ(x) − γ ) − K(n)

N

+δE[V (φ(ψ(x, n, ṽ(n), q)))

×|x, (d, n)]}, (6)

for all admissible states x ∈ R
2++, the corresponding max-

imizer π∗(x) on the right-hand side defines an optimal
policy.

Remark 2 To reflect the policy-maker’s ongoing concern
for the health-intervention decision, the problem is formu-
lated in an infinite-horizon setting. Given a time-invariant
system, this implies that the optimal policy can be described
as a mapping from states to actions, without explicit con-
sideration of time. If more information about the system
becomes available over time, for example, relating to the
decay rate in the system dynamics (see Eq. 4), then it is
possible for the policy-maker to re-solve the problem and
update the policy accordingly.

3 Dynamic healthcare decisions

3.1 Policies without information acquisition

If information is prohibitively costly or practically infeasi-
ble to collect, Eq. 6 simplifies to

VNoInfo(x) = max
d∈{0,1}

{d(θμ(x) − γ ) + δVNoInfo(φ(x))},

3Weber [65] uses global optimization to consider the general problem
of switching between arbitrary streams of expected benefits allow-
ing for multiple switches, which can be viewed as a deterministic
equivalent of the multi-armed bandit problem.

for all x ∈ R
2++, as there is no Bayesian updating and

therefore ψ reduces to an identity map. For all states x

for which the optimal strategy is to not do the interven-
tion, this action remains optimal in the future because of
the decreasing trend of p̃t . Indeed, since for z ∈ (0, 1),
μ(φ(x)) = zμ(x) < μ(x), we have that for all states where
V (x) = 0, it is also the case that V (φ(x)) = 0. Hence, for
μ(x) ≤ γ

θ
it is optimal to stop the intervention. This defines

a threshold policy of the form

d∗ =
{

0, if μ(xt ) ≤ γ
θ
,

1, otherwise,
(7)

for all t ≥ 0. Restricting attention to the interesting case
where μ(x0) ≥ γ

θ
and using the fact that μ(xt ) = ztμ(x0),

we can identify the optimal time T (x0) to stop the interven-
tion, which is the first period in which the intervention has
a nonpositive expected INMB (see Appendix A.5):

T (x0) =
⌈

1

ln(z)
ln

(
γ

θμ(x0)

)⌉

. (8)

Hence, given any initial state x, the value of implementing
the optimal stopping policy for t ∈ {0, ..., T (x) − 1} is

VNoInfo(x) =
T (x)−1∑

t=0

δt
(
θztμ(x) − γ

)

= θμ(x)

(
1 − (δz)T (x)

1 − δz

)

− γ

(
1 − δT (x)

1 − δ

)

.

(9)

Proposition 2 When information is prohibitively costly or
practically infeasible to collect, the optimal value function
VNoInfo(xt ) is non-decreasing and convex in μ(xt ).

Proof See Appendix A.6.

Remark 3 The above result depends only on the decay in
the mean of the uncertain parameter distribution and is oth-
erwise distribution-free. In other words, it does not depend
on the policy-maker’s beliefs other than that p̃t is expected
to decrease over time.

3.2 Policies with information acquisition

When the policy-maker has the option to acquire infor-
mation, the value function is determined by the Bellman
equation (Eq. 6). Its properties in the no-information case
(Proposition 2) carry over to the more general situation.

Proposition 3 The optimal value function V (xt ) is non-
decreasing and convex in μ(xt ), and nondecreasing in
σ 2(xt ).

Proof See Appendix A.7.
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3.2.1 Special case: one-time information collection

Assume for now that information can be collected at most
once. Given a one-time size-η experiment (with η ≥ 1) and,
briefly, ignoring the cost of information collection K(η), the
value with information exceeds the no-information value,

θμ(x) − γ + δE[VNoInfo(φ(ψ(x, n0 = η, ṽ(η), q)))]
− VNoInfo(x) > 0,

as a consequence of Jensen’s inequality. This insight is
also useful for the comparison of experiments. A higher
confidence in the information, i.e., for a larger sample
size and/or better test characteristics, produces a mean-
preserving spread of the random-variable μ(φ(ψ(xt , n0 =
η, ṽt (η), q))) in the original experiment, and thus, by the
convexity of the (monotone) value function and second-
order stochastic dominance, a larger value with information.

Because of the monotone system dynamics, the optimal
time to collect information of sample size η, at cost κ(η), is
obtained by finding a period k where information acquisi-
tion is preferred to waiting until the next period, k + 1. In
other words, find the smallest k for which

V (xk|nk = η) ≥ V (xk+1 = φ(xk)|nk+1 = η),

or equivalently

θzkμ(x0) + δ

1 − δz

× (
E

[
VNoInfo(φ(ψ(xk, nk = η, ṽ(η), q)))]

− δE[VNoInfo(φ(ψ(φ(xk), nk+1 = η, ṽ(η), q)))
])

≥ 1 − δ

1 − δz
(γ + κ(η)) .

The positivity of the right-hand side of the last inequality
indicates that information acquisition may, on certain trajec-
tories, never be optimal. This is confirmed in our application
in Section 4, where the stopping region and the region
with information acquisition have a common boundary,
transversal to expected state trajectories.

3.2.2 General case: information collection in any period

Based on Proposition 3, the intervention is desirable for
greater μ(xt ) and greater σ(xt ); the latter increases the
upside of the policy-maker’s asymmetric (convex) payoffs,
as if holding a call option. The dynamics presented in Eq. 4,
with decreasing expectation and decreasing variance, imply
monotonicity of the intervention decision, dt+1 � dt .

Corollary 1 Consider x
(1)
t , x

(2)
t with μ(x

(1)
t ) < μ(x

(2)
t )

and σ 2(x
(1)
t ) = σ 2(x

(2)
t ), then if it is optimal to do the inter-

vention with μ(x
(1)
t ), it is also optimal to do the intervention

with μ(x
(2)
t ).

Proof See Appendix A.8.

Corollary 2 Consider x
(1)
t , x

(2)
t with μ(x

(1)
t ) = μ(x

(2)
t )

and σ 2(x
(1)
t ) < σ 2(x

(2)
t ), then if it is optimal to do the inter-

vention with σ(x
(1)
t ), it is also optimal to do the intervention

with σ(x
(2)
t ).

Proof See Appendix A.9.

A direct consequence of Proposition 3 and Corollaries
1 and 2 is that an optimal policy, as a map from states
to actions, features three regions (Fig. 2). We describe, in
detail, the features of the optimal policy for the case of an
optimal stopping problem (Fig. 2A). In region I, an optimal
policy is ‘no intervention (and do not sample).’ In region II,
an optimal policy is ‘do intervention and sample nt individ-
uals.’ In region III, an optimal policy is to ‘do intervention
and do not sample.’

The boundary between regions I and III is γ
θ

(Section 3.1). For 0 � μ(xt ) � γ
θ

, the policy-maker is
indifferent between ‘no intervention (and do not sample)’
and ‘do intervention and sample nt individuals’ when the
rewards of the two regions are equal:

0 = θμ(xt )−γ −κ(nt )+δE[V (φ(ψ(xt , nt , ṽt , q)))]. (10)

Focusing on the region γ
θ

� μ(xt ) � 1, the policy-
maker is indifferent between ‘do intervention and sample

Fig. 2 Policy regions for a an
optimal-stopping problem and b
an optimal-starting problem. In
either case, the initial belief is in
region II or III; over time, the
belief moves towards region I
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nt individuals’ and ‘do intervention and do not sample’
when the rewards of the two regions are equal. Removing
common terms from each side, this occurs when

−κ(nt ) + δE[V (φ(ψ(xt , nt , ṽt , q)))] = δV (φ(xt )). (11)

For each σ 2(xt ), there can exist more than one μ(xt )

where γ
θ

< μ(xt ) � 1 satisfying Eq. 11 because
V (φ(ψ(xt , nt , ṽt , q))) is increasing, but neither concave or
convex, in vt . The existence of the section of region III
between regions I and II (the location of point A) can be
obtained using intuition. Consider two points, A and B, with
the same standard deviation (Fig. 2). Compared to point B,
if information were to be gathered at point A, the distribu-
tion of possible posterior states includes a higher proportion
of states in region I (with a reward of 0) and a lower propor-
tion of high-reward states (those with high mean and high
standard deviation) and, therefore, information acquisition
is less likely to yield a value exceeding its cost. Now con-
sider two points, A and C, with the same mean. Compared
to point C, if information were to be gathered at point A, the
distribution of possible posterior states is narrower. In both
of these cases, increased spread on the side of low mean
has no impact on the expectation and increased spread into
the high-reward states substantially increases expectation.
Therefore, information acquisition is more likely to yield a
value exceeding its cost for the state with higher standard
deviation.

