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Summary 

To study the effect of cell type-restricted hamster PrP 
expression on susceptibility to the hamster scrapie 
agent, we generated transgenic mice using a I kb ham- 
ster cDNA clone containing the 0.76 kb HPrP open 
reading frame under control of the neuron-specific 
enolase promoter, in these mice, expression of HPrP 
was detected only in brain tissue, with highest levels 
found in neurons of the cerebellum, hippocampus, 
thalamus, and cerebral cortex. These transgenic mice 
were susceptible to infection by the 263K strain of 
hamster scrapie with an average incubation period of 
93 days, compared to 72 days in normal hamsters. In 
contrast, nontransgenic mice were not susceptible to 
this agent. These results indicate that neuron-specific 
expression of the 1 kb HPrP minigene including the 
HPrP open-reading frame is sufficient to mediate sus- 
ceptibility to hamster scrapie, and that HPrP expres- 
sion in nonneuronal brain cells is not necessary to 
overcome the TSE species barrier. 

Introduction 

Transmissible spongiform encephalopathies (TSE) are de- 
generative brain diseases that occur naturally in primates 
and ruminants, and include scrapie of sheep, bovine spon- 
giform encephalopathy, and several human diseases such 
as Creutzfeldt-Jakob disease, Kuru, and Gerstmann- 
Str~.ussler-Scheinker syndrome. An important feature of 
TSE diseases is the accumulation in brain of a proteinase 
K-resistant protein, known as PrP-res or PrP s°, which ap- 
pears to be strongly associated with the pathogenic pro- 
cess (Bolton et al., 1982; Prusiner, 1982; Diringer et al., 
1983). PrP-res is posttranslationally derived from a normal 
host proteinase K-sensitive PrP molecule (PrP-sen; Bor- 
chelt et al., 1990; Caughey and Raymond, 1991; Stahl 
et al., 1993) by an as yet undefined mechanism. Brain 
preparations highly enriched for scrapie infectivity contain 
large amounts of PrP-res, but no scrapie-specific nucleic 
acid has been detected (Alper et al., 1978; Hunter, 1979; 
Latarjet, 1979; Dees et al., 1985; Bellinger-Kawahara et 

al., 1987). As a result, it has been suggested that PrP-res 
is the etiologic agent of TSE (Prusiner, 1982). Although the 
precise nature of the causative agent remains unresolved, 
several studies have established an important role for PrP 
in TSE pathogenesis. For example, there is a close linkage 
between the PrP gene and a gene controlling the length 
of the scrapie incubation period in mice and sheep (Carl- 
son et al., 1988; Hunter et al., 1989; Race et al., 1990). 
Also, mutations in the human PrP gene are associated 
with occurrence of familial Creutzfeldt-Jakob disease, 
Gerstmann-Str&ussler-Scheinker syndrome, and Fatal 
Familial Insomnia (Doh-ura et al., 1989; Hsiao et al., 1989, 
1991a, 1991b; Goldgaber et al., 1989; Goldfarb et al., 
1990). In addition, PrP null mice devoid of PrP-sen are 
resistant to experimental scrapie, indicating that expres- 
sion of PrP-sen is an absolute requirement for scrapie 
agent replication and disease induction (Bueler et al., 
1993). 

PrP may also play a critical role in interspecies transmis- 
sion of TSE diseases. Many species show resistance to 
disease induction by TSE agents derived from other spe- 
cies. This resistance or "species barrier" is manifested ei- 
ther by total lack of disease induction or by a prolonged 
incubation period prior to onset of clinical disease. For 
instance, Chandler mouse scrapie can be transmitted to 
Syrian hamsters with an average incubation period of 378 
days, but in mice the incubation period is 120 days (Kim- 
berlin and Walker, 1978; Kimberlin et al., 1987). Con- 
versely, the 263K hamster scrapie strain has a 72 day 
incubation period in Syrian hamsters, but does not cause 
clinical disease in mice. Of particular concern is whether 
or not various strains of TSE in animals can be transmitted 
to humans. Epidemiological studies indicate that transmis- 
sion from scrapie-infected sheep to humans does not oc- 
cur. However, the recent epidemic of bovine spongiform 
encephalopathy in Great Britain has raised worries that 
this apparently new strain of TSE might be infectious to 
humans. 

These concerns have highlighted the importance of un- 
derstanding the basis for species barriers in the transmis- 
sion of TSE. Genetic studies have indicated that the PrP 
genotype strongly influences the host susceptibility to TSE 
agents (Carlson et al., 1986; Hunter et al., 1987; Race et 
al., 1990). Transgenic mice with a 40 kb transgene ex- 
pressing high levels of hamster PrP (HPrP)-sen are sus- 
ceptible to disease when inoculated with the hamster 
scrapie agent, while normal mice are resistant (Scott et 
al., 1989; Prusiner et al., 1990). This suggests that trans- 
mission of scrapie may be dependent on interactions be- 
tween the host PrP-sen and the PrP-res associated with 
the inoculated agent. The importance of direct PrP-sen- 
PrP-res interactions in PrP-res formation has now been 
documented in cell-free reactions (Kocisko et al., 1994, 
1995). Furthermore, interactions between PrP molecules 
from different species have been found to inhibit genera- 
tion of PrP-res in both scrapie-infected cells (Priola et al., 
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1994) and in cell-free systems (Kocisko et al., 1994, 1995), 
and such inhibitory interact ions may provide a biochemical  
explanat ion for the species barrier. 

The normal PrP-sen precursor of PrP-res appears to be 
expressed in a wide variety of cells and tissues (Oesch 
et al., 1985; Caughey  et al., 1988; Brown et al., 1990), 
and it is unclear which of these sites might be involved in 
the possible effect of PrP on TSE agent repl ication and 
PrP-res format ion fol lowing interspecies transmission. 
TSE agents are known to repl icate in both lymphoret icular  
organs and brain, but the precise cell types involved are 
not known. PrP-sen expression has recent ly been demon-  
strated in astrocytes and o l igodendrocytes (Moser et al., 
1995), and astrocytes have been found to be the earl iest 
site of PrP-res accumulat ion in the brain (Diedrich et al., 
1991). Together, these results argue for the direct involve- 
ment of gi la in scrapie agent  propagat ion. However,  in 
mouse and hamster brain, high levels of PrP mRNA and 
PrP-sen protein have also been detected in neurons 
(Kretzschmar et al., 1986; Brown et al., 1990; Manson 
et al., 1992, 1994). Therefore, it is unclear whether  PrP 
expression in both neurons and astrocytes is critical to 
PrP-res formation. In the present work, we show that 
transgenic mice expressing the hamster  PrP (HPrP) gene 
under control of the neuron-specif ic enolase promoter  
(Forss-Petter et al., 1990) are highly suscept ible to the 
hamster scrapie agent. In these mice, HPrP expression 
was found exclusively in neurons and not in glial cells or 
cells within the spleen or lymph nodes. Thus, neuron- 
specific hamster  PrP expression was sufficient to abrogate 
the TSE species barrier, and hamster PrP expression in 
lymphoret icular  t issues or nonneuronal  brain cells includ- 
ing astrocytes was not required to overcome resistance 
of mice to the hamster  scrapie agent. Furthermore, be- 
cause the t ransgene used in these exper iments  contained 
only I kb of hamster  DNA including the open reading frame 
of hamster PrP, the present results demonstrate that sus- 
ceptibi l i ty of these transgenic mice to hamster  scrapie is 
mediated by the hamster PrP gene itself rather than the 
addit ional 39 kb of t ransgene DNA used in previous stud- 
ies (Scott et al., 1989; Prusiner et al., 1990; Westaway et 
al., 1994). 

