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Objective:Resistance to immune checkpoint inhibitors (ICIs) has been amassive obstacle
to ICI treatment in metastatic urothelial carcinoma (MUC). Recently, increasing evidence
indicates the clinical importance of the association between hypoxia and immune status in
tumor patients. Therefore, it is necessary to investigate the relationship between hypoxia
and prognosis in metastatic urothelial carcinoma.

Methods: Transcriptomic and clinical data from 348 MUC patients who underwent ICI
treatment from a large phase 2 trial (IMvigor210) were investigated in this study. The cohort
was randomly divided into two datasets, a training set (n � 213) and a testing set (n � 135).
Data of hypoxia-related genes were downloaded from the molecular signatures database
(MSigDB), and screened by univariate and multivariate Cox regression analysis to
construct a prognosis-predictive model. The robustness of the model was evaluated in
two melanoma cohorts. Furthermore, an external validation cohort, the bladder cancer
cohort, from the Cancer Genome Atlas (TCGA) database, was t used to explore the
mechanism of gene mutation, immune cell infiltration, signaling pathway enrichment, and
drug sensitivity.

Results:We categorized patients as the high- or low- risk group using a four-gene hypoxia
risk model which we constructed. It was found that patients with high-risk scores had
significantly worse overall survival (OS) compared with those with low-risk scores. The
prognostic model covers 0.71 of the area under the ROC curve in the training set and 0.59
in the testing set, which is better than the survival prediction of MUC patients using the
clinical characteristics. Mutation analysis results showed that deletion mutations in RB1,
TP53, TSC1 and KDM6A were correlated with hypoxic status. Immune cell infiltration
analysis illustrated that the infiltration T cells, B cells, Treg cells, and macrophages was
correlated with hypoxia. Functional enrichment analysis revealed that a hypoxic
microenvironment activated inflammatory pathways, glucose metabolism pathways,
and immune-related pathways.

Conclusion: In this investigation, a four-gene hypoxia risk model was developed to
evaluate the degree of hypoxia and prognosis of ICI treatment, which showed a promising
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clinical prediction value in MUC. Furthermore, the hypoxia risk model revealed a close
relationship between hypoxia and the tumor immune microenvironment.

Keywords: metastatic urothelial carcinoma, prognosis model, immune checkpoint inhibitors, hypoxia, immune
microenvironment

INTRODUCTION

Metastatic urothelial carcinoma (MUC) is a commonmalignancy
which occurs in the urothelial organs of the urinary system
(Humphrey et al., 2016; Moch et al., 2016). According to a
Global Data survey, bladder cancer ranks as the 10th most
common cancer in the world, and it is four times more
common in males than females (Bray et al., 2018). At present,
platinum-based chemotherapy is the first-line treatment for
patients with metastatic urothelial carcinoma (Flaig et al.,
2020; Witjes et al., 2021). However, it is not uncommon for
chemotherapy to fail or for a positive treatment response to only
be short term (Koshkin and Grivas, 2018). Therefore, in recent
years, new focus has been given to developing treatments that use
immune checkpoint inhibitors (ICIs).

