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Abstract: In high-strength rebar, the various microstructures obtained by the Tempcore process
and the addition of V have a complex effect on the strength improvement of rebar. This study
investigated the mechanism of strengthening of high-strength Tempcore rebars upon the addition
of vanadium through artificial neural network (ANN) modelling. Various V contents (0.005, 0.072
and 0.14 wt.%) were investigated, and a large amount of bainite and V(C, N) were precipitated in
the core of the Tempcore rebar in the high-V specimens. In addition, as the V content increased, the
number of these fine precipitates (10–30 nm) increased. The precipitation strengthening proposed by
the Ashby–Orowan model is a major contributing factor to the yield-strength increase (35 MPa) of
the Tempcore rebar containing 0.140 wt.% V. The ANN model was developed to predict the yield and
tensile strengths of Tempcore rebar after the addition of various amounts of V and self-tempering
at various temperatures, and it showed high reproducibility compared to the experimental values
(R-square was 93% and the average relative error was 2.6%). ANN modelling revealed that the yield
strength of the Tempcore rebar increased more significantly with increasing V content (0.01–0.2 wt.%.) at
relatively high self-tempering temperatures (≥530 ◦C). These results provide guidelines for selecting
the optimal V content and process conditions for manufacturing high-strength Tempcore rebars.

Keywords: Tempcore; high strength rebar; V-alloyed rebar; CCT diagram; V(C, N) precipitation;
artificial neural network; yield strength

1. Introduction

With the development of the construction industry, high-strength steels are being
increasingly used in high-rise and long-span structures [1–4]. Rebars, which account for
most primary construction materials, require high strength to ensure safety. High-strength
rebars offer several advantages, such as reduced reinforcement ratio, reduced cost of
reinforcement placement, improved workability and safety of buildings and increased
service life owing to enhanced corrosion resistance [5–7]. Furthermore, the use of high-
strength rebar conserves resources and is environment-friendly as it reduces greenhouse
gas generation, which is inevitable in steel production by reducing the use of rebars.

Several studies have been conducted to develop high-strength steel for building struc-
tures. Among them, optimising the content of micro-alloy elements, such as V, Nb and Ti, is
known to be effective in achieving high-strength steels [8–13]. Fine carbonitrides produced
by the addition of micro-alloy elements improve the strength of steel by interfering with
dislocation movement owing to the pinning effect and solute drag effect according to
the solid solubility of the micro-alloy elements. In particular, V precipitates delay austen-
ite recrystallisation at low deformation temperatures [8] and are effective in precipitation
strengthening owing to their low solubility compared with other micro-alloy carbonitrides [9].
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It is essential to understand the recrystallisation behaviour of V-containing steel according
to the process conditions and micro-alloys because the grain refinement and precipitation
strengthening are substantially affected by the austenite recrystallisation behaviour.

Recrystallization behaviour depends on several conditions in the steel manufacturing
process, such as the recrystallisation temperature, deformation temperature, deformation
amount, deformation rate and cooling rate, thereby affecting the final strength [14]. How-
ever, previous studies on strength improvement by V carbonitride have mainly focused on
flat-rolled products, and studies on rebars are limited [15,16]. Rebars have a substantially
high hot deformation rate, therefore producing a recrystallisation behaviour different from
that of flat-rolled products. Moreover, a controlled cooling process called Tempcore is
performed to achieve high strength. Various microstructures and micro-alloys obtained by
the Tempcore process have a complex effect on the strength of rebars [17,18]. Therefore, to
understand the strengthening mechanism of high-strength rebars, a systematic study on
the complex relationship between micro-alloys, micro-structural factors, cooling conditions
and mechanical properties is required.