Results 

Generation of HPrP Transgenic Mice 
To invest igate the role of HPrP in the interspecies trans- 
mission of hamster  scrapie, two lines of HPrP transgenic 
mice were produced. The Tg52NSE line was der ived by 
inoculation of a construct containing the neuron-specif ic 

enolase (NSE) promotor  plus a 1 kb cDNA containing the 
HPrP open reading frame (Figure 1A). A second HPrP 
transgenic line, Tg l0 ,  was generated with a cosmid vector  
containing the HPrP gene plus 40 kb of f lanking DNA 
(Scott et al., 1989). Previously, this cosmid was used to 
generate another  line of t ransgenic mice suscept ible to 
hamster  scrapie (Scott et al., 1989). Fol lowing product ion 
of t ransgenic mice by standard techniques, posit ive 
founder mice were bred to nontransgenic C57BL/10 mice, 
and the t ransgene was mainta ined in heterozygous form 
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Figure 1A. Structure of NSE-HPrP Transgene and Predicted mRNA 
(A) 1.0 kb fragment of the hamster PrP (HPrP) cDNA (Robakis et al., 
1986a, 1986b) containing the 762 bp open reading frame (boxed) was 
cloned into the Hindlll site of pNSE-Ex 4, which was generated and 
provided by Dr. Sonja Forss-Petter, Scripps Research Institute, from 
a previously described genomic clone of the rat NSE gene (Forss- 
Petter et al., 1990; Mucke et al., 1994). pNSE-Ex 4 contains 2.8 kb 
of rat NSE flanking sequences upstream of the transcriptional start 
of exon 1,54 bp of exon I, a 1.2 kb intron, and 6 bp of exon 2 upstream 
of the unique Hindlll cloning site. Downstream of the Hindlll site is a 
1 kb fragment of SV40 sequence used as a molecular tag for transgenic 
RNA in in situ hybridization studies. The poly A signal is located in 
the middle of the SV40 DNA. The transgene DNA was excised from 
the bacterial plasmid vector, pUC 19, by digestion with Sail, and the 
large Sail fragment shown was purified and used for inoculation of 
mouse cells for generation of transgenic mice. 
(B) Expression of HPrP mRNA in transgenic mouse brain. Polyadeny- 
lated RNA (2 pg) extracted from brain of a normal nontransgenic 
mouse, a Tg52NSE, or a Tgl0 mouse was separated on an agarose/ 
formaldehyde gel, blotted, and hybridized to a 32P-labeled DNA probe 
derived from HPrP. Under the conditions used, this probe hybridizes 
to RNA derived from either mouse PrP (MPrP) or HPrP. The 2.3 kb 
mRNA common to all three lanes represents MPrP mRNA derived 
from the endogenous MPrP gene. The HPrP mRNA derived from TglO 
brain is also present at 2.3 kb. The unique 1.6 kb mRNA band in the 
Tg52NSE lane is derived from the NSE-HPrP construct and is the size 
expected for the fully spliced transcript. 
(C) Western blot detection of HPrP-sen in tissues from a Tg52NSE 
mouse, a Tgl0 mouse, and a normal hamster. Suspensions of various 
tissues were separated on 15% SDS-polyacrylamide electrophoresis 
gels. Proteins were transferred to Immobilon nylon membranes and 
immunoblots performed using antibody 3F4, which recognizes ham- 
ster PrP but not mouse PrP. Blots were developed using the Enhanced 
Chemiluminescence reagent system (Amersham). Immunoreactive 
bands shown represent HPrP-sen. HPrP-sen was detected in all of 
the indicated tissues from Tgl0 mice. In Tg52NSE mice, HPrP-sen 
was detected only in brain. Normal hamsters had HPrP-sen in brain, 
heart, lung, and thymus but not in muscle or spleen. Hamster testes 
were not assayed. 

by select ion at each breeding cross. By comparat ive slot 
blot analysis, the t ransgene copy number  was approxi-  
mately 8 for Tg52NSE and 12 for T g l 0  mice (data not 

shown). 



H and E Dark field 

Cerebellum 
,, ~ ~ i i  ,~ ~ i!~ 

Dentate 
Gyrus 

! 

Cerebral 
Cortex 

Neuron-Specific Hamster PrP Expression 
1185 

Thalamus and 
Hippocampus 

Figure 2. Expression of HPrP mRNA in Various Brain Regions of Tg52NSE Mice 
Brain sections were processed for in situ hybridization and light microscopy as described in the Experimental Procedures• The probe used was 
from a portion of SV40 sequence unique to the transgene (see Figure 1A). Identical fields were photographed with conventional illumination to 
show histology with hematoxylin and eosin staining ("H and E"; first column) and by dark field illumination (second column) to show the location 
of silver grains (white dots) corresponding to HPrP mRNA. Strong signals were detected in the band of Purkinje cells adjacent to the granular 
layer of the cerebellum, and at higher magnification silver grains were localized over individual Purkinje cells (not shown)• Granule cell neurons 
of the cerebellum were also positive, but this was not obvious at the magnification shown here (first row). Regions containing the pyramidal neurons 
of the hippocampus and the neurons of the dentate gyrus were strongly positive (second and third rows), and individual cells in the adjacent 
thalamus were also positive (second row, left panel). Several layers of positive cells were also detected in the cerebral cortex (fourth row). 

HPrP mRNA Expression in Brains 
of Transgenic Mice 
To analyze HPrP mRNA expression in the brain of 
transgenic mice, Northern blotting was performed with a 
probe reactive with both mouse and hamster PrP genes. 
Tg52NSE mice expressed a 1.6 kb PrP mRNA band corre- 
sponding to the predicted HPrP transgene in addition to 

the 2.3 kb PrP mRNA band expressed in nontransgenic 

mice (Figure 1B). The intensity of the 1.6 kb HPrP band 

was 4-5  times higher than that of the 2.3 kb endogenous 
mouse PrP band. In contrast, T g l 0  mice containing the 
cosmid HPrP transgene showed no new PrP bands distin- 
guishable from mouse PrP by Northern blotting (Figure 
1B). However, the increased intensity of the band at 2.3 

kb was consistent with expression of a 2.3 kb HPrP mRNA 
from the cosmid transgene. 
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Figure 3. Kinetics of Death of Tg52NSE Mice, Tg l0  Mice, and Non- 
transgenic Mice after Intracerebral Inoculation with Hamster Scrapie 
Strain 263K 

Data are pooled from experiments done at Rocky Mountain Labora- 
tories and Scripps Research Institute (Tg52NSE mice, n = 60; Tgl0 
mice, n = 65; and nontransgenic mice, n = 25). 