Proposition 4 For a fixed sample size η (so nt ∈ {0, η}
for all t), misclassification in the information-collection
technology decreases the value function and reduces the
number of states for which information acquisition is
optimal.

Proof See Appendix A.10.

This result is consistent with Blackwell’s result that
a less informative signal cannot increase the value of a
single-person decision problem [66].

4 Application

4.1 Background and motivation

Chronic HCV infection is a slowly progressing blood-borne
disease that causes liver fibrosis, cirrhosis, and liver can-
cer. It is the principal cause of death from liver disease and
the leading indication for liver transplantation in the United
States (US) [67, 68]. Between 2.7 and 5.2 million Ameri-
cans (1.1% to 2.1% of the adult population) are chronically
infected with HCV [69, 70]. In the non-injection drug using
US population, prevalence peaks in the 1945 to 1965 birth
cohorts and decreases thereafter (Fig. 3). Approximately
half of all chronically infected individuals are unaware of
their disease status [71].

Recent model-based analyses concluded that one-time
screening of individuals born between 1945 and 1965 is
cost-effective [11–15] and the CDC and USPSTF recently
released new guidance in support of one-time screening of
these birth cohorts [16, 17]. Several studies indicate that
screening individuals born later than 1965 is also likely to
be cost-effective [13–15]. Since HCV prevalence is decreas-
ing in birth year after the 1956 birth cohort (Fig. 3), there
may be a time at which screening is no longer cost-effective.
To improve the decision about the best time to stop screen-
ing, additional information about prevalence of the current
and future cohorts may be desirable. However, standard
approaches to finding the value of information do not usu-
ally include the option to delay the information acquisition.

Note that the population we model were predominantly
infected decades ago [72, 73] and do not have ongoing risk
factors for HCV re-infection. Many historically significant
modes of disease incidence have been virtually eliminated
including transmission by surgical or other hospital equip-
ment prior to modern sterilization procedures and blood
transfusion [73, 74]. Injection equipment sharing among
people who actively use injection drugs (PWID) is currently
the principal cause of HCV transmission [76]. Although a
history of injection drug use is relatively common among
individuals with chronic HCV infection (approximately

Fig. 3 Prevalence of HCV by
birth year in a men and b
women. Estimated using the
National Health and Nutrition
Examination Survey (NHANES)
(1999-2010). For details, see
Appendix A.11.3
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40% [71]), re-infection and disease transmission to others
via injection drug use are not an ongoing risk for a large
proportion of these individuals as three-quarters of HCV
infected individuals with a self-reported history of injec-
tion drug use report last injecting greater than 5 years ago
(median time since last injection = 20 years) [75]. Our
model does not include PWID and so we do not consider
the possibility of re-infection. PWID are a high-risk popula-
tion and guidelines, separate from those otherwise discussed
here, recommend routine annual HCV screening in this
population [77].

We now apply the stochastic dynamic programming
framework developed in Section 2 to the case of one-time
HCV screening at a routine medical appointment at age 50 for
successive birth cohorts. We consider screening at age 50
because one-time screening at this age had the lowest incre-
mental cost-effectiveness ratio in an analysis of single birth
cohort screening [14]. Waiting to perform a one-time screen-
ing in older individuals is less cost-effective because their
disease may have progressed further and treatment is less
effective in more severe disease states. One-time screening of
younger individuals is less cost-effective because younger
individuals are further away from the long-term conse-
quences of HCV which screening and treatment hope to avoid.
We transform the unbounded state space in terms of xt =
(at , bt ) to the compact policy-relevant space μ(xt ) and
σ(xt ). Using value iteration implemented in R version
2.15.0 [78], we numerically determine an optimal HCV-
screening and information-collection policy for US adults.

At each time, we consider the actions of ‘do not screen
for HCV and do not collect information about HCV preva-
lence in the current cohort;’ ‘screen for HCV and collect
sample information about HCV prevalence in the current
cohort;’ ‘screen for HCV and do not collect information
about HCV prevalence in the current cohort.’ We compare
this optimal strategy to the policies identified by various
alternative approaches: a slightly modified version of the
new CDC and USPSTF recommendation; an optimal policy
without information acquisition; and an optimal policy with
(possibly immediate) information acquisition. A policy of
HCV screening does not inherently provide additional infor-
mation about HCV prevalence to policy-makers, because
only positive test outcomes are reported to the CDC and
the reason for the medical test is private health information
(the test may have been performed for a reason other than
routine screening at age 50). Estimating prevalence among
asymptomatic individuals seeking routine preventive med-
ical care therefore requires a study with random sampling
of those individuals. The (quasi-)linearity of INMBt for this
example is established in Appendix A.11.1. Parameter val-
ues and ranges used in sensitivity analysis are presented in
Table 2. Details of parameter estimation are presented in
Appendix A.11.2 and A.11.3.
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4.2 Results

For the purposes of our analysis, we assume the current time
to be the year 2010 and the initial cohort to be born in 1960.

4.2.1 Policies identified by alternative approaches

The expected value of the CDC and USPSTF recommenda-
tion was obtained by substituting T = 6 into Eq. 9. The sum
of the discounted expected INMBs for screening 6 cohorts
at age 50, until the 1965 birth cohort turns 50 years of age,
is $399.1 million for men and $15.4 million for women
(Table 3). The large difference between men and women is
attributable to higher HCV prevalence and higher marginal
INMB of early diagnosis and treatment in men.

We identify the threshold prevalence value below which the
HCV-screening program should be terminated and the best time
to terminate the screening program, assuming no oppor-
tunity to collect information using Eqs. 7–8. In men, the
program should be terminated when prevalence falls below
0.4%, which will occur in 18 years (95%CI: 16-19 years).
In women, the program should be terminated when preva-
lence falls below 0.1%, which will occur in 3 years (95%CI:
0-5 years). The expected INMB of these policies is $566.5
million for men and $21.7 million for women (Table 3).

The traditional approach to value-of-information assess-
ment in the health policy literature assumes immediate infor-
mation collection [3, 4]. For men and women, we find
the optimal sample sizes to be 910 and 4,930 individuals
from the current cohort, respectively (Fig. 4). The expected
INMB of immediate information followed by the opti-
mal policy based on the information collected increases by
$20,000 for men and $600,000 for women. Women have
a greater value of immediate information because they are
closer to the intervention stopping region threshold and,

therefore, immediate information is more likely to result in
a policy change.

4.2.2 Model results

Implementing the full model, we considered the possibil-
ity of collecting sample information at each decision period.
For computational and illustrative reasons, we restricted the
policy-maker’s choice to two sample sizes N ∈ {0, η}. We
considered several possible values for η (2000, 2500, 3000,
..., 8000) and we present the results for the sample size that
maximized the value at the initial condition for each gender.
We also performed analyses using multiple study sample
size levels available at each period. We do not present these
analyses, as they led to the same optimal policies indicating
that our restriction to two sample sizes was not material for
this application.