Recently, artificial neural network (ANN) modelling, which is based on learning the
relationships between the input and output parameter for complex problems, has been
applied to predict and analyse various material phenomena [19–26]. The most remarkable
feature of ANN modelling is the understanding of relationships using input and output data,
and it can be implemented if there is sufficient learnable parameter data. Hong et al. [19]
predicted the tensile properties of ferrite-pearlite steel using alloying elements and micro-
structural factors, and determined the relative importance of each factor. Hosseini et al. [20]
developed a model to predict the mechanical properties of transformation-induced plas-
ticity steel subjected to heat treatment. Khalaj et al. [21] developed an ANN model to
predict the Vickers hardness and yield strength of low-carbon steels based on previously
reported data. Finally, Çetinel et al. [22] predicted the phase fractions of Tempcore rebars
with a diameter of 18 mm subject to different quenching durations. Churyumov et al. [23]
developed an ANN model to determine the steel flow stress with high accuracy in a wide
range of elemental concentrations of high-alloy and corrosion-resistant steels. Honysz [24]
used ANN to predict the chemical concentration of common alloying elements based on the
mechanical property values of ferritic stainless steels. These studies successfully defined
the unclear input–output relationship of the parameters of steels using ANNs. However,
no ANN-based studies have been conducted on the effects of micro-alloys and controlled
cooling parameters on the strength of high-strength Tempcore rebars.

This study investigated the effect of V addition on the strength of high-strength
Tempcore rebars with a yield strength of 700 MPa. A continuous cooling transformation
(CCT) diagram was used to analyse the micro-structural changes of the Tempcore rebar,
and the effect on the mechanical properties was investigated through the analysis of the
precipitate behaviour. The mechanical properties of rebars with various V contents and
Tempcore process conditions were predicted using ANN modelling, and the influence
of each factor was identified. This study provides a fundamental understanding of the
mechanical properties of high-strength Tempcore rebars and guidelines for selecting V
contents and Tempcore process conditions for manufacturing high-strength rebars in the
steel industry.

2. Materials and Methods
2.1. Materials and Experimental Procedures

Table 1 lists the chemical compositions and mechanical properties of the rebar used
in this study. To confirm the effect of V addition, rebars with various V contents (0.005,
0.072 and 0.14 wt.%) were used. Specimen RB V2 had the largest amount of V content,
RB V0 had the smallest content and RB V1 had a V content in between. The billet was
manufactured by the electric furnace process, and the 25 mm diameter rebars were reheated
at 1020 ◦C, followed by hot-rolling at a finish rolling temperature of 950 ◦C. Subsequently,
it was rapidly cooled by passing through a cooling zone composed of 26 coolers, and
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self-tempering was achieved by the latent heat of the rebar core. Detailed conditions of
the Tempcore preparation process are shown in Table 2. As the V content increased, the
Tempcore rebar increased in strength and decreased in elongation (Table 1).

Table 1. Chemical composition and mechanical properties of rebars.

Material
Chemical Composition (wt. %) Mechanical Property

C Mn Si P S V Fe YS
(MPa)

TS
(MPa)

El.
(%)

RB V0 0.28 1.39 0.20 0.013 0.009 0.005 Bal. 652 791 13.3
RB V1 0.27 1.42 0.21 0.016 0.008 0.072 Bal. 750 904 11.6
RB V2 0.28 1.40 0.19 0.015 0.008 0.140 Bal. 796 948 9.1

Table 2. Tempcore process conditions of rebars used in this study.

Rebar Diameter
(mm)

Reheating
Temp. (◦C)

Finishing Roll
Temp. (◦C)

Quenching
Time (s)

Number of
the Cooler (ea.)

Self-Tempering
Temp. (◦C)

25 1020 980 4.3–4.8 26 540

The CCT curves for different V contents were plotted using a thermomechanical
simulator (Gleeble 3500). For the Gleeble experiment, the specimens were machined into a
circular shape with a diameter of 6 mm and a length of 8 mm. The specimen was heated to
980 ◦C at a heating rate of 10 ◦C/s, held for 300 s to be austenitised, and then was cooled
at various rates ranging from 0.05 to 100 ◦C/s (0.05, 0.08, 0.1, 0.3, 0.5, 0.8, 1, 3, 5, 10, 30,
50, 80 and 100 ◦C/s). A holding time of 300 s was previously determined to have a grain
size similar to that of prior austenite (12.4–14.5 µm) for rebars after rolling [18]. Finally, the
CCT diagram was drawn using the phase transformation temperature, microstructure and
hardness values.