HPrP Protein Expression in Transgenic 
Mouse Tissues 
To study tissue specificity of HPrP protein expression, a 
variety of tissues from both HPrP transgenic mouse lines 
and normal hamsters was analyzed by immunoblotting 
using monoclonal antibody 3F4, which has a strong reac-  

tivity for HPrP and no reactivity for mouse PrP (Kascsak 
et al., 1987). In Tg52NSE mice, HPrP protein was detected 
in brain, but not in six other tissues studied (Figure 1C). 
In contrast, Tg l0  mice and normal hamsters expressed 
HPrP protein in a variety of other tissues in addition to 
brain (Figure 1C). Thus, the transgene in Tg52NSE mice 
showed a restricted pattern of expression as expected 
from the use of the neuron-specific enolase promoter 
(Forss-Petter et al., 1990). 

Neuronal Localization of HPrP Expression 
in Tg52NSE Mice 
In situ hybridization was used to study localization of HPrP 
mRNA in Tg52NSE mouse brain. For detection, we used a 
probe from SV40-derived intervening sequences present 

Table 1. Comparison of Clinical Disease Induced by the 263K Strain 
of Hamster Scrapie. 

Transgenic Mice Syrian 

Tg52NSE Tg l0  Hamsters Clinical Data 

Number of animals 60 65 43 
Average interval to death a 93 _+ 8 d  248 _+ 64d  72 _ 3 d  
Duration of symptoms 1-3 d 30-90 d 10-15 d 
Ataxia + + + 
Tremors - + + 
Paralysis - + 
Stilted gaiP + - - 
Somnolence - - + 

a Mean -+ standard deviation; d, days. Animals were sacrificed when 
clinical condition was near terminal. Nontransgenic mice inoculated 
with hamster 263K scrapie agent showed no signs of disease within 
a normal life span (2 years). 
. Stilted gait was characterized by walking on tiptoes. 

only in the HPrP mRNA of the Tg52NSE mice (Figure 
1A). HPrP mRNA was detected in a variety of neuronal 
populations of the brain. Highest expression was seen in 
Purkinje cells of the cerebellum, neurons of the dentate 
gyrus, and pyramidal neurons of the hippocampus (Figure 
2). Granular layer neurons of the cerebellum, cells in vari- 
ous layers of the cerebral cortex, and cells with large nuclei 
in the dorsal portion of the thalamus also expressed mod- 
erate amounts of HPrP mRNA (Figure 2). These results 
were consistent with neuron-specific expression of the 
HPrP transgene in Tg52NSE mice. 

Further confirmation of neuronal expression of the HPrP 
transgene was achieved using primary hippocampal neu- 
ron cultures and astrocyte cultures. Using monoclonal an- 
tibody 3F4, greater than 90% of neurons from Tg52NSE 
mice had detectable HPrP protein after in vitro culture for 
48 hr. This was observed in 3 out of 5 experiments. In 
contrast, astrocytes cultured from these same mice never 
expressed detectable HPrP (data not shown). 

Susceptibility of Tg52NSE and Tgl0 Mice 
to Hamster Scrapie Agent 
To determine the influence of HPrP expression on suscep- 
tibility to hamster scrapie agent, Tg52NSE, Tgl0,  non-Tg 
mice, and hamsters were inoculated with hamster scrapie 
strain 263K. Tg52NSE mice all died between 70 and 118 
days postinoculation, while non-Tg littermates were clini- 
cally normal 400 days postinoculation (Figure 3). Affected 
mice exhibited a 1-3 day clinical course characterized by 
a "stilted" gait, mild ataxia, and inactivity (Table 1). Tg l0  
mice, on the other hand, had a more variable and pro- 
tracted clinical course lasting several weeks or even 
months and died between 80 and 405 days postinoculation 
(Figure 3). The clinical symptoms in Tg l0  mice included 
whole-body tremors, ataxia, and progression to paralysis 
and death (Table 1). In hamsters, clinical symptoms in- 
cluded ataxia, tremor, and somnolence (Table 1). Clini- 
cally ill Tg52NSE mice and Tg l0  mice had easily detect- 
able proteinase K-resistant HPrP and histopathological 
findings typical of scrapie with astrocytosis and spongiosis 
(data not shown). Furthermore, brain homogenates from 
hamster scrapie-infected Tg52NSE and Tg l0  mice 
caused scrapie on reinoculation in hamsters, but not in 
mice (data not shown). In summary, Tg52NSE and Tg l0  
mice were highly susceptible to hamster 263K scrapie 
agent, but both the tempo and symptoms of clinical dis- 
ease were different in the two transgenic strains. 

To determine whether the expression of HPrP would 
modify the pathogenesis of mouse scrapie, Tg52NSE and 
Tg l0  mice were also inoculated with the Chandler strain 
of mouse-adapted scrapie agent. Tg52NSE mice died 
180 + 3 days postinoculation (n = 8), while normal lit- 
termates died 160 __+ 3 days postinoculation (n = 11). 
Tg l0  mice died 201 -+ 4 days postinoculation (n = 17), 
while their normal littermates died 164 _.+ 4 days after 
inoculation (n = 14). Thus, expression of HPrP in both 
Tg52NSE and Tg l0  mice delayed the onset of clinical 
disease induced by the mouse scrapie agent, suggesting 
that expression of HPrP could partially interfere with devel- 
opment of mouse scrapie. 



Neuron-Specific Hamster PrP Expression 
1187 

Figure 4. Distribution of HPrP-res in Tg52NSE Brain 
Brains from uninfected (A) and hamster scrapie-infected (B-F) Tg52NSE mice were analyzed for HPrP-res by hydrolytic autoclaving and immunostain- 
ing using antibody 3F4. HPrP staining was most intense in thalamic nuclei (B and C) and the diagonal band of broca (D) where HPrP was primarily 
located in the neuropil. Perineuronal (arrows) and "beads-on-a-string" (arrowheads) HPrP staining pattern were found in the anterior hypothalamus 
(E). In midbrain nuclei (F), intraneuronal HPrP immunostaining was observed in the cell body (arrow) and proximal axons (arrowhead). Enlarged 
ventricular space in infected mice appeared to be secondary to cortical atrophy, as there was no obvious increased intracranial presence or 
hydrocephalus on gross examination. Bars in (A) and (B), 1 mm; in (C), 100 #m; in (D) and (E), 50 I~m; and in (F), 25 p.m. 

Pattern of HPrP-res Deposition in Transgenic Mice 
The regional and cel lular distr ibution of HPrP-res was de- 
termined by immunocytochemis t ry  using ant ihamster  PrP 
monoclonal  ant ibody 3F4 on brain sections pretreated with 
hydrolyt ic autoclaving (Ki tamoto et al., 1992). This proce- 
dure enhances immunoreact iv i ty  of PrP-res and elimi- 
nates detect ion of PrP-sen. The distr ibution of HPrP-res 
in brains of Tg52NSE mice infected with hamster  scrapie 
was restricted to specific anatomical  regions (Figure 4B) 
and was not as widespread as reported for hamsters in- 
fected with this same scrapie strain (DeArmond et al., 
1992). HPrP-res was pr imari ly found in gray matter and 
was rarely detected in white matter tracts. Intense immu- 
nostaining was observed in several tha lamic nuclei (Fig- 

ures 4B and 4C), a diagonal  band of Broca (Figures 4B 
and 4D), the ol factory bulb, and in deep cerebel lar  nuclei 
and regions of the midbrain (Figure 4B). A narrow band of 
HPrP-res immunosta in ing was also observed in the middle 
cortical layers of the cerebral cor tex (Figure 48), which was 
atrophied in 50% of Tg52NSE mice infected with hamster 
scrapie. There was no detectable HPrP-res staining in the 

basal gangl ia, h ippocampus,  or cerebel lar  cortex. Unin- 
fected Tg52NSE mice showed no HPrP immunoreact iv i ty  
in brain parenchyma and only  weak, nonspecif ic immu- 
noreact iv i ty in the choroid plexus and glial l imitans (Fig- 
ure 4A). 