The optimal policy is characterized by the three main
regions described in Section 3.2.2 (Fig. 5a). At low preva-
lence and relatively low uncertainty, it is optimal to not
screen and not collect information. At high prevalence, it is
optimal to screen and not collect information. At prevalence
close to the γ

θ
threshold and relatively high uncertainty, it is

optimal to both screen and collect information.
For each state in the region where it is optimal to screen

without information acquisition, we can identify the opti-
mal next action and the time when it should occur (Fig. 5b).
We subdivide this region by a solid line. Above the solid
line, which is the region with higher uncertainty, it is
optimal to screen without information acquisition for a spec-
ified number of periods and then to collect information. In
the region with lower uncertainty, it is optimal to screen
without information acquisition for a specified number of
periods and then to stop screening without ever collect-
ing information. The current prevalence estimates for men

Fig. 4 The value of collecting sample information immediately for
various sample sizes. The gain in the expected INMB of the policy
(θμ(x0) − γ + δE[VNoInfo(φ(ψ(x0, n0 = η, ṽ(η), q)))]) , the cost
of information (κ(η)), and the net gain in the expected INMB of an

HCV-screening policy if sample information is collected in the first
period only as a function of sample size for a men with initial belief
μ(x0) = 0.031 and σ(x0) = 0.0035 and b women with initial belief
μ(x0) = 0.0135 and σ(x0) = 0.0019
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and women indicate that it is optimal to screen without
information collection for 16 years and 1 year, respectively,
and then to collect sample information to inform the next
action. The expected INMBs of these policies are $567.9
million and $22.5 million for men and women, respectively
(Table 3).

For each state, we also computed the marginal value
of collecting a specific amount of information (Fig. 5c).
The marginal value of information in the current period is
near-zero for states in which collecting information in the
future is optimal. Consistent with our expectations, in the
‘Screen and Collect Information’ region, the marginal value

Fig. 5 a Optimal policy given any current belief about HCV preva-
lence and the opportunity to sample 4,000 men (left) and 4,500 women
(right) at any time. b Time to the next policy action for men (left) and
women (right). For states below the solid line, the next action is to

stop screening. For states above the solid line, the next action is to col-
lect information. c The marginal value of collecting information, 4,000
samples for men (left) and 4,500 samples for women (right), in the
current period.
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of information is greatest close to the γ
θ

-threshold and
increases with uncertainty. In the ‘Screen and Do Not Col-
lect Information’ region, the value of information is highest
along the boundary that divides the region into points with
trajectories leading to information collection and points
with trajectories leading to ‘No Screening’ without informa-
tion collection.

Sensitivity analysis identified that the general conclu-
sions of our numerical analysis are robust to uncertainty in
the inputs (details in Appendix A.11.4).

4.3 Discussion of application

Evaluating an HCV-screening policy over its entire lifecycle
using a stochastic dynamic programming approach has led
to several important policy-relevant insights. Our analysis
indicates that recommendations by the CDC and USPSTF to
screen individuals born between 1945 and 1965 at their next
routine medical visit are conservative for men. Specifically,
our analysis shows that, for men, screening should continue
until at least the 1976 birth cohort turns 50 (in 2026), at
which point 4,000 individuals should be sampled to inform
about the continuation of the program. Screening men at
least 10 years longer will enable early diagnosis in an
estimated 50,500 additional individuals, thus preventing an
expected 767 additional liver cancers and about 212 addi-
tional liver transplants. For women, we find that a large
information-acquisition effort should take place when the
1961 birth cohort turns 50 (in 2011),4 as it is likely not
cost-effective to screen women, per guidance, to the 1965
cohort because of relatively low prevalence (Fig. 3) and
slower disease progression in women [85]. Compared to the
CDC and USPSTF recommendation, our model increases
the expected INMB by $168.8 million in men and $7.1
million in women.

Our analysis has several limitations. First, we assume
only the current cohort can be sampled to learn about sub-
sequent cohorts, relying on the correlation between cohorts
(as implied by the system dynamics). In practice, for our
example, it is possible to sample the next cohort (49-
year olds) directly. We chose this assumption because the
individuals who make up the ‘next cohort’ are typically
unknown (e.g., the next cohort of patients with a heart
attack, the next cohort of pregnant women, or the next
cohort of cancer patients). Second, we consider one-time
screening at age 50 based on a cost effectiveness analysis of
once-in-a-lifetime HCV screening [14]. However, this
analysis (and, consequently, ours) assumed that the cohort
being screened has not been previously screened. Our model
does not identify the optimal age at which to perform

4Our initial cohort is individuals born in 1960. This result can be
interpreted as a recommendation for immediate information collection.

one-time screening. Third, we assumed that the individu-
als who attend a preventive health exam and participate in
recommended HCV screening are an unbiased sample from
the cohort–that is, individuals are not more or less likely
to attend their preventive health exam if they are HCV-
positive. However, if individuals at higher-risk of HCV
disproportionately self-select for general population screen-
ing, then we have underestimated the duration for which
screening will be cost-effective. If individuals at lower-risk
disproportionately self-select for screening (often called the
“worried well”), then we have overestimated the duration
for which screening will be cost-effective. Fourth, we focus
on HCV screening policy in the non-injection drug using
population only because they were the focus of the recent
change in HCV screening policy. Finally, while uncer-
tainty (and related information acquisition) with respect to
model parameters other than prevalence can be treated in an
analogous manner, the details are left for future work.

5 Conclusion

Our analysis shows that when parameters vary across inter-
vention cohorts, it may be optimal to delay information
acquisition. This is a significant improvement over the
current paradigm which only considers one-time immedi-
ate information collection. More specifically, we provide a
framework for optimal information acquisition, in terms of
timing and precision of the acquired signal (sample size).
Further, we incorporate misclassification from an imper-
fect information-collection technology into our framework,
which is an important real-life complexity of information
gathering that adds substantial analytical difficulty.

The common assumption that the per-person value-of-
information remains constant for future cohorts may result
in a significant error when estimating the population value
of additional information. It may indicate immediate expen-
sive information collection when, incorporating the system
dynamics, the optimal action is to collect information in
the future or never at all. When a parameter is evolving
across intervention cohorts, ignoring the opportunity to wait
and collect information in the future, when the informa-
tion collected is more likely to result in action, is a missed
opportunity for increased efficiency. As seen in our exam-
ple, adding the option of delaying information acquisition
until a time when the signal is more likely to justify a policy
shift can increase the expected value compared to a policy of
immediate information collection. The dynamic program-
ming framework developed in this paper enables an accurate
assessment of the marginal value of additional information
and identifies an optimal information-acquisition policy.

In this work, we assumed that the dynamics are
monotonically increasing or decreasing and that they are
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deterministic. In future work, we plan to consider the more
realistic assumption of uncertainty in the dynamics. This
would then enable learning about the evolution of the
parameters, rather than just their current state. Furthermore,
our model does not consider the possibility of intervening
on a cohort at a different time in the course of their dis-
ease or lives (i.e., at an earlier or later age) or the possibility
of the intervention modifying the population-level dynam-
ics. Although true for our application, this latter assumption
does not hold in general for an infectious disease. Including
the additional benefits of reduced disease transmission from
prevention and treatment interventions may generate more
near-term benefits and may dramatically alter the value of
the intervention over time.

With strained resources for health programs and population-
health monitoring, this type of analysis may ensure an
optimal implementation horizon for health programs
together with guidance on when and how much information
should be collected to inform health-program adjust-
ments. Beyond health, many application areas face limited
resources for investment and information acquisition,
high-quality decision-relevant information is often difficult
or expensive to collect, and population or environmental
trends influence the preferences and behavior of customers
across industries. Facing a dynamic consumer, competitive,
or physical environment, the optimal timing of high-quality
information acquisition may provide competitive advantage.
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Appendix

A glossary of symbols is provided in Table 4.

A.1 Proof of Proposition 1

The special case where p̃t is beta-distributed with parame-
ters xt = (at , bt ) and the information-collection technology
is perfect, i.e., where q = (1, 1), is well known [53]. The
sample information ṽt , where ṽt is the number of observed
positives of nt samples, is beta-binomially distributed, and
updating the prior with the sample information results in
a beta-distributed posterior belief with parameters (at +
vt , bt + nt − vt ).