For micro-structural observations, the cross-section was mechanically polished and
etched using 3% nital. The microstructure was observed using scanning electron mi-
croscopy (SEM), and the prior austenite grain size (PAGS) was observed to confirm the
grain refinement by V addition. In the case of PAGS, a special etchant was used because
the microstructure is sensitive to the composition and, etching duration and temperature of
the etchant. The etching method used was a mixture of 100 mL of distilled water, 4 g of
picric acid + 0.2 mL of HCl, and 20 mL of surfactant at 80 ◦C. V precipitates were confirmed
by transmission electron microscopy (TEM) images, and the specimens were prepared
using the replica method. A component analysis of the precipitates was performed using
energy dispersive spectroscopy (EDS). The size distribution and volume fraction of the
V precipitates are quantified with approximately 150 precipitates by scanning 10 TEM
micrographs for each specimen. Furthermore, the hardness of the specimens was measured
using a Vickers hardness tester at 0.5 mm intervals with a 1 kgf load placed on the etched
cross-section of the rebar.

2.2. ANN Modelling Procedure

ANN is a statistical learning algorithm that simplifies and mimics a biological nervous
system such as the brain [25]. Multi-layered perceptron (MLP) is the ANN structure mostly
used to determine the approximation of a function; Figure 1 shows the architecture of a
typical MLP structure. An MLP consists of an input layer, a hidden layer and an output
layer. The input layer receives data input from the outside and the output layer prints out
the processed data (result). The hidden layer is composed of several hidden nodes, and the
linear combination of values transmitted from the input layer is processed as a non-linear
function and transmitted to another hidden layer or the output layer [27].
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Figure 1. Architecture of an MLP neural network with two hidden layers.

Data for the input/output layers are required to model the strength characteristics of
high-strength Tempcore rebars using an ANN. In the previous studies, data were collected
and adapted from the results of similar studies [19,28]. However, to increase the reliability
of the results, this study used the authors’ experimental data on Tempcore rebars produced
in a single plant. The input layer of the ANN model consisted of eight neurons, made up
of the alloying elements (C, Mn, V, Cr, Mo, P and S) and the self-tempering temperature
in the Tempcore process. The alloying elements, excluding C, Mn and V, were inevitably
introduced into the scrap iron during the steelmaking process, and various ranges of
V content and self-tempering temperature were used to understand the strengthening
mechanism. The output layer consisted of two neurons corresponding to the yield and
tensile strengths. Detailed parameters and ranges are listed in Table 3. To determine the
optimal ANN model and to optimise the reproducibility, 58 datasets were divided into
43 training datasets and 15 testing datasets.

Table 3. Parameters and their ranges used in the ANN.

Range Mean Standard Deviation

Inputs
Chemical composition (wt. %)

C 0.26–0.31 0.28 0.014
Mn 1.30–1.44 1.39 0.030
V 0.005–0.200 0.084 0.058
Cr 0.09–0.199 0.142 0.021
Mo 0.011–0.027 0.019 0.004
P 0.017–0.026 0.020 0.002
S 0.011–0.020 0.016 0.003

Tempcore process parameters (◦C)
Self–tempering temperature 501–600 1.70 30.89

Outputs
Mechanical properties (MPa)

Yield strength 579–847 720 72
Tensile strength 727–1037 880 80

For an ANN, the learning adjusts the weights associated with each connection between
neurons until the output value calculated for each input data mimics the actual output
value as closely as possible. The weighted sums of the input components ( netj ) are
calculated using the following equation:

(
netj

)
=

n

∑
i=1

wijxi

where ( netj ) is the weighted sum of the jth neuron for the input received from the preceding
layer with n neurons, wij is the weight of the jth neuron in the previous layer, xi is the
output of the ith neuron in the previous layer.
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In this study, the ANN model was trained using the backpropagation algorithm, and a
sigmoid function was used as the activation function. The sigmoid function is an activation
function commonly used in multiple layers and is expressed as follows:

Outi = f
(
netj

)
=

1

1 + e−k(netj)

where k is a constant used to control the slope of the semi-linear region. The sigmoid
nonlinearity is activated in every layer, except in the input layer [29].

Structures with one and two hidden layers were compared to optimise the appropriate
number of neurons and hidden layers for the ANN model. The average training error
decreases as the total number of neurons in the hidden layer increases. For more than
18 neurons, the performance of the model saturated with no further improvement. However,
the average training error in the two hidden layer structures decreased compared with
that in the single hidden layer. Therefore, an ANN modelling with 18 neurons in two
hidden-layer structures was used in this study.