The HPrP-res immunoreact iv i ty  in the brains of hamster  
scrapie- in fected Tg52NSE mice had ei ther a diffuse or 
focal, plaque-l ike staining pattern. In several brain regions, 
HPrP-res was located in, or adjacent to, neuronal  peri- 
karya. For example ,  per ineuronal  HPrP-res staining in the 
anter ior hypotha lamic  area complete ly  encirc led individ- 
ual neurons (Figure 4E, arrows). A "beads-on-a-str ing" 
HPrP-res staining pattern (Figure 4E, arrowheads) also 
was observed,  and these l inear structures had a narrow 
width but could be as long as 120 p.m. This pattern was 
reminiscent of axonal  staining, al though we could not de- 
f init ively associate this distr ibut ion with nerve cell bodies. 
However,  in the midbrain, HPrP-res staining appeared to 
be located in the per ikaryon and proximal  axon of individ- 
ual neurons (Figure 4F). 
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Discussion 

Previous transgenic mice expressing HPrP were made 
using a 40 kb cosmid clone containing the HPrP gene 
(Scott et al., 1989; Prusiner et al., 1990). Because of the 
large amount of DNA in these transgenes, it was not possi- 
ble to prove that HPrP expression was the only genetic 
factor involved in the induction of susceptibility to hamster 
scrapie in these mice. Furthermore, earlier attempts to 
produce transgenic mice using only the HPrP open read- 
ing frame were not successful (Scott et al., 1989). In con- 
trast, the present experiments succeeded in getting high 
levels of HPrP expression by using a transgene containing 
only 1 kb of hamster DNA including the 762 base pair open 
reading frame of HPrP together with the neuron-specific 
enolase promoter. Thus, the high susceptibility of Tg52NSE 
mice to hamster scrapie demonstrates that this HPrP mini- 
gene including the open reading frame itself is the critical 
element in inducing susceptibility to the hamster scrapie 
agent in vivo. 

In the present work, we have studied only one NSE- 
HPrP transgenic mouse line, Tg52NSE. Therefore, it is 
conceivable that the susceptibility of this line to hamster 
scrapie might be a result of site-specific disruption of the 
function of a normal mouse gene, rather than expression 
of the HPrP trangene. However, this is highly unlikely since 
several transgenic mouse lines expressing HPrP with the 
PrP promoter have been studied (see Figure 3) (Scott et 
al., 1989; Prusiner et al., 1990), and in all cases HPrP 
expression level correlates with susceptibility to hamster 
scrapie. Thus, the HPrP expression level, rather than dis- 
ruption of an unknown mouse gene, appears to be the 
critical factor in abrogating the species barrier in this 
system. 

Neuron-specific expression mediated by the NSE pro- 
motor has previously been found in several other 
transgenic mouse models (Forss-Petter et al., 1990; 
Mucke et al., 1994; Rail et al., 1995). In the present report, 
neuron-specific HPrP expression was demonstrated by 
both in vivo and in vitro experiments and was sufficient 
to render mice susceptible to CNS disease induced by 
the 263K hamster scrapie strain. Several previous reports 
indicate that astrocytes and splenic follicular dendritic 
cells (FDC) may be the earliest sites of PrP-res accumula- 
tion following scrapie infection (Diedrich et al., 1991 ; Mura- 
moto et al., 1993; Moser et al., 1995), and these sites 
might also be important in restriction of agent replication 
following interspecies transmission of TSE agents (Mura- 
moto et al., 1993). However, based on the present findings, 
HPrP expression in astrocytes or FDC was not required to 
mediate susceptibility of mice to intracerebral inoculation 
with hamster scrapie. Nevertheless, in addition to neu- 
rons, HPrP expression in cells such as astrocytes, FDC, 
or even other cell types might also be sufficient to over- 
come the scrapie species barrier, and FDC in spleen and 
lymph nodes m ight be particularly involved in interspecies 
transmission following intraperitoneal inoculation of 
agent. 

Based on recent results involving cell-free interactions 
between PrP-sen and PrP-res from mouse and hamster 

(Kocisko et al., 1994, 1995), it seems likely that the species 
specificity of TSE agents involves direct interactions be- 
tween PrP molecules, which either facilitate or inhibit the 
process of PrP-res generation in vivo. For example, incu- 
bation of mouse PrP-res with hamster PrP-sen or mouse 
PrP-sen resulted in generation of protease-resistant prod- 
ucts with differing subunit molecular weights (Kocisko et 
al., 1995). This suggested that the biochemical structures 
of the intact protease-resistant PrP forms were not identi- 
cal when PrP-sen from different species were used. Such 
structural differences might be involved in the species- 
specific adaptation that often occurs following interspe- 
cies transmission of TSE agents. 

In contrast to the present and previous (Scott et al., 
1989; Prusiner et al., 1990) data with transgenic mice, we 
have not been successful in infecting mouse neuro- 
blastoma cells in vitro with hamster scrapie, even when 
clones expressing high levels of HPrP were utilized (Priola 
et al., 1994). In mouse neuroblastoma cells infected with 
mouse scrapie, the expression of hamster PrP interfered 
with generation of mouse PrP-res (Priola et al., 1994), and 
by analogy similar interactions may also be capable of 
blocking exogenous infection by the hamster scrapie 
agent in these cell lines. Although in the present experi- 
ments inhibitory effects of HPrP expression on infection 
of Tg52NSE mice with mouse scrapie resulted in a signifi- 
cantly increased incubation period, all mice eventually de- 
veloped clinical disease. In the converse experiment of 
infection of Tg52NSE by hamster scrapie agent, the incu- 
bation period was longer than in normal hamster (Table 
1), but again all mice were susceptible. At present, we 
have no adequate explanation for the differences in inter- 
species infection experiments between in vitro mouse neu- 
roblastoma cell lines and transgenic mice in vivo; however, 
one important factor might be that the mice are 100,000- 
fold more sensitive to scrapie infection than are mouse 
neuroblastoma cells (Race et al., 1988; Race and Ernst, 
1992). 