Table 4 Glossary of Symbols

Symbol Definition

N Annual number of preventive health exams

HCV Screening Test

q1 Sensitivity

q2 Specificity

CS Cost of HCV-antibody test

CFP Cost of false positive

BS Quality-of-life change, event of screening

BFP Quality-of-life change, false-positive result

Lifetime discounted costs per person

C1 HCV+, identified through screening

C2 HCV+, not identified through screening

C3 HCV- individual

Lifetime discounted quality-adjusted life-years (QALYs) per person

B1 HCV+, identified through screening

B2 HCV+, not identified through screening

B3 HCV- individual

Incremental net monetary benefit (INMB) per person

θ Variable component of INMB

γ Fixed component of INMB

Cost of collecting information

KF Fixed cost per sampling study

KV Variable cost per sample

K(nt ) Cost of sampling

Other

x0 Initial belief, HCV prevalence in undiagnosed individuals
(1960 birth cohort in 2010)

z Rate of prevalence decay

λ Willingness-to-pay threshold

r Annual discount rate

Consider the interesting case with a prior belief fp(xt )

which is a mixture of mt ≥ 1 beta-distributions where
xt = (xt,1, xt,2, ..., xt,mt ) and xt,i = (at,i , bt,i) ∈ R

2++ such
that 1 � i � m, and a set of positive weights ωi such that∑m

i=1 ωi = 1. The pdf is

fp(p|xt ) =
m∑

i=1

wi

�(ai + bi)

�(ai)�(bi)
pai−1(1 − p)bi−1.

At time t the policy-maker chooses nt > 0, indicating
that they will collect nt Bernoulli trials. The information-
collection technology, with test sensitivity q1 and test
specificity q2, is imperfect. The probability of observing a
‘positive’ signal from any single Bernoulli trial is p̃t q1 +
(1 − p̃t )(1 − q2). Therefore,

fv|p(vt |p̃t =p, nt , q) =
(

nt

vt

)

[pq1+(1−p)(1−q2)]vt

×[1−pq1−(1−p)(1−q2)]nt−vt .

619

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Population-level intervention and information collection in dynamic healthcare policy

The resulting distribution of sample information is effec-
tively a weighted beta-binomial distribution, correcting

for the additional uncertainty introduced by the imperfect
information-collection technology:

fv(vt |xt , nt , q)=
∫ 1

0
fv|p(vt |p̃t =pt , nt , q)fp(p̃t =pt |xt )dp

=
∫ 1

0

(
nt

vt

)

[pq1+(1−p)(1−q2)]vt [1−pq1−(1−p)(1−q2)]nt−vt fp(p̃t =pt |xt )dp

=
∫ 1

0

(
nt

vt

)

[pq1+(1−p)(1−q2)]vt [p(1−q1)+(1−p)q2]nt−vt ×
m∑

i=1

ωi

�(at,i +bt,i )

�(at,i )�(bt,i )
pat,i−1(1−p)bt,i−1dp

=
∫ 1

0

(
nt

vt

)
⎛

⎝
vt∑

j=0

(
vt

j

)

pjq
j

1 (1−p)vt−j (1−q2)
vt −j

⎞

⎠

(
nt−vt∑

k=0

(
nt − vt

k

)

pk(1−q1)
k(1−p)nt−vt −kq

nt−vt −k
2

)

×
m∑

i=1

ωi

�(at,i +bt,i )

�(at,i )�(bt,i )
pat,i−1(1−p)bt,i−1dp

=
vt∑

j=0

nt−vt∑

k=0

(
nt

vt

)(
vt

j

)(
nt − vt

k

)

q
j

1 (1−q2)
vt −j (1−q1)

kq
nt−vt −k
2 ×

m∑

i=1

ωi

�(at,i +bt,i )

�(at,i )�(bt,i )

∫ 1

0
pat,i+j+k−1(1−p)bt,i+nt−j−k−1dp

=
vt∑

j=0

nt−vt∑

k=0

(
nt

vt

)(
vt

j

)(
nt − vt

k

)

q
j

1 (1−q2)
vt −j (1−q1)

kq
nt−vt −k
2 ×

m∑

i=1

ωi

�(at,i +bt,i )

�(at,i )�(bt,i )

�(at,i +j+k)�(bt,i +nt −j−k)

�(at,i +bt,i +nt )

=
vt∑

j=0

nt−vt∑

k=0

q
j

1 (1−q2)
vt −j (1−q1)

kq
nt−vt −k
2 ×

m∑

i=1

ωi

�(nt +1)�(at,i +bt,i )�(at,i +j+k)�(bt,i +nt −j−k)

�(j+1)�(vt −j+1)�(k+1)�(nt −vt −k+1)�(at,i )�(bt,i )�(at,i +bt,i +nt )
.

(12)

Using Bayes’ Theorem, the posterior distribution is a
mixture of beta-distributions with weights summing to one:

fp|v(p|xt , nt , vt , q)= fv|p(ṽt =vt |p̃, nt , q)fp(p̃t =pt |xt )

fv(ṽt =vt |xt , nt , q)

=
(
nt

vt

)[pq1+(1−p)(1−q2)]vt [p(1−q1)+(1−p)q2]nt−vt
∑m

i=1 ωi
�(at,i+bt,i )

�(at,i )�(bt,i )
pat,i−1(1−p)bt,i−1

fv(ṽt =vt |xt , nt , q)

= 1

fv(ṽt =vt |xt , nt , q)

(
nt

vt

)
⎛

⎝
vt∑

j=0

(
vt

j

)

pjq
j

1 (1−p)vt −j (1−q2)
vt −j

⎞

⎠

×
(

nt−vt∑

k=0

(
nt − vt

k

)

pk(1−q1)
k(1−p)nt−vt −kq

nt−vt −k
2

)
m∑

i=1

ωi

�(at,i +bt,i )

�(at,i )�(bt,i )
pat,i−1(1−p)bt,i−1

= 1

fv(ṽt =vt |xt , nt , q)

vt∑

j=0

nt−vt∑

k=0

(
nt

vt

)(
vt

j

)(
nt −vt

k

)

q
j

1 (1−q2)
vt −j (1−q1)

kq
nt−vt −k
2

×
m∑

i=1

ωi

�(at,i +bt,i )

�(at,i )�(bt,i )
pat,i+j+k−1(1−p)bt,i+nt −j−k−1

= 1

fv(ṽt =vt |xt , nt , q)

vt∑

j=0

nt−vt∑

k=0

m∑

i=1

q
j

1 (1−q2)
vt −j (1−q1)

kq
nt−vt −k
2 ωi

× �(nt +1)�(at,i +bt,i )�(at,i +j+k)�(bt,i +nt −j−k)

�(j+1)�(vt −j+1)�(k+1)�(nt −vt −k+1)�(at,i )�(bt,i )�(at,i +bt,i +nt )
×beta(at,i +j+k, bt,i +nt −j−k)

=
vt∑

j=0

nt−vt∑

k=0

m∑

i=1

ω
′
j,k,ibeta(at,i +j+k, bt,i +nt −j−k), (13)
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with updated weights

ω′
j,k,i =

ωiq
j
1 (1−q2)

vt −j (1−q1)
kq

nt −vt −k

2 �(at,i+bt,i )�(at,i+j+k)�(bt,i+nt−j−k)

�(j+1)�(vt−j+1)�(k+1)�(nt−vt−k+1)�(at,i )�(bt,i )�(at,i+bt,i+nt )

vt∑

r=0

nt−vt∑

s=0

m∑

i=1

ωiq
r
1(1−q2)

vt −r (1−q1)
sq

nt −vt −s

2 �(at,i+bt,i )�(at,i+r+s)�(bt,i+nt−r−s)

�(r+1)�(vt−r+1)�(s+1)�(nt−vt−s+1)�(at,i )�(bt,i )�(at,i+bt,i+nt )

.

The coefficients of each component of the mixture distri-
bution sum to 1 and, therefore, the posterior distribution is a
mixture of beta-distributions, which concludes our proof.