3. Results and Discussion
3.1. CCT Diagram and Microstructure of Tempcore Rebars of various V Contents

Figure 2 shows the CCT diagrams of the rebars with various V contents. The diagram
shows the cooling curve, cooling rate, transformation range, transformation microstructure
and Vickers hardness. In specimen RB V2 with 0.140 wt.% V, the Ar3 temperature (781 ◦C)
increased by 19 ◦C relative to specimen RB V0 (762 ◦C) with no V (Figure 2a,c). Therefore,
the Ar3 temperature increases with V content. This is because austenite is transformed into
ferrite at a relatively high temperature owing to V, a ferrite-stabilizing element [30]. The
microstructures formed in the temperature range of the transformation curve are defined as
ferrite, pearlite, bainite and martensite. The specimen RB V0 underwent ferrite and pearlite
transformation at cooling rates in the range of 0.05–3 ◦C/s, and bainite began to transform
when the cooling rate was higher than 1 ◦C/s. However, pure bainite could not be obtained
under all cooling conditions. Martensite transformation appeared at a cooling rate of 5 ◦C/s
or higher, and transformation into full martensite appeared at 50 ◦C/s or higher.

Figure 2. CCT diagrams drawn for various V contents: (a) RB V0, (b) RB V1, (c) RB V2. A−austenite,
F−ferrite, P−pearlite, B−bainite and M−martensite.
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Figure 2b,c show CCT diagrams of specimens RB V1 and RB V2, respectively. The
shapes of the diagrams are similar to that of specimen RB V0. However, in specimens RB
V1 and RB V2, the cooling rate range in which ferrite and pearlite were present decreased,
and bainite transformation was observed even at a lower cooling rate than that of specimen
RB V0 (0.8 ◦C/s for RB V1 and 0.5 ◦C/s for RB V2). The tendency to form bainite, even
at a low cooling rate, was more evident in RB V2 (with a high V content). This is because
V segregates toward the austenite grain boundary, which increases the surface energy
and inhibits the formation of grain boundary ferrite, leading to bainite nucleation from
the austenite grain boundary [31,32]. Therefore, it is confirmed that the addition of V
contributed to the formation of the low temperature microstructure of the rebars.

Figure 3 shows the microstructure of the core and surface of the rebar with various V
contents. In the core of RB V0 (Figure 3a) and RB V1 (Figure 3b), ferrite (F), degenerated
pearlite (DP) and bainite (B) were observed. DP is known to be formed at the boundary
between the end temperature of pearlite formation and the start temperature of bainite for-
mation, where the carbon diffusion time required for continuous layered pearlite formation
is insufficient [33,34]. This is why RB V0 and RB V1 consisted of DP and B, respectively,
owing to the high cooling rate of the Tempcore process. In the core of RB V2, which has
the largest V content, only ferrite and bainite were observed, without DP, and the bainite
fraction was higher, compared to RB V0 and RB V1. The appearance of B is consistent
with the variation in the CCT diagram as the V content increases (Figure 2). Generally,
the surface of a Tempcore rebar is transformed into martensite by quenching and then
self-tempering by the latent heat of the core to form tempered martensite (TM) [17,18,35].
Tempered martensite, in which carbides were formed along the laths and packet boundaries,
was observed on the surface of all the rebar specimens (Figure 3d–f).

Figure 3. SEM micrographs of the Tempcore rebars for various locations and V contents: (a–c) in the
core and (d–f) on surface; (a,d) RB Vo, (b,e) RB V1 and (c,f) RB V2; F, DP, B and TM denote ferrite,
degenerated pearlite, bainite and tempered martensite, respectively.