The present results indicated that some sites of high 
HPrP-sen expression in Tg52NSE mice, such as cerebel- 
lar cortex and hippocampus, had no detectable HPrP-res 
deposition. Thus, factors other than level of HPrP-sen ex- 
pression can also influence HPrP-res accumulation. Such 
factors might include foreign PrP molecules and cellular 
glycosaminoglycans, both of which have been noted to 
influence the biochemistry of PrP-res generation in vitro 
(Caughey and Raymond, 1993; Caughey et al., 1994; Pri- 
ola et al., 1994). These same factors might also account 
for the difference in clinical course and in sites of PrP-res 
deposition between Tg52NSE mice and normal hamsters 
after infection with hamster scrapie strain 263K. In addi- 
tion, non-PrP genetic differences involving major histo- 
compatibility complex genes (Kingsbury et al., 1983; Carp 
and Callahan, 1986) or other genes (Carlson et al., 1988; 
Race et al., 1990; Westaway et al., 1991) might also influ- 
ence patterns of both PrP-res deposition and clinical dis- 
ease following interspecies TSE agent transmission. 

Although experiments with PrP transgenic mice have 
provided helpful insights into the importance of PrP in 
scrapie pathogenesis and interspecies transmission, it is 
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possib le that  some  p h e n o m e n a  observed  in t ransgenic  

mice are the result of abnorma l  overexpress ion  of  PrP. 

For example ,  some t ransgen ic  mice express ing  mouse or 

nonmouse  PrP have deve loped a spon taneous  degenera-  

t ive brain d isease in the absence  of scrap ie  infect ion 

(Hsiao et al., 1990; Wes taway  et al., 1994). In o ther  in- 

s tances,  t ransgen ic  mice express ing  an MPrP gene asso- 

c ia ted with res is tance to mos t  mouse  scrap ie  strains had 

increased sensi t iv i ty to mouse  scrapie (Wes taway  et al., 

1991). Both of these unexpec ted  examp les  of neurode-  

genera t ive  d isease in PrP t ransgen ic  mice are bel ieved to 

involve overexpress ion  of PrP, but the deta i led pathogenic  

mechan i sms  involved in each are not known.  Thus, it will 

be impor tant  in the future to conf i rm conc lus ions der ived 

f rom t ransgen ic  mice by using PrP null mice,  where  the 

mouse  PrP gene  can be rep laced in its normal  con tex t  in 

the mouse g e n o m e  by a s ingle copy of a mutan t  or foreign 

PrP gene.  

Experimental Procedures 

Generation of Transgenic Mice 
A 1.0 kb fragment of hamster PrP cDNA containing the 762 bp open 
reading frame plus 54 bp of upstream sequence and 175 bp of down- 
stream sequence was obtained by digestion with EcoRl and Hindlll 
from pEA974 provided by Dr. N. Robakis (Robakis et al., 1986a, 
1986b). After blunting DNA ends with Klenow enzyme, Xhol linkers 
were added and the fragment was subcloned in pBluescript-KS+ to 
generate p2-17. This clone was digested with Kpnl, ends were blunted 
with Klenow enzyme, and a Hindlll linker was inserted. Subsequently, 
the Sail site in the polylinkers was eliminated by Sail digestion, blunting 
with Klenow, and religation. A 1.0 kb HPrP fragment was then excised 
from this clone with Hindlll and inserted into the unique Hindlll site 
of pNSE-Ex 4, which was provided by Dr. Sonja Forss-Petter, Scripps 
Research Institute (Forss-Petter et al., 1990; Mucke et al., 1994). This 
plasmid was then digested with Sail to remove the pUC 19 vector 
sequences to produce the purified DNA fragment shown in Figure 1A, 
which was used to generate Tg52NSE transgenic mice. 

The 40 kb cosmid described by Scott et al. (1989) was kindly pro- 
vided by Dr. Stanley Prusiner and was used to generate Tgl0 mice. 

Analysis of Transgenic Mouse DNA 
Tail DNA isolated as described (Race et al., 1990) was analyzed by 
slot blot hybridization using standard techniques with an HPrP cDNA 
probe (Oesch et al., 1985) or by polymerase chain reaction (PCR). 
Transgenic mice were identified as those having signal intensity 
greater than that of non-Tg littermates. To estimate HPrP copy number, 
successive 10-fold DNA dilutions were blotted, hybridized, and com- 
pared to nontransgenic mouse or hamster DNA similarly diluted. Alter- 
natively, a hamster-specific PrP polymerase chain reaction (PCR) 
assay was utilized. The upper strand primer (5'AACCGTTACCCACCT- 
CAGGGT 3') did not distinguish mouse PrP from hamster PrP; how- 
ever, the lower strand primer (3'ATGGTGGGTCATAGTCTTCCTC 5') 
contained four base differences (underlined) between mouse and ham- 
ster PrP. PCR was done using 50-500 ng of DNA in 25 p.I volume 
with standard buffers. The first cycle was 95°C for 5 min, 50°C for 
30 sec and 72°C for 1 min. This was followed by 29 cycles of 95°C 
for 1 min, 50°C for 30 sec, and 72°C for 1 min. Using normal hamster 
or HPrP Tg mouse DNA as the template, this assay gave a 530 kb 
DNA band detectable by ethidium bromide staining. No band was seen 
when normal mouse DNA was used. 

Northern Blots 
Polyadenylated mRNA was isolated using the Invitrogen Micro-Fast 
Track mRNA isolation kit according to the manufacturers instructions. 
Polyadenylated mRNA was electrophoresed in 6% formaldehyde, 
1.4o/0 agarose gels, blotted onto Nylon-1 membrane (GIBCO BRL), 
and baked 2 hr at 80°C. The membranes were hybridized as described 
(Caughey et al., 1988). The probe was the same as for slot blot analysis. 

In Situ Hybridization 
In situ hybridization was performed as described previously (Borrow 
et al., 1995). Briefly, a 3sS-labeled single-stranded RNA probe specific 
for the SV40 sequence was used to detect expression in sections of 
brain. Two hundred seventeen bases of SV40 sequence were cloned 
into the pSP70 plasmid (Promega). The plasmid was linearized by 
Bglll digestion, and a product complementary to the SV40 mRNA was 
transcribed by the Sp6 polymerase. The quantity of probe generated 
was calculated by measuring the percentage incorporation of the radio- 
isotope. Paraffin-embedded sections from saline-perfused tissue fixed 
in Bouins or 10% formalin were deparaffinized by washing twice for 
5 min in xylene and twice for 5 min in 100% ethanol. The sections 
were treated, hybridized, and developed as described (Borrow et al., 
1995), with the exception that the hybridization temperature was 55°C. 

Western Blots 
Immunoblotting was used to detect HPrP-sen and HPrP-res in tissues 
of hamsters and transgenic and normal mice. For PrP-sen, 20% brain 
homogenates were made in disposable tube and pestle (Kontes, Vine- 
land, New Jersey) in ice-cold 0.32 M sucrose containing 0.1 I~M leupeptin, 
0.15 p.M apoprotinin, 0.1 ~M pepstatin, and 0.001 M phenylmethylsulfo- 
nylfluoride (PMSF). The homogenate was sonicated for 2 min then micro- 
fuged at 10,000 g for 10 min. Supernatant fluid was carefully removed 
and added to an equal volume of 2x sample buffer. This solution was 
vortexed, boiled 5 min and frozen until immunoblots could be run. 