A.2 General properties of mixtures of beta-distributions

A.2.1 The number of component distributions
in the posterior mixture distribution

Perfect information-collection technology (i.e., q1 =
q2 = 1). If p̃t is a mixture of m ≥ 1 beta-distributions with
weights ωi and the information-collection technology is per-
fect, the distribution of sample information is a mixture
of beta-binomial distributions with weights ωi . Updating
results in a posterior distribution that is a mixture of m

beta-distributions with parameters (at,i + vt , bt,i +nt − vt ).
Consider the example where m = 2, xt = ((3, 7), (7, 3)),

ω = (0.8, 0.2), nt = 10, and vt = 4. Let x̂t denote the
posterior belief state. Then, x̂t = ((3+4, 7+6), (7+4, 3+
6)) = ((7, 13), (11, 9)) and ω′ = (0.8, 0.2).

Imperfect information-collection technology (i.e., min{q1,
q2} < 1). If p̃t is a mixture of m ≥ 1 beta-distributions
with weights ωi and the information-collection technol-
ogy is imperfect, the true posterior distribution presented in
Eq. 13 is a mixture of beta-distributions. There are nt + 1
possible outcomes of a study with sample size of nt and so
there are nt +1 possible values for j +k in Eq. 13. However,
not all the posterior distributions created by updating each
of the m prior distributions are necessarily unique. There-
fore, the true posterior distribution is a mixture of between
m + nt and m × (nt + 1) beta-distributions.

Consider the example where m = 2, xt = ((19, 20),

(20, 19)), nt = 5. Again, let x̂t denote the posterior belief
state. Given the sample size of nt = 5 there are 6 pos-
sible true outcomes, by which we mean the unobservable
number of actual positive samples in the study, which cor-
respond to nt + m = 7 possible unique beta-distributions
x̂t = ((19, 25), (20, 24), (21, 23), (22, 22), (23, 21), (24,

20), (25, 19)) which each contribute to the posterior mix-
ture distribution. When we observe a specific number of
positives in the sample, the imperfect information-collection

technology results in a distribution over the true number
of positives in the sample and, therefore, weights on each
component in the posterior mixture distribution (given by
Eq. 13).

A.2.2 Mean and variance of mixtures of beta-distributions

The posterior distribution of p̃t given sample information
vt collected using an imperfect information-collection tech-
nology is a mixture of beta-distributions. In this section,
we first derive equations for the mean and variance for a
general mixture of beta-distributions (with simplified nota-
tion) to show their relationship to the mean, and more
generally, to the parameters of the component distributions.
Then, we do the appropriate substitutions to present the
conditional mean and variance of the posterior distribution
fp|v .

Consider a distribution fY (y) which is a mixture of M

beta-distributions where the i-th component of the mixture
has weight wi , parameters ai and bi , and mean μi :

fY (y)=
M∑

i=1

wi

�(ai +bi)

�(ai)�(bi)
yai−1(1−y)bi−1where

M∑

i=1

wi=1.

We show that the mean of a mixture of beta-distributions
is the weighted mean of each mixture component:

E[fY (y)] =
∫ 1

0
yfY (y)dy

=
∫ 1

0
y

(
M∑

i=1

wi

�(ai +bi)

�(ai)�(bi)
yai−1(1−y)bi−1

)

dy

=
M∑

i=1

wi

�(ai + bi)

�(ai)�(bi)

∫ 1

0
yai (1 − y)bi−1dy

=
M∑

i=1

wi

�(ai + bi)

�(ai)�(bi)

�(ai + 1)�(bi)

�(ai + bi + 1)

=
M∑

i=1

wi

ai

ai + bi

=
M∑

i=1

wiμi. (14)
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We also derive the variance of fY (y):

V[fY (y)]=
∫ 1

0
y2fY (y)dy−(E[fY (y)])2

=
∫ 1

0
y2

(
M∑

i=1

wi

�(ai +bi)

�(ai)�(bi)
yai−1(1−y)bi−1

)

×dy−
(

M∑

i=1

wiμi

)2

=
M∑

i=1

wi

�(ai +bi)

�(ai)�(bi)

∫ 1

0
yai+1(1−y)bi−1

×dy−
(

M∑

i=1

ωiμi

)2

=
M∑

i=1

wi

�(ai +bi)

�(ai)�(bi)

�(ai +2)�(bi)

�(ai +bi +2)
−

(
M∑

i=1

ωiμi

)2

=
M∑

i=1

wi

(ai +1)ai

(ai +bi +1)(ai +bi)
−

(
M∑

i=1

wiμi

)2

. (15)

Mean and variance of the posterior distribution fp|v .
The posterior distribution of p̃t , fp|v , is a mixture of beta-
distribution (Proposition 1). Using Eqs. 14 and 15 with
appropriate substitutions, we can identify:

E[fp|v(p|ṽt = vt )] =
vt∑

j=0

nt−vt∑

k=0

m∑

i=1

ω′
j,k,i

× at,i + j + k

at,i + bt,i + nt

(16)

and

V[fp|v(p|ṽt =vt )] =
vt∑

j=0

nt−vt∑

k=0

m∑

i=1

ω′
j,k,i

× (at,i +j+k+1)(at,i +j+k)

(at,i +bt,i +nt +1)(at,i +bt,i +nt )

− (
E[fp|v(p|ṽt =vt )]

)2 (17)

where ωi is the prior weight on the i-th component of the
prior distribution, and

ω′
j,k,i =

ωiq
j

1 (1 − q2)
vt−j (1 − q1)

kq
nt−vt−k
2

�(at,i+bt,i )�(at,i+j+k)�(bt,i+nt−j−k)

�(j+1)�(vt−j+1)�(k+1)�(nt−vt−k+1)�(at,i )�(bt,i )�(at,i+bt,i+nt )

∑vt

r=0

∑nt−vt

s=0

∑m
i=1

ωiq
r
1(1−q2)

vt −r (1−q1)
sq

nt −vt −s

2 �(at,i+bt,i )�(at,i+r+s)�(bt,i+nt−r−s)

�(r+1)�(vt−r+1)�(s+1)�(nt−vt−s+1)�(at,i )�(bt,i )�(at,i+bt,i+nt )

.

A.3 Quality of the Posterior Distribution Approximation

We performed extensive numerical simulations to test the
accuracy of the approximation. We generated exact poste-
rior distributions under the following conditions:

— Single beta-distribution priors with

μ(x) ∈ {0.001, 0.0025, 0.005, 0.0075, 0.01, 0.02,

0.03, 0.04} and

σ(x) ∈ {0.001, 0.002, ..., 0.006}.
— Information-collection technologies with

q1 ∈ {0.7, 0.8, 0.9, 0.95, 0.97, 0.99, 1} and

q2 ∈ {0.7, 0.8, 0.9, 0.95, 0.97, 0.99, 0.999, 0.9996, 1}.
— Sample sizes n ∈ {100, 500, 1000, 2500, 5000}.
— Observations v at percentiles of

{0.00001, 0.0001, 0.001, 0.002, 0.0025, 0.005, ...,

0.9925, 0.9975, 0.998, 0.999, 0.9999, 0.99999}.
In total, 757,781 exact distributions were generated,

approximately 600,000 of which had means and variance
in the policy-relevant region for our numerical analysis
(μ(x) ∈ (0, 0.04) × σ(x) ∈ (0, 0.008)). We calculated
the Kolmogorov-distance—the maximum distance between

the cumulative distribution functions—between each exact
beta-mixture posterior distribution and a single beta-
distribution with the same mean and standard deviation.

The Kolmogorov-distance between the cumulative den-
sity function of the exact posterior distributions and that of
the approximation with matching mean and variance was
generally small (< 2%) (Fig. 6). The Kolmogorov distances
only increased in magnitude for very small means or small
means and large standard deviations. Kolmogorov distances
above 2% typically appeared only in the stopping region of
our numerical example or in the upper left-hand section of
the information collection region with small means and high
standard deviations (σ(x) > 0.006). Based on the numerical
experiments, for the purposes of informing the practical pol-
icy decision, the approximate belief update using moment
matching proves to be of reasonably high quality.

A.4 Derivation of Dynamics in Mean-Variance space

The state xt = (at , bt ), which contains the parameters of the
distribution of p̃t representing the policy-maker’s current
beliefs, follows a law of motion of the form

xt+1 = φ(x̂t ) =
[

z 0
1 − z 1

]

x̂t ,
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Fig. 6 Average Kolmogorov-distance between an exact beta-mixture
distribution and a single beta-distribution with the same mean and
standard deviation

where z ∈ (0, 1) is the decay rate and x̂t = (ât , b̂t ) =
ψ(xt , nt , vt , q) is the Bayesian update of xt given vt posi-
tive observations out of a test of nt individuals in the current
cohort.