The mechanical properties of tempered martensite are affected by the tempering
temperature and prior austenite existing at high temperatures before its transformation
to martensite. Since the tempering temperatures of the specimens used in this study were
mostly ~540 ◦C (Table 2), the effect of V addition on the prior austenite grain size (PAGS)
was considered in this study (Figure 4d). The average PAGS of RB V0, RB V1 and RB V2
were 55.9 ± 4.9, 44.6 ± 1.1 and 40.1 ± 1.5 µm, respectively, and the PAGS decreased as the V
content increased. V is a strong carbide and nitride former, which exists in a solid solution
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of austenite at high temperatures, and precipitates as the cooling proceeds below the solid
solution temperature of carbides and nitrides [36–38]. Therefore, the PAGS decreases with
increasing V content because of the difference in the solubility of V precipitates, and the
following equation gives the solubility of V precipitates as a function of the equilibrium
temperature [39,40].

log[V][C] =
−9500

T
+ 6.72

log[V][N] =
−8700

T
+ 3.63

where [V], [C], [N] are the concentrations (wt.%) of each element and T is the absolute
temperature. In the equilibrium state calculated using this formula, the complete disso-
lution temperatures of VC were 854 and 896 ◦C for RB V1 and RB V2, respectively, and
the complete dissolution temperatures of VN were 988 and 1043 ◦C for RB V1 and RB
V2, respectively. The dissolution temperature of V(C, N) has not been clearly reported,
but it is known to have intermediate melting temperatures of VC and VN [40]. Therefore,
in specimen RB V2, VN may not be completely dissolved at the reheating temperature
(~1020 ◦C), so it is considered that the austenite growth is inhibited by the pinning effect of
some precipitates that remain undissolved at high V contents. However, in specimen RB V1,
the dissolution temperature of the precipitates was lower than the reheating temperature.
Therefore, the pinning effect by the precipitates disappeared, and the austenite grains were
controlled owing to the solute drag effect of the dissolved V atoms.

Figure 4. Images of the prior austenite grain and variation of PAGS with respect to V content: (a) RB V0,
(b) RB V1, (c) RB V2, (d) PAGS behaviour as a function of V content.

3.2. Precipitates in Tempcore Rebars with Various V Contents

Figure 5 shows an analysis of the precipitates formed due to V addition. Specimen
RB V0 had a large precipitate of Fe3C, with no formation of V(C, N) (Figure 5a,b). In RB
V1 (Figure 5d,e), elliptical V(C, N) precipitates were observed in the matrix, and some
precipitates appeared along the grain boundary. The V(C, N) in specimens RB V1 and
RB V2 was identified by EDS analysis (Figure 5f,i). Precipitates in specimen RB V2 with
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a high V content were observed in the matrix to have an elliptical shape and were finer
and more numerous than those of specimen RB V1 (Figure 5d,e). V(C, N) is known to be
advantageous in promoting fine and intragranular precipitation because a large amount of
V is dissolved at high temperatures [41,42]; the results of the present study also showed the
same precipitation tendency.

Figure 5. TEM images and EDS analysis of Tempcore rebar specimens showing various precipitates:
(a,b,c) Fe3C for RB V0, (d,e,f) V(C, N) for RB V1, and (g,h,i) V(C, N) for RB V2.

Figure 6 shows the size distribution and average size of the precipitates. In specimen
RB V0, Fe3C precipitates with a relatively coarse distribution of 170–190 nm were observed.
RB V1, with a V content of 0.072 wt.% exhibited precipitates with a size of 20–60 nm
predominantly. RB V2 accounted for most precipitates with a size of 10–30 nm. With
the addition of V, the number of precipitates smaller than 20 nm increases significantly.
Furthermore, the average precipitate sizes of RB V0, RB V1 and RB V2 were 186.0 nm,
45.2 nm and 30.5 nm, respectively, which is consistent with the size distribution of the
precipitates. These results indicate that the addition of V increased the stability of the
precipitate. Previous studies reported that an increase in V content is associated with
the increase in the nucleation rate of the precipitate, and the interface mismatch between
nano-sized V precipitates and ferrite can be reduced to obtain the high thermal stability of
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the precipitate [43]. Therefore, specimen RB V0 had Fe3C with an average size of 186.0 nm,
which was significantly larger than that of V(C, N) in RB V1 and RB V2.

Figure 6. Behaviour of precipitates for various V contents; (a) RB V0, (b)RB V1, (c) RB V2 and (d) the
average size of precipitates for various specimens.