PrP-res was isolated from brain as previously described, except 
brain homogenates were made in disposable tube and pestle (Race 
and Ernst, 1992). Final pellets were suspended by sonication in sample 
buffer at a concentration of 3 mg/p.I. HPrP-sen or HPrP-res proteins 
were separated on 15% polyacrylamide gels as described (Race and 
Ernst, 1992), and proteins were detected using a 1:20,000 dilution of 
ascites containing hamster-specific monoclonal antibody 3F4 (Kasc- 
sak et al., 1987), with the Enhanced Chemiluminescence procedure 
according to the manufacturers instructions (Amersham, Buckingham- 
shire, England). 

HPrP Expression in Cultured Cells 
Astrocytes were prepared from 2 day-old mice as described (Rail et 
al., 1994). Briefly, brains were removed, and cells were mechanically 
dissociated and cultured on poly-L-lysine-coated culture flasks. Two 
days after culturing, the cells were extensively washed to remove de- 
bris and shaken overnight at 100 rpm to remove nonastroglial cells 
(microglia). The cultures were then trypsinized and plated onto glass 
cover slips for immunostaining. Primary hippocampal neurons were 
plated as described (Pasick et al., 1994). Briefly, hippocampi were 
dissected from the brains of embryos 15-17 clays old, trypsinized and 
triturated, and cultured on poly-L-lysine-coated glass cover slips at a 
density of 500 cells/mm 2. Of these cells, 92%-95% are routinely posi- 
tive for MAP2, a neuronal marker. For immunostaining, cultures were 
exposed to a 1:200 dilution of MAb 3F4 ascites fluid for 2 hr at 37°C. 
After gentle washing, cells were fixed in 50% acetone/50% methanol 
for 10 min, then washed extensively with buffer and reacted with biotin- 
ylated antimouse secondary antibody (Mouse Elite, Vector Labora- 
tories, Burlingame, VT). Following a 1 hr incubation with secondary 
antibody, the cells were washed, reacted with the avidin-biotin reagent, 
and incubated with hydrogen peroxide plus diaminobenzidene chro- 
mogen, resulting in a brown precipitate over positive cells. 

Immunohistochemistry 
Brains from clinically ill, age-matched mice were perfused with Bouin's 
fixative or 10% formaldehyde followed by immersion fixation. Paraffin- 
embedded sections of brain were submersed in 1.0 mM HCI and auto- 
claved for 10 min (Kitamoto et al., 1992). Immunostaining for brain 
HPrP-res was performed using mouse monoclonal antibody 3F4 (Kasc- 
sak et al., 1987). Briefly, after blocking, tissue was incubated with 3F4 
antibody diluted 1 ;2,000 in 3% bovine serum albumen in Tris-buffered 
saline (pH 7.4) for 2 hr at 37°C. Tissue sections were washed and 
incubated with goat antimouse IgG (1:250, Bio-Rad Laboratories, Her- 
cules, CA.) conjugated with horseradish peroxidase for 1 hr at room 
temperature. Color development was performed with 0.8 mg/ml of 
3-amino-9-ethylcarbazole in 50 mM sodium acetate (pH 5.0) and 
0.03% water. Tissue sections were counterstained with Mayer's hema- 
toxylin. MAb 3F4 detects hamster PrP but not mouse PrP (Kascsak 
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et al., 1987). The hydrolytic autoclaving procedure is specific for PrP- 
res and does not detect PrP-sen. 

Scrapie Infection of Animals 
Tg52NSE, Tgl0 and non-Tg mice and hamsters were inoculated with 
either 263K strain of hamster scrapie agent (Marsh and Kimberlin, 
1975) or the Chandler strain of mouse scrapie agent (Eklund et al., 
1967). Mice received 10 e LD50 of hamster agent or 10 ~ LD50 mouse 
scrapie agent intracerebrally in a volume of 50 ~1. 

Acknowledgments 

The authors thank Gary Hettrick and Bob Evans for graphics assis- 
tance and Irene Cook Rodriguez for assistance with the manuscript. 

The costs of publication of this article were defrayed in part by 
the payment of page charges. This article must therefore be hereby 
marked "advertisement" in accordance with 18 USC Section 1734 
solely to indicate this fact. 

Received April 7, 1995; revised July 26, 1995. 

References 

AIper, T., Haig, D.A., and Clarke, M.C. (1978). The scrapie agent: 
evidence against its dependence for replication on intrinsic nucleic 
acid. J. Gen. Virol. 41,503-516. 
Bellinger-Kawahara, C., Diener, T.O., McKinley, M.P., Groth, D.F., 
Smith, D.R, and Prusiner, S.B. (1987). Purified scrapie prions resist 
inactivation by procedures that hydrolyze, modify, or shear nucleic 
acids. Virology 160, 271-274. 
Bolton, D.C., McKinley, M.P., and Prusiner, S.B. (1982). Identification 
of a protein that purifies with the scrapie prion. Science 218, 1309- 
1311. 
Borchelt, D.R., Scott, M., Taraboulos, A., Stahl, N., and Prusiner, S.B. 
(1990). Scrapie and cellular prion proteins differ in the kinetics of syn- 
thesis and topology in cultured cells. J. Cell Biol. 110, 743-752. 

Borrow, P., Evans, C.F., and Oldstone, M.B.A. (1995). Virus-induced 
immunosuppression: immune system-mediated destruction of virus- 
infected dendritic cells results in generalized immune suppression. J. 
Virol. 69, 1059-1070. 
Brown, H.R., Goller, NL., Rudelli, R.D., Merz, G.S., Wieniewski, H.M., 
and Robakis, N.K. (1990). The mRNA encoding the scrapie agent 
protein is present in a variety of non-neuronal cells. Acta Neuropathol. 
80, 1-6. 
Bueler, H., Aguzzi, A., Sailer, A., Greiner, R.-A., Autenried, P., Aguet, 
M., and Weissmann, C. (1993). Mice devoid of PrP are resistant to 
scrapie. Cell 73, 1339-1347. 
Carlson, G.A., Kingsbury, D.T., Goodman, P.A., Coleman, S., Mar- 
shall, S.T., DeArmond, S., Westaway, D., and Prusiner, S.B. (1986). 
Linkage of prion protein and scrapie incubation time genes. Cell 46, 
503-511. 
Carlson, G.A., Goodman, P.A., Lovett, M., Taylor, B.A., Marshall, S.T., 
Peterson-Torchia, M, Westaway, D., and Prusiner, S.B. (1988). Genet- 
ics and polymorphism of the mouse prion gene complex: control of 
scrapie incubation time. Mol. Cell. Biol. 8, 5528-5540. 

Carp, R.I., and Callahan, SM. (1986). Scrapie incubation periods and 
their end point titers in mouse strains differing at the H-2D locus. 
Intervirology 26, 85-92. 
Caughey, B., and Raymond, G.J. (1991). The scrapie-associated form 
of PrP is made from a cell surface precursor that is both protease- 
and phospholipase-sensitive. J. Biol. Chem. 266, 18217-18223. 