First, we see that

xt+1 =
[

at+1

bt+1

]

=
[

zât

(1 − z)ât + b̂t

]

.

Derivation of μ(xt+1) beginning with the expectation of
a beta-distribution:

μ(xt+1) = at+1

at+1 + bt+1
= zât

zât + (1 − z)ât + b̂t

= zât

ât + b̂t

= zμ(x̂t ).

Derivation of σ 2(xt+1) beginning with the variance of a
beta-distribution:

σ 2(xt+1)= at+1bt+1

(at+1+bt+1)2(at+1+bt+1+1)

= (zât )((1−z)ât +b̂t )

(zât +(1 − z)ât +b̂t )2(zât +(1−z)ât +b̂t +1)

= z(1−z)â2
t +zât b̂t

(ât +b̂t )2(ât +b̂t +1)

=z(1−z)

(
â2
t

(ât +b̂t )2(ât +b̂t +1)
× b̂t

b̂t

× ât +b̂t

ât +b̂t

)

+z

(
ât b̂t

(ât +b̂t )2(ât +b̂t +1)

)

=z(1 − z)

(
ât b̂t

(ât + b̂t )2(ât + b̂t + 1)

× ât

ât + b̂t

× ât + b̂t

b̂t

)

+zσ 2(xt )

=z(1 − z)σ 2(x̂t )

(
μ(x̂t )

1 − μ(x̂t )

)

+ zσ 2(x̂t )

=σ 2(x̂t )

(

z + z(1 − z)

(
μ(x̂t )

1 − μ(x̂t )

))

.

A.5 Derivation of Eq. 8

For μ(x0) ≥ γ
θ

, given Eq. 1 and using the fact that
μ(xt ) = ztμ(x0), we can identify the optimal time to stop
the intervention, T (x0), which is the first period in which
the intervention has a nonpositive INMB. Specifically, we
seek the value of t such that E[g(xt )] = 0.

E
[
g(p̃t )

] = θμ(xt ) − γ = θztμ(x0) − γ = 0

zt = γ

θμ(x0)

t = 1

ln(z)
ln

(
γ

θμ(x0)

)

Since decisions can only be made at discrete time intervals,
we identify the optimal time to stop the intervention, T (x0),
as the first integer period in which the intervention has a
nonpositive INMB

T (x0) =
⌈

1

ln(z)
ln

(
γ

θμ(x0)

)⌉

.

A.6 Proof of Proposition 2

Rewriting Eq. 9 as

VNoInfo(x0) =
∞∑

t=0

δt (θztμ(x0) − γ )1{t≤T (x0)},

where T (x0) is the optimal time to stop the intervention,
the claim follows from the fact that each term is a
nondecreasing, convex function. Specifically for each t ,
δt (θztμ(x0) − γ ) is linear in μ(x0) with θδt zt ≥ 0 and
T (x0) nondecreasing in μ(x0). Noting that when t =
T (x0) = t (x0), (θztμ(x0)−γ ) = 0, we can conclude that
δt (θztμ(x0)−γ )1{t≤T (x0)} is a continuous, nondecreasing
convex function.

A.7 Proof of Proposition 3

We apply Proposition 5 in Smith and McCardle [20], which
states that if (a) the current-period reward function satisfies

623



Population-level intervention and information collection in dynamic healthcare policy

the structural property (such as convexity and monotonicity
in μ(xt )) for each action, and (b) the state transitions sat-
isfy a stochastic version of the structural property for each
action, then the value function satisfies the structural prop-
erty in a finite-horizon setting. In our setting, which is in
principle infinite-horizon up to the stopping time, if the
structural property is satisfied in the final period, just before
the optimal stopping time, then the previous-period value
function is obtained via maximization over functions that
each satisfy the structural property. Thus, if the structural
property is preserved by maximization, then the previous-
period value function also satisfies the structural property.
For the proof we assume a perfect detection technology to
simplify exposition. We extend to the general case at the end
of the proof.

First, condition (a) is satisfied because the current-period
expected reward, E[g(p̃t , ut )|xt ], is nondecreasing in μ(xt )
and σ 2(xt ) and (at least weakly) convex in μ(xt ) for any
action ut ∈ D × N .

Second, the Bayesian update ψ preserves stochastic
dominance of the beta-distributed prior, in the sense that
if one prior is stochastically dominated by another prior,
the corresponding posteriors will exhibit the same domi-
nance relationship, under first-order stochastic dominance
(FOSD) and second-order stochastic dominance (SOSD).5

In particular, an increase of the mean μ(xt ) will result in
an increase of the posterior mean, and an increase of the
variance σ 2(xt ) in an increase of the posterior variance. To
see this for SOSD, consider a mean preserving spread, so
x

(1)
t , x

(2)
t with μ(x

(1)
t ) = μ(x

(2)
t ) and σ 2(x

(1)
t ) < σ 2(x

(2)
t ).

Then σ 2(x
(1)
t ) < σ 2(x

(2)
t ) implies a

(1)
t + b

(1)
t > a

(2)
t +

b
(2)
t , and V[s̃t |x(1)

t , nt ] � V[s̃t |x(2)
t , nt ]. The conditional

variance of the next-period belief given nt = η ≥ 0 sam-
ples is V[xt+1|xt , s̃t , nt = η] = z(at+s̃t )(at+bt+η−z(at+s̃t ))

(at+bt+η)2(at+bt+η+1)
.

The variance of the next-period belief is obtained using
the law of total variance, so V[xt+1|x(1)

t , nt = η] <

V[xt+1|x(2)
t , nt = η]; hence, φ ◦ ψ is increasing in σ 2.

Thus, the Bayesian update is increasing in μ(xt ) and σ 2(xt ),
and the same holds true for its beta-approximation ψ intro-
duced in Section 2.2. The state-transition function φ is linear
(time-invariant) in μ(xt ) and linear (time-variant) in σ 2(xt ),
so that the Bayesian-updated state-transition function φ ◦ ψ

is increasing in (μ(xt ), σ
2(xt )).

Finally, the convexity in μ(xt ) survives the maximization
in the Bellman equation given that the objective function is
supermodular in (ut , μ(xt )). Since the sum of nondecreas-
ing convex functions is nondecreasing and convex, we only
need a terminal condition to satisfy the backwards-induction

5The monotone-likelihood-ratio property is satisfied [89].

approach presented by Smith and McCardle [20]. Note that
since 0 < z < 1, limt→∞ μ(φ(ψ(xt , nt , ṽt , q))) = 0
and limt→∞ σ 2(φ(ψ(xt , nt , ṽt , q))) = 0. Therefore, there
exists a time T < ∞ for which, given any initial state,
an optimal policy is to stop the intervention, i.e., uT =
(0, 0), and V (xT ) = 0. Through the mean- and, ultimately,
variance-reducing dynamics, with or without the variance-
reducing acquisition of information, any initial state even-
tually approaches a ‘termination’ state over time. Since the
reward of this state is zero, which is nondecreasing and
convex, we conclude that V (xt ) is nondecreasing and con-
vex in μ(xt ); by a similar argument it is also increasing
in σ 2(xt ).

This proof relies mainly on the stochastic-dominance
ordering, and it therefore directly extends to the case
with misclassification. Condition (a) continues to be satis-
fied, since it relates only to the current period and is not
influenced by information collection. Second, as before,
Bayesian updating preserves stochastic dominance of the
beta-mixture prior, in the sense that if one prior stochasti-
cally dominates another prior, the corresponding posteriors
conserve the dominance ordering, for FOSD and SOSD.
Finally, imperfect information collection does not affect the
supermodularity of the objective function in (ut , μ(xt )),
so convexity in μ(xt ) survives the maximization in the
Bellman equation. This allows for backward induction start-
ing with the ‘stop intervention’-region at zero reward, as
described above.