3.3. Mechanical Properties as a Function of the Precipitates

The V precipitation behaviour shown in Figure 6 was quantitatively analysed to
determine its contribution to the strengthening mechanism. Precipitation strengthening
mechanism depends on the size of the precipitates, and the bypass mechanism dominates
for large precipitates (diameter of ≥10 nm). Orowan proposed a formula for precipita-
tion strengthening in which the bypass mechanism is dominant, and the Ashby–Orowan
formula was improved considering the spacing and distribution between precipitates
as follows [44]:

σp(MPa) =
5.9
√

f
d

· ln(
d

2.5 × 10−4 )

where f is the volume fraction of the precipitate, and d is the average diameter in microns.
The volume fraction of the precipitate was obtained from the mass fraction of precipitates
(WV(C,N) ), the density of the matrix ( ρFe ), and the density of precipitates (ρV(C,N)).

f = WV(C,N) ×
ρV(C,N)

ρFe

The density of the Fe matrix is 7.875 g/cm3 and the density of V(C, N) was calculated
using the density of VN (6.30 g/cm3) since the C content in the V(C, N) was negligible [45].
Figure 7 shows the contribution of precipitation strengthening, calculated using the Ashby–
Orowan equation. Specimen RB V2, which has a large fraction of 10–30 nm in size, has a
larger contribution to precipitation strengthening than specimens RB V1 and RB V0, which
are dominated by precipitates of sizes 20–60 nm and 170–190 nm, respectively. The average
strength increase by precipitation strengthening was 6, 18 and 35 MPa for RB V0, RB V1
and RB V2, respectively, and the strength increase due to V precipitates in the Tempcore
rebar specimens was associated with the V content (Table 1).
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Figure 7. Increase in yield by precipitation hardening for various V contents.

Vanadium has also been reported to be effective in resisting martensite softening
during tempering [46]. Figure 8 shows the Vickers hardness of each specimen to confirm
the softening resistance of the tempered martensite formed in the Tempcore rebar. The
hardness distribution showed U-shape regardless of V content, which was related to the
microstructure formation due to the continuous cooling rate varying from the surface to
the core. The surface hardness of all specimens was higher than 315 HV, indicating the
hardness of the tempered martensite formed at a high cooling rate (Figure 3d–f). As the
cooling rate decreases toward the core, a relatively low hardness value was achieved due
to the formation of F, DP or B (Figure 3a–c).

Figure 8. Hardness distribution of Tempcore rebars with various V contents.

In sample RB V2, which had the highest V content, the maximum hardness value was
381 HV. The maximum difference in hardness between the surfaces of specimens RB V0 and
RB V2 was 67 HV. The difference in hardness of the tempered martensite is associated with
the coarsening of the precipitates during self-tempering, which is dependent on carbon
diffusion. V is a strong carbonitride former, and the V(C, N) produced during the self-
tempering process improves the softening resistance of tempered martensite. Thus, RB V2
had the largest surface hardness, followed by RB V1 and RB V0 [46]. Furthermore, the core
hardness of specimens RB V0, RB V1 and RB V2 were 217, 252 and 282 HV, respectively,
and the core hardness of the rebar increased with the V content. The maximum difference
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in hardness at the core was 65 HV, which was explained by the strengthening mechanism
of V addition (Figure 7). This study confirmed that the addition of V to the Tempcore
rebar contributed to the softening resistance of the tempered martensite and to an increase
in strength and hardness through low-temperature microstructure transformation, PAGS
refinement and precipitation strengthening.

3.4. Prediction of Tensile Properties Using ANN

The prediction of mechanical properties based on material composition is a vital goal
in various industries. Because the strengthening of the Tempcore rebar according to the
addition of V is a result of a complex mechanism, ANN modelling was used to predict the
mechanical properties. The ANN modelling results obtained using the training and testing
data are shown in Figure 9. The results of the ANN model are displayed together with
a linear least-squares fitted line and R-square (R2) and average relative error (ARE) [23].
The R2 values of the ANN model for the yield and tensile strengths training datasets were
95 and 96%, and ARE values for them were 2.0% and 2.1%, respectively (Figure 9a,b).
In addition, the R2 values for the testing dataset were 94 and 93%, ARE values were 2.4
and 2.6% (Figure 9c,d), and the predicted values obtained by the ANN model successfully
reproduced the experimental results. These results show that the ANN model has a high
accuracy in predicting the strength of the Tempcore rebar and generalises the relationship
between the input and output parameters.