Caughey, B., and Raymond, G.J. (1993). Sulfated polyanion inhibition 
of scrapie-associated PrP accumulation in cultured cells. J. Virol. 67, 
643-650. 
Caughey, B., Race, R.E., and Chesebro, B. (1988). Detection of prion 
protein mRNA in normal and scrapie-infected tissues and cell lines. 
J. Gen. Virol. 69, 711-716. 
Caughey, B., Brown, K., Raymond, G.J., Katzenstien, G.E., and 
Thresher, W. (1994). Binding of the protease-sensitive form of PrP 
(prion protein) to sulfated glycosaminoglycan and Congo red. J. Virol. 
68, 2135-2141. 

DeArmond, S.J., Jendroska, K., Yang, S., Taraboulos, A., Hecker, R., 
Hsiao, K., Stowring, L., Scott, M, and Prusiner, S.B. (1992). Scrapie 
prion protein accumulation correlates with neuropathology and incuba- 
tion times in hamsters and transgenic mice. In Prien Diseases of Hu- 
mans and Animals. S.B. Prusiner, J. Collinge, J. Powell, and B. Ander- 
ton, eds. (New York: Ellis Horwood), pp. 483-496. 

Dees, C., Wade, W.F., German, T.L., and Marsh, R.F. (1985). Inactiva- 
tion of the scrapie agent by ultraviolet irradiation in the presence of 
chlorpromazine. J. Gen. Virol. 56, 845-849. 

Diedrich, J.F., Bendheim, P.E., Kim, Y.S., Carp, R.l., and Haase, A.T. 
(1991). Scrapie-associated prien protein accumulates in astrocytes 
during scrapie infection. Prec. Natl. Acad. Sci. USA 88, 375-379. 

Diringer, H., Gelderblom, H., Hilmert, H., Ozel, M., Edelbluth, C., and 
Kimberlin, R.H (1983). Scrapie infectivity, fibrils and low molecular 
weight protein. Nature 306, 476-478. 

Doh-ura, K., Tateishi, J., Sasaki, H., Kitamoto, T., and Sakaki, Y. 
(1989). Pro~leu change at position 102 of prion protein is the most 
common but not the sole mutation related to Gerstmann-Straussler 
syndrome. Biochem. Biophys. Res. Commun. 163, 974-979. 

Eklund, CM., Kennedy, R.C., and Hadlow, W.J. (1967). Pathogenesis 
of scrapie virus infection in the mouse. J. Infect. Dis. 117, 15-22. 

Forss-Petter, S., Danielson, P.E., Catsicas, S., Battenberg, E., Price, 
J., Nerenberg, M, and Sutcliffe, J.G. (1990). Transgenic mice express- 
ing ~-galactosidase in mature neurons under neuron-specific enolase 
promoter control. Neuron 5, 187-197. 

Goldfarb, L.G., Brown, P., Goldgaber, D., Garruto, RM., Yanagihara, 
R., Asher, D.M., and Gajdusek, D.C. (1990). Identical mutation in unre- 
lated patients with Creutzfeldt-Jakob disease. Lancet 336, 174-175. 

Goldgaber, D., Goldfarb, L.G., Brown, P., Asher, D.M., Brown, W.T., 
Lin, S., Teener, J .W., Feinstone, S.M., Rubenstein, R., Kascsak, R.J., 
et al. (1989). Mutations in familial Creutzfeldt-Jakob disease and 
Gerstmann-Straussler-Scheinker's syndrome. Exp. Neurol. 106, 
204-206. 
Hsiao, K., Baker, H.F., Crow, T.J., Poulter, M., Owen, F., Terwilliger, 
J.D., Westaway, D., Ott, J., and Prusiner, S.B. (1989). Linkage of a 
prion protein missense variant to Gerstmann-Straussler syndrome. 
Nature 338, 342-345. 
Hsiao, K.K., Scott, M., Foster, D., Groth, D.F., DeArmond, S.J., and 
Prusiner, S.B. (1990). Spontaneous neurodegeneration in transgenic 
mice with mutant prion protein. Science 250, 1587-1590. 

Hsiao, K.K., Case, C., Schellenberg, G.D., Bird, T., Devine-Gage, E., 
Wisniewski, H., and Prusiner, S.B. (1991a). A prion protein variant in 
a family with the telencephalic form of Gerstmann-Straussler- 
Scheinker syndrome. Neurology 41, 681-684. 

Hsiao, K., Meiner, Z., Kahana, E., Case, C., Kahana, I., Avrahami, D., 
Scarlato, G., Abramsky, O., Prusiner, S.B., and Gabizon, R. (1991b). 
Mutation of the priori protein in Libyan Jews with Creutzfeldt-Jakob 
disease. N. Engl. J. Med. 324, 1091-1097. 
Hunter, G.D. (1979). The enigma of the scrapie agent: biochemical 
approaches and the involvement of membranes and nucleic acids. 
In Slow Transmissible Diseases of the Nervous System, Vol. 2. S.B. 
Prusiner and W.J. Hadlow, eds. (New York: Academic Press), pp. 365- 
385. 
Hunter, N., Hope, J., McConnell, I., and Dickinson, A.G. (1987). Link- 
age of the scrapie-associated fibril protein (PrP) gene and sinc using 
congenic mice and restriction fragment length polymorphism analysis. 
J. Gen. Virol. 68, 2711-2716. 

Hunter, N., Foster, J.D., Dickinson, A.G., and Hope, J. (1989). Linkage 
of the gene for the scrapie-associated fibril protein (PrP) to the Sip 
gene in Cheviot sheep. Vet. Rec. 124, 364-366. 

Kascsak, R.J., Rubenstein, R., Merz, P.A., Tonna-DeMasi, M., Fersko, 
R., Carp, R.I., Wisniewski, H.M., and Diringer, H. (1987). Mouse poly- 
clonal and monoclonal antibody to scrapie-associated fibril proteins. 
J. Virol. 61, 3688-3693. 
Kimberlin, R.H., and Walker, C.A. (1978). Evidence that the transmis- 
sion of one source of scrapie agent to hamsters involves separation 
of agent strains from a mixture. J. Gen. Virol. 39, 487-496. 

Kimberlin, RH., Cole, S., and Walker, C.A. (1987). Temporary and 
permanent modifications to a single strain of mouse scrapie on trans- 
mission to rats and hamsters. J. Gee. Virol. 68, 1875-1881. 



Neuron-Specific Hamster PrP Expression 
1191 

Kingsbury, D.T., Kasper, K.C., Stites, D.P., Watson, J.D., Hogan, R.N., 
and Prusiner, S.B. (1983). Genetic control of scrapie and Creutzfeldt- 
Jakob disease in mice. J. Immunol. 131,491-496. 

Kitamoto, T., Shin, R.W., Doh-ura, K., Tomokane, N., Miyazono, M., 
Muramoto, T., and Tateishi, J. (1992). Abnormal isoform of prion pro- 
teins accumulates in the synaptic structures of the central nervous 
system in patients with Creutzfeldt-Jakob disease. Am. J. Pathol. 140, 
1285-1294. 

Kocisko, D.A., Come, J.H., Priola, S.A., Chesebro, B., Raymond, G.J., 
Lansbury, P.T., and Caughey, B. (1994). Cell-free formation of prote- 
ase-resistant prion protein. Nature 370, 471-474. 