At present, some known immune checkpoint inhibitors,
including antibodies against cytotoxic T lymphocyte associated
protein 4 (CTLA-4) as well as programmed cell death 1 (PD-1)
receptor and its ligand (PD-L1), have displayed promising
efficacy in metastatic urothelial carcinoma (MUC) (Darvin
et al., 2018; Bagchi et al., 2021). According to the 2020
guidelines of the European Association of Urology (EAU),
pembrolizumab and atezolizumab have become the first-line
treatment option for locally advanced or metastatic urothelial
carcinoma after failure of platinum chemotherapy (Witjes et al.,
2021). In a phase III clinical trial involving 542 patients with
advanced MUC after platinum chemotherapy, KEYNOTE-045
showed that the median overall survival (mOS) of the
pembrolizumab group was longer than that of the second-line
chemotherapy group by 3 months (10.3 vs 7.4 months; p � 0.002)
(Bellmunt et al., 2017). Long term results from the same phase III
trial (>2-year follow-up) indicated that pembrolizumab had
longer 1-year and 2-year overall survival (OS) results than
chemotherapy (Fradet et al., 2019). However, only part of the
population can benefit from immunotherapy. In a phase II,
multicenter, uncontrolled trial of nivolumab for platinum-
resistant advanced urothelial carcinoma, the objective response
rate was 19.6% in 265 patients (Sharma et al., 2017; Powles et al.,
2018). A single-arm phase II trial evaluated the efficacy of
pembrolizumab as the first-line treatment in 370 patients with
advanced urothelial carcinoma who were not suitable for cisplatin
based therapy. Only 5% of patients achieved complete remission
(Balar et al., 2017). Thus, exploring the mechanism of
immunosuppressant in patients with metastatic urothelial
carcinoma and seeking accurate predictive biomarkers is
warranted.

Due to the rapid growth and abnormal proliferation of solid
tumors, inadequate oxygen supply causes the tumor
microenvironment to experience uneven blood distribution
and immunosuppression (Choudhry and Harris, 2018;

Krzywinska and Stockmann, 2018). Furthermore, the hypoxic
microenvironment of the tumor prevents adequate oxidation of
glucose, promotes tumor cells to derive energy not only from
oxidative phosphorylation but also from glycolysis, and results in
the accumulation of lactic acid and adenosine, that lead to
abnormal T cell ratio and T cell dysfunction (Beavis et al.,
2015). A growing number of studies have revealed that the
hypoxic microenvironment reduces the stimulation of T cells,
increase the recruitment of immunosuppressive cells such as
regulatory T (Treg) cells, and reduce the mobility of antigen-
presenting cells, monocytes, and dendritic cells (Ohta, 2016; Yuen
and Wong, 2020). Another study suggests that poor prognosis
caused by the immune-desert-type colon cancer may be
associated with tumor hypoxia (Craig et al., 2020). However,
there is a lack of research focused on hypoxic microenvironments
in immunotherapy for patients with MUC.

In this study, we constructed a prognostic risk model to
evaluate the impact of hypoxia on the efficacy of immune
checkpoint inhibitor (ICI) therapy in patients with MUC. In
addition, we explore the possible mechanisms of hypoxic
microenvironments and the efficacy of ICI in patients with
MUC by looking at biological markers, tumor immune typing,
gene mutation, and immune microenvironment.

METHODS

Data Collection and Preprocessing
Genomic, transcriptomic, and clinical data of patients with
metastatic urothelial carcinoma treated with an anti-PD-L1
drug (Atezolizumab) were downloaded from a study
conducted by Mariathasan et al. (2018). We split the data into
a training set and a testing set, with 60% of samples for the
training set, and the remaining 40% of samples for the testing set
according to hierarchical random grouping. These groupings
were used to construct and evaluate the prognostic model for
risk of oxygen deficiency. From the Memorial Sloan Kettering
Cancer Center (MSKCC) database, a cohort of cutaneous skin
melanoma (MSKCC skcm) patients receiving anti-CTLA-4
immunotherapy was recorded in the data published by
Samstein et al. (Snyder et al., 2014). We also downloaded the
transcriptomic data for PD-1 treatment in the GSE78220 data set
from the Gene Expression Omnibus (GEO) database (Hugo et al.,
2016) to further analyze the prognostic effect of the hypoxia
risk model.

The “TCGAbiolinks” R package (Colaprico et al., 2016) was
used to download the TCGA BLCA bladder cancer data set (n �
412) from The Cancer Genome Atlas (TCGA) database. This data
set included clinical information, genomic data, and
transcriptomic data. Patients with metastatic urothelial
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carcinoma were extracted for subsequent analysis (Cancer
Genome Atlas Research, 2014; Robertson et al., 2017). The
GSE120736 bladder cancer data set was downloaded from the
GEO database to analyze the immune microenvironment.