Figure 9. Comparison of experimental strength data with the ANN prediction lines: (a,b) yield and
tensile strengths using the training set, (c,d) yield and tensile strengths using the testing set.

Figure 10 shows the yield and tensile strengths predicted by the ANN model for the
Tempcore rebar with respect to the self-tempering temperature and V content. Irrespective
of the self-tempering temperature, both the yield and tensile strengths increased with the
V content. Specifically, the increasing slope of the yield and tensile strengths for various V
contents, rapidly increased to 0.05 wt.% V and then constantly increased above 0.05 wt.%
V. The strength increment due to the V content was calculated from the difference in the
average strength at the maximum (0.200 wt.%) and minimum (0.005 wt.%) V content.
Therefore, the yield strength was predicted to increase by 187 MPa and the tensile strength
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by 174 MPa, and the addition of V had a more significant effect on the increase in the yield
strength than on the tensile strength.

Figure 10. Predicted strengths against V contents for various self-tempering temperatures via ANN
modelling: (a) yield strength and (b) tensile strength.

Figure 11 shows the strength increment with respect to the self-tempering temperature.
At a relatively low self-tempering temperature, below 520 ◦C, the increase in yield and
tensile strengths were similar. However, for the self-tempering above 530 ◦C, the higher
the self-tempering temperature, the more pronounced the increase in the yield strength
owing to the V content. Generally, a low self-tempering temperature in the Tempcore
rebar plays a dominant role in improving the tensile strength through the formation of
a low-temperature microstructure [47]. Thus, at a low self-tempering temperature, the
increase in tensile strength by the low-temperature microstructure and the increase in yield
strength by the addition of V were similar in this study. However, as the self-tempering
temperature increased above 530 ◦C, the strengthening mechanism by the V addition
dominated and significantly improved the yield strength of the Tempcore rebars. Therefore,
to manufacture a Tempcore rebar with a high yield strength, which is the purpose of this
study, it is recommended to make the strengthening mechanism to be dominated by V
addition at a relatively high self-tempering temperature (≥530 ◦C). This study successfully
applied ANN modelling to optimise the V content and Tempcore process conditions for
the desired rebar strength.
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Figure 11. Increase in yield and tensile strengths predicted by ANN as a function of the self-tempering
temperature in the regime of V contents (0.01–0.20 wt.%).

4. Conclusions

In this study, the strengthening mechanism due to V addition was considered for the
development of high-strength Tempcore rebars, and the strength characteristics were pre-
dicted through ANN modelling. From the results, the following conclusions can be drawn:

(1) As the V content increased from 0.005 to 0.140 wt.%, the Ar3 temperature increased
and the bainite transformation curve was observed on the CCT diagram even at a
low cooling rate. Therefore, the rebar core produced by the Tempcore process was
observed to have a more bainitic microstructure as the V content increased.

(2) The average PAGS of specimen RB V2, which had the highest V content (0.140 wt.%)
was 40.1 µm, which was significantly reduced compared with specimen RB V0 (55.9 µm).
This was associated with the solubility of precipitates for various V contents: grain
refinement occurred in specimen RB V2 because of the pinning effect of V (C, N),
which was not completely dissolved, and the solute drag effect of the dissolved V
atoms during the Tempcore process.

(3) V(C, N) primarily precipitated in the matrix, and the number of fine precipitates
below 20 nm increased as the V content increased. The Ashby–Orowan model suc-
cessfully demonstrated that the V(C, N) precipitates contributed significantly to the
strengthening mechanism (specifically the yield strength) of the Tempcore rebar.

(4) The ANN model successfully predicted the yield and tensile strengths of the Tempcore
rebar using the main parameters such as the V content and self-tempering temperature.
The data trained by the ANN model showed a high reproducibility of over 93% of R-
square and the average relative error was in the range of 2.4–2.6% with the testing data.

(5) The ANN prediction results show that V contents in the range of 0.01–0.20 wt.%,
are more effective in increasing the yield strength at high self-tempering temperatures
≥530 ◦C. This result is expected to provide outstanding guidelines for optimising the
V content and Tempcore process conditions for obtaining high-strength rebars in the
steel industry.
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