A.8 Proof of Corollary 1

For the case where no information is available, this corol-
lary was already shown to be true with the derivation of a
threshold policy in Section 3.1. For the general case, with
or without information collection in the current or future
periods, we rely on the properties of the value function
demonstrated in Proposition 3: if μ(x

(1)
t ) < μ(x

(2)
t ) and

σ(x
(1)
t ) = σ(x

(2)
t ), then V (x

(1)
t ) � V (x

(2)
t ). This directly

implies that, if it is optimal to do the intervention with
μ(x

(1)
t ), then it is also optimal to do the intervention at

μ(x
(2)
t ). Furthermore, if it is not optimal to do the interven-

tion with μ(x
(2)
t ) then, because V (x

(1)
t ) � V (x

(2)
t ), it is also

not optimal to do the intervention at μ(x
(1)
t ).

A.9 Proof of Corollary 2

For the case where no information is available, the optimal
policy does not depend on σ(xt ) (see the threshold pol-
icy in Section 3.1). For the general case, with or without
information collection in the current or future periods, we
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rely on the properties of the value function demonstrated in
Proposition 3: if μ(x

(1)
t ) = μ(x

(2)
t ) and σ(x

(1)
t ) < σ(x

(2)
t ),

then V (x
(1)
t ) � V (x

(2)
t ). This directly implies, if it is opti-

mal to do the intervention with σ(x
(1)
t ), then it is also

optimal to do the intervention at σ(x
(2)
t ). Furthermore, if

it is not optimal to do the intervention with σ(x
(2)
t ) then,

because V (x
(1)
t ) � V (x

(2)
t ), it is also not optimal to do the

intervention at σ(x
(1)
t ).

A.10 Proof of Proposition 4

Misclassification results in a posterior distribution which
has greater variance than would occur with the same sam-
ple size and a perfect detection technology. When evaluating
the expected value with information collection, greater vari-
ance in the posterior implies an expected value over a larger
number of states where the optimal next action is to not do
the intervention and, therefore, have a value of 0.

Given a perfect detection technology, smaller sample
sizes will have greater variance in the posterior distribu-
tion than larger sample sizes. Therefore, misclassification
can be thought of as an effective sample size reduction
or, equivalently, an increase in cost for each full unit of
information.

An increase in cost or a decrease in the expected value
of the next state given information that was collected this
period, decrease the value of the information-collection
alternative. Therefore, there are fewer states for which infor-
mation collection is the optimal action, i.e., the action
providing the greatest expected value. Misclassification has
no effect on the option not to do the intervention, and
has a limited effect on the immediate option not to collect
information this period (it would influence this option only

when the optimal action of a subsequent state is to collect
information).

A.11 Supplemental methods and results for HCV
screening example

A.11.1 Development of linear INMB

A schematic of the HCV screening decision problem for a
single cohort is presented in Fig. 7.

We denote λ as the willingness-to-pay threshold, q1 and
q2 as the test sensitivity and specificity, CS > 0 as the cost
of the screening test, BS � 0 as the quality-of-life loss from
the screening test, CFP � 0 as the cost of correcting a
false-positive test result, BFP � 0 as the quality-of-life loss
from a false-positive test result, and we denote the lifetime
discounted costs and benefits of the true-positive, false-
negative, and true-negative screening outcomes, C1, C2, C3,
and B1, B2, B3, respectively.

The net monetary benefit (NB) of the decision not to
screen cohort t is

NBNoScreening =λ (p̃tB2+(1−p̃t )B3)−(p̃tC2+(1−p̃t )C3) .

(18)

The net monetary benefit (NB) of the decision not to
screen cohort t is

NBScreening=λ (p̃tq1B1+p̃t (1−q1)B2+(1−p̃t )

×(1−q2)(B3+BFP )+(1−p̃t )q2B3+BS)

−(p̃t q1C1+p̃t (1−q1)C2+(1−p̃t )

×(1−q2)(C3+CFP )+(1−p̃t )q2C3+CS) .

(19)

Fig. 7 A schematic of the
medical intervention decision.
Each year, the policy-maker
must choose whether or not to
screen for HCV infection in
50-year olds who attend a
routine preventive health exam
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The INMB of screening compared to the alternative of
not screening is computed as the difference between Eqs. 19
and 18:

INMBScreening = NBScreening − NBNoScreening

= λ (p̃tq1B1 + p̃t (1 − q1)B2 + (1 − p̃t )

×(1 − q2)(B3 + BFP ) + (1 − p̃t )

×q2B3 + BS)

− (p̃t q1C1 + p̃t (1 − q1)C2 + (1 − p̃t )

×(1 − q2)(C3 + CFP ) + (1 − p̃t )

×q2C3 + CS)

− (λ (p̃tB2 + (1 − p̃t )B3)

− (p̃tC2 + (1 − p̃t )C3))

= λp̃t [q1B1 + (1 − q1)B2 − (1 − q2)

×(B3 + BFP ) − q2B3 − B2 + B3]

+λ [(1 − q2)(B3 + BFP ) + q2B3

+BS − B3]

−p̃t [q1C1 + (1 − q1)C2 − (1 − q2)

×(C3 + CFP ) − q2C3 − C2 + C3]

−(1−q2)(C3+CFP ) − q2C3 − CS + C3

= p̃t (q1 [λ(B1 − B2) − (C1 − C2)]

× − (1 − q2) [λBFP − CFP ])

+λBS − CS + (1 − q2)(λBFP − CFP )

With terms collected, the INMB of screening at age 50
compared to not screening at time t in a cohort with HCV
prevalence p̃t can be written INMBt = θp̃t − γ . The
marginal INMB of early diagnosis and treatment for an indi-
vidual with HCV, θ , and the fixed INMB of screening, γ ,
are

θ = q1 [λ(B1 − B2) − (C1 − C2)]−(1−q2) [λBFP − CFP ] ,

(20)

and

γ = CS − λBS − (1 − q2)(λBFP − CFP ). (21)

A.11.2 Parameter estimation

Consistent with the recommendations of the US Panel on
Cost-Effectiveness in Health and Medicine, we adopted
a societal perspective, considered costs and benefits over
a lifetime horizon for each cohort, and discounted future
costs and health benefits at 3% annually [1]. We measured
costs in 2010 US dollars and adjusted for inflation using
the Consumer Price Index when appropriate [90]. Bene-
fits are measured in quality-adjusted life-years (QALYs).

We assumed a mid-range value for society’s maximum
willingness to pay of $75,000 per QALY gained [84].

Estimating the lifetime costs and benefits of each HCV
screening outcome for cohorts of asymptomatic 50-year old
men and women requires a detailed natural history model of
HCV. We used the model by Liu et al. [14] to estimate the
lifetime costs and benefits of each HCV screening outcome.

We assumed that the cohort size at each period, the num-
ber of people who attend a preventive health exam at age
50, is constant over time, N , since there is less than 10%
variation from the average population size across cohorts
currently aged between 25 and 55 years of age [79]. At the
beginning of each period t , the policy-maker simultaneously
decides whether to screen the current cohort for HCV and
whether to conduct a study of sample size nt to better esti-
mate the current prevalence of HCV. Information arrives at
the end of the current period and is used, together with the
prevalence dynamics, to inform the screening decision at
t +1 for the next cohort. We assumed that the cost of sample
information, K(nt ), is affine in the sample size with a fixed
cost of $50,000 and variable cost of $100 [83].

We used the National Health and Nutrition Examina-
tion Survey (NHANES) to estimate birth-cohort-specific
HCV prevalence, HCV-prevalence dynamics, and the pro-
portion of individuals currently unaware of their infection
status. Ultimately, we estimated the HCV prevalence for our
initial cohorts, men and women born in 1960 who are cur-
rently unaware of their infection status, to be 3.1% (95%
CI: 2.4-3.8%) and 1.4% (95% CI: 1.0-1.7%), respectively.
Restricting the analysis to individuals born between 1956
and 1980 (n = 12,607), we identified the rate of prevalence
decay to be 0.893 (95% CI: 0.871-0.915) using logistic
regression, controlling for race and gender. We present the
detailed methods and results of this primary analysis below.