Kocisko, D.A., Priola, S.A., Raymond, G.J., Chesebro, B., Lansbury, 
P. T., Jr., and Caughey, B. (1995). Species specificity in the cell-free 
conversion of prion protein to protease-resistant forms: a model for 
the scrapie species barrier. Proc. Natl. Acad. Sci. USA 92, 3923-3927. 

Kretzschmar, H.A., Prusiner, S.B., Stowring, L.E., and DeArmond, 
S.J. (1986). Scrapie prion proteins are synthesized in neurons. Am. 
J. Pathol. 122, 1-5. 
Latarjet, R. (1979). Inactivation of the agents of scrapie, Creutzfeld- 
Jakob disease and Kuru by radiations. In Slow Transm issibte Diseases 
of the Nervous System, Vol. 2. S.B. Prusiner and W.J. Hadlow, eds. 
(New York: Academic Press), pp. 387-407. 

Manson, J., West, J.D., Thomson, V., McBride, P., Kaufman, M.H., 
and Hope, J. (1992). The prion protein gene: a role in mouse em- 
bryogenesis? Development 115, 117-122. 

Manson, J.C., Clarke, AR., McBride, P.A., McConnell, I., and Hope, 
J. (1994). PrP gene dosage determines the timing but not the final 
intensity or distribution of lesions in scrapie pathology. Neurodegen. 
3, 331-340. 
Marsh, R.F., and Kimberlin, R.H. (1975). Comparison of scrapie and 
transmissible mink encephalopathy in hamsters. I1. Clinical signs, pa- 
thology, and pathogenesis. J. Infect. Dis. 131, 104-110. 

Moser, M., Colello, R.J., Pott, U., and Oesch, B. (1995). Developmental 
expression of the prion protein gene in glial cells. Neuron 14, 509- 
517. 
Mucke, L., Masliah, E., Johnson, W.B., Ruppe, M.D., Alford, M., Rock- 
enstein, E.M., Forss-Petter, S., Pietropaolo, M., Mallory, M., and Abra- 
ham, C.R. (1994). Synaptotrophic effects of human amyloid beta pro- 
tein precursors in the cortex of transgenic mice. Brain Res. 666, 151- 
167. 

Muramoto, T., Kitamoto, T., Hoque, M.Z., Tateishi, J., and Goto, I. 
(1993). Species barrier prevents an abnormal isoform of prion protein 
from accumulating in follicular dendritic cells of mice with Creutzfeldt- 
Jakob disease. J. Virol. 67, 6808-6810. 

Oesch, B., Westaway, D., Walchli, M., McKinley, MP., Kent, S.B.H., 
Aebersold, R., Barry, R.A., Tempst, P., Teplow, D.B., Hood, L.E, Prus- 
iner, S.B., and Weissmann, C. (1985). A cellular gen e encodes scrapie 
PrP 27-30 protein. Cell 40, 735-746. 

Pasick, J.M.M., Kalicharran, K., and Dales, S. (1994). Distribution and 
trafficking of J HM coronavirus structural proteins and virions in primary 
neurons and the OBL-21 neuronal cell line. J. Virol. 68, 2915-2928. 

Priola, S.A., Caughey, B., Race, R.E., and Chesebro, B. (1994). Heter- 
ologous P'r~ molecules m[errere w~tn accumulation of protease- 
resistant PrP in scrapie-infected murine neuroblastoma cells. J. Virol. 
68, 4873-4878. 
Prusiner, S.B. (1982). Novel proteinaceous infectious particles cause 
scrapie. Science 216, 136-144. 

Prusiner, S.B., Scott, M., Foster, D., Pan, K.M., Groth, D., Mirenda, 
C., Torchia, M., Yang, S.L., Serban, D., Carlson, G.A., et al. (1990). 
Transgenetic studies implicate interactions between homologous PrP 
isoforms in scrapie prion replication. Cell 63, 673-686. 

Race, RE., and Ernst, D. (1992). Detection of proteinase K-resistant 
prion protein and infectivity in mouse spleen by 2 weeks after scrapie 
agent inoculation. J. Gen. Virol. 73, 3319-3323. 
Race, R.E., Caughe~/, B., Graham, K., Ernst, D., and Chesebro, B. 
(1988). Analyses of frequency of infection, specific infectivity, and prion 
protein biosynthesis in scrapie-infected neuroblastoma cell clones. J. 
Virol. 62, 2845-2849. 
Race, R.E., Graham, K., Ernst, D., Caughey, B., and Chesebro, B. 
(1990). Analysis of linkage between scrapie incubation period and the 

prion protein gene in mice. J. Gen. Virol. 71, 493-497. 

Rail, G.F., Mucke, L., Nevenberg, M., and Oldstone, M.B.A. (1994). 
A transgenic mouse model to assess the interaction of cytotoxic T 
lymphocytes with virally infected, class I MHC-expressing astrocytes. 
J. Neuroimmunol. 52, 61-68. 

Rail, G.F., Mucke, L., and Oldstone, M.B.A. (1995). Consequences of 
cytotoxic T lymphocyte interaction with MHC class-I expressing neu- 
rons in vivo. J. Exp. Med., in press. 

Robakis, NK., Devine-Gage, E.A., Jenkins, E.C., Kascsak, R.J., 
Brown, W.T., Krawczun, M.S., and Silverman, W.P. (1986a). Localiza- 
tion of a human gene homologous to the PrP gene on the p arm of 
chromosome 20 and detection of PrP-related antigens in normal hu- 
man brain. Biochem. Biophys. Res. Commun. 140, 758-765. 

Robakis, N.K., Sawh, P.R., Wolfe, G.C., Rubenstein, R., Carp, R.I., 
and Innis, MA. (1986b). Isolation of a cDNA clone encoding the leader 
peptide of priori protein and expression of the homologous gene in 
various tissues. Proc. Natl. Acad. Sci. USA 83, 6377-6381. 

Scott, M., Foster, D., Mirenda, C., Serban, D., Coufal, F., Walchli, M., 
Torchia, M., Groth, D., Carlson, G., DeArmond, S.J., et al. (1989). 
Transgenic mice expressing hamster prion protein produce species- 
specific scrapie infectivity and amyloid plaques. Cell 59, 847-857. 

Stahl, N., Baldwin, M.A., Teplow, D.B., Hood, L., Gibson, B.W., Bur- 
lingame, A.L., and Prusiner, S.B. (1993). Structural studies of the 
scrapie prion protein using mass spectrometry and amino acid se- 
quencing. Biochemistry 32, 1991-2002. 

Westaway, D., Mirenda, C.A., Foster, D., Zebarjadian, Y., Scott, M., 
Torchia, M., Yang, S., Serban, H., DeArmond, S.J., Ebeling, C., et al. 
(1991). Paradoxical shortening of scrapie incubation times by expres- 
sion of prion protein transgenes derived from long incubation period 
mice. Neuron 7, 59-68. 

Westaway, D., DeArmond, S.J., Cayetano-Canlas, J., Groth, D., Fos- 
ter, D., Yang, S., Torchia, M., Carlson, G.A., and Prusiner, S.B. (1994). 
Degeneration of skeletal muscle, peripheral nerves, and the central 
nervous system in transgenic mice overexpressing wild-type prion pro- 
teins. Cell 76, 117-129. 