A.11.3 National health and nutrition examination survey
(NHANES) analysis

Overview The National Center for Health Statistics period-
ically conducts NHANES to compile representative statis-
tics on the health of the US population [88]. Our analysis
includes data collected from 1999 through 2010. Partic-
ipants were chosen according to a stratified multistage
algorithm to produce a representative sample of the civil-
ian, non-institutionalized population of all 50 states and the
District of Columbia. Only participants at least age 6 years
old were eligible for HCV testing because of low blood
sample volume in younger children. Birth years for individ-
uals younger than 85 years, for survey years 1999-2006, and
for individuals younger than 80 years old, for survey years
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Table 5 Logistic regression
predicting HCV prevalence for
1956-1980 birth cohorts using
NHANES 1999–2010
(n = 12, 607)

Variable Estimate SE p-value Odds Ratio (95% CI)

Intercept 217.7 23.85 < .0001

Birth year −0.113 0.012 < .0001 0.893 (0.872 – 0.915)

Race: Black (vs. non-Black) 0.226 0.073 0.0021 1.57 (1.18 – 2.10)

Gender: Female (vs. Male) −0.256 0.071 0.0003 0.6 (0.46 – 0.79)

SE – Standard error; CI – Confidence interval

2008-2010, were estimated using their age in months and
the 6-month window of the survey. Age in months is not pro-
vided for older individuals. Beginning with the 2001/2002
survey, participants testing HCV-positive were informed in
writing of their test results, and four months later, they
received a follow-up telephone questionnaire.

Statistical Analysis All statistical analyses were per-
formed in SAS version 9.3 (SAS Institute, Cary, North
Carolina) according to National Center for Health Statis-
tics guidelines [86, 87]. We accounted for the complex
survey design using the appropriate study design variables,
sampling weights, and by using SAS Survey procedures.
Logistic regression analysis was used to identify the rate
of HCV-prevalence decay over successive birth cohorts for
individuals born between 1956 and 1980. Finally, using
the follow up survey in HCV-positive individuals, we esti-
mated the proportion of HCV-positive individuals who were
unaware of their infection status prior to participation in
NHANES.

Results Of 51,587 participants of at least age 6 years sur-
veyed between 1999 and 2010, 45,153 gave a blood sample
suitable for HCV-antibody testing (final response rate for
testing, 87.5%). Restricting analysis to individuals born
between years 1956 and 1980 (n=12,607), we identified the
rate of prevalence decay to be 0.893 (95% CI: 0.871-0.915)
using logistic regression controlling for race and gender

(Table 5). Using the regression, the predicted HCV preva-
lence for men and women born in 1960 are 4.7% (95% CI:
3.8-5.7%) and 2.9% (95% CI: 2.3-3.6%), respectively.

Since the 2001/02 survey, 500 subjects were identified as
HCV-positive and contacted for follow-up which included
asking if they were previously aware of their HCV-infection
status. The response rate to the follow-up questionnaire was
206 (41%). Using logistic regression, we estimated the pro-
portion of men and women who were unaware of their
HCV-infection status prior to participating in the NHANES
study to be 55% (95% CI: 46-65%) and 39% (95% CI:
30-39%), respectively (Table 6). Because of the small sam-
ple size, we did not stratify analysis by birth year; race
was excluded from the final regression model because it
was not a significant predictor of prior infection-status
awareness.

To compute the HCV prevalence among those who
are currently unaware of their infection status, we also
needed an estimate of the proportion of individuals who
are aware of their HCV-negative status, which is unknown.
We assumed it to be 15%, consistent with Liu et al. [14].
Using the logistic regression model to predict birth-cohort-
specific HCV prevalence and adjusting for the number of
individuals who are unaware of their infection status, we
estimated the HCV prevalence for our initial cohorts, men
and women born in 1960 who are currently unaware of their
infection status, is 3.1% (95% CI: 2.4-3.8%) and 1.4% (95%
CI: 1.0-1.7%), respectively.

Table 6 Logistic regression
predicting the proportion of
HCV-positive individuals
unaware of their infection
status using NHANES
1999–2010 (n = 206)

Variable Estimate SE p-value Odds Ratio (95% CI)

Model 1:

Intercept 0.00022 0.167 0.998

Race: Black (vs. non-Black) 0.161 0.157 0.304 1.40 (0.75 – 2.55)

Gender: Female (vs. Male) −0.332 0.140 0.017 0.51 (0.30 – 0.89)

Model 2 (Final Model):

Intercept −0.111 0.144 0.444

Gender: Female (vs. Male) −0.329 0.140 0.019 0.52 (0.30 – 0.90)

SE – Standard error; CI – Confidence interval

627



Population-level intervention and information collection in dynamic healthcare policy

A.11.4 Sensitivity analysis

We performed sensitivity analysis to evaluate the robust-
ness of the optimal policy to uncertainty in model inputs
(Table 7). We identified that the general conclusions of our
analysis are robust to the uncertainty inputs. Specifically, for
women, we find that the optimal time to collect information

ranges from immediately to 7 years. For men, we find that
the optimal time to collect information ranges from 11-21
years with the exception of scenarios in which we con-
sidered a low value of z. A very low value of z implies
the prevalence of HCV is rapidly decreasing across birth
cohorts. If this is the case, it is optimal to collect additional
information immediately.

Table 7 Comparison of
optimal policies indicated by
various analytic approaches

Case Adjusted
Parameter
Value

Optimal Policy∗ Increase in expected
INMB compared
to screening for 5
years∗∗

Males

Base Case Sample 4,000 men in 16 years (1976 birth cohort),
then identify optimal action

$168, 800, 000

Low θ θ = 3000 Sample in 11 years (1971 birth cohort) $51, 410, 000

High θ θ = 10, 000 Sample in 20 years (1980 birth cohort) $390, 240, 000

Low γ γ = 22 Sample in 18 years (1978 birth cohort) $197, 990, 000

High γ γ = 40 Sample in 13 years (1973 birth cohort) $120, 800, 000

Low z z = 0.871 Sample immediately $185, 690, 000

High z z = 0.915 Sample in 21 years (1981 birth cohort) $261, 390, 000

High κF κF = 250, 000 Sample in 16 years (1976 birth cohort) $168, 600, 000

Low μ(x0) μ(x0) = 0.024 Sample in 13 years (1973 birth cohort) $106, 040, 000

High μ(x0) μ(x0) = 0.038 Sample in 18 years (1978 birth cohort) $235, 620, 000

Scenario 1 θ = 8500; Sample immediately $257, 240, 000

γ = 25;
z = 0.88

Scenario 2 θ = 5500; Sample in 14 years (1974 birth cohort) $108, 430, 000

γ = 35;
z = 0.905

Females

Base Case Sample 4,500 women in 3 years (1963 birth
cohort), then identify optimal action

$7, 110, 000

Low θ θ = 1500 Never initiate screening / Stop screening $63, 330, 000

High θ θ = 6000 Sample in 7 years (1967 birth cohort) $22, 550, 000

Low γ γ = 22 Sample in 4 years (1964 birth cohort) $610, 000

High γ γ = 40 Sample in 1 years (1961 birth cohort) $46, 040, 000

Low z z = 0.871 Sample immediately $14, 570, 000

High z z = 0.915 Sample in 3 years (1963 birth cohort) $2, 460, 000

High κF κF = 250, 000 Sample in 1 years (1961 birth cohort) $6, 900, 000

Low μ(x0) μ(x0) = 0.024 Sample immediately $29, 320, 000

High μ(x0) μ(x0) = 0.038 Sample in 4 years (1964 birth cohort) $340, 000

Scenario 1 θ = 8500; Sample immediately $7, 090, 000

γ = 25;
z = 0.88

Scenario 2 θ = 5500; Never initiate screening / Stop screening $69, 020, 000

γ = 35;
z = 0.905

*Sample size for men = 4,000; Sample size for women = 4,500
**Expected value of the optimal policy with the parameter change compared to the expected value of the
CDC/USPSTF recommendation of screening for 5 years (calculated with the adjusted input parameters)
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