We downloaded the GSE158632 dataset from the GEO
database for subsequent functional validation analysis
(Nersisyan et al., 2021). The GSE158632 dataset provides
high-throughput sequencing data of 18 samples of Caco-2 and
HT-29 cells, nine from the CACO-2 cell lines and nine from the
HT-29 cell lines. Each cell line contains nine samples, among
them, three samples are control groups and the other six samples
are hypoxia groups.

Identification of Hypoxia-Related Genes
Impacting Prognosis and Construction of
the Risk Prognostic Model
We collected the hallmark gene sets (Liberzon et al., 2011) from the
molecular signatures database (MSigDB) (Liberzon et al., 2015). The
single sample pathway enrichment (ssGSEA) score of the Hallmark
gene sets of all samples in the MUC cohort was calculated using the
“GSVA”R package (Hänzelmann et al., 2013). The relationship of the
ssGSEA score of Hallmark gene sets and ICI efficacy and survival was
analyzed using the “LIMMA” and “survival” and “survimner” R
packages. Then, the “survival” (https://github.com/therneau/survival)
and “survminer” (https://rpkgs.datanovia.com/survminer/) R
packages were used to identify genes related to overall survival in
the hypoxia gene sets in the MUC cohort. Based on the 44 genes
screened as previously described, we established a four-gene hypoxia
risk score model for risk stratification using univariate and
multivariate Cox regression for the MUC training set.

Risk score � ∑
n

n�1
(coefficientpgene expression)

where N � 4, gene expression was the expression value of hypoxia
genes, and the coefficient was the corresponding multivariable
Cox regression coefficient.

A Kaplan–Meier survival analysis and the log-rank test were
performed to evaluate the difference of patient survival time.
According to median overall survival, patients with metastatic
urothelial carcinoma were divided into two groups. Patients with
melanoma were grouped into two groups according to the best
cutoff point calculated by the function “surv_cutpoint” of the
“survminer” R package. The receiver operating characteristic
(ROC) curve was used to analyze the sensitivity and specificity
in the MUC training and testing sets.

Analysis of Driver Gene Mutation
A list of driver genes was taken from the cancer gene census (CGC)
database, and panoramic maps of driver gene mutations were
generated by “ComplexHeatmap” R package (Gu et al., 2016) for
the MUC training set, MUC testing set, and TCGA BLCA set. The
top 20 driver genes were selected for the MUC training set and the
MUC testing set. As for the TCGA BLCA queue, we selected the top
20 driver genes and the other top 20 driver genes in the two queues of
MUC to analyze. The “Maftools” R package (Mayakonda et al.,

2018) was used for mutual exclusion analysis of the driver mutation
genes in the above cohorts.

Analysis of the Immune Microenvironment
Gene length was calculated using the
“TxDb.Hsapiens.UCSC.hg38.knownGene” (https://bioconductor.
org/packages/) R package. Raw count gene expression data of the
MUC and TCGA BLCA data set and the GSE120736 data set were
standardized and converted into the transcripts per million (TPM)
data format. The “xCell” R package was utilized to evaluate the
infiltration abundance of immune cells in the tumor
microenvironment (TME) (Aran et al., 2017). Differences were
considered significant with a p-value less than 0.05. Differential
expression analysis in immune-related genes between the MUC
and TCGA BLCA data sets was performed using the “LIMMA” R
package (Ritchie et al., 2015). The list of immune gene sets was
sourced from research by Thorsson et al. (2018) andHao et al. (2018).

Pathway Enrichment Analysis
The “clusterProfiler” R package (Yu et al., 2012) was used to conduct
gene ontology (GO) analysis (|logFC > 0|, p 0.05) as well as gene set
enrichment analysis (GSEA) (Subramanian et al., 2005) (|logFC >
0|). Gene sets for GSEA enrichment analysis were downloaded from
the Hallmark gene sets (H), curated gene sets (C2), and ontology
gene sets (C5) in the molecular signatures database (MSigDB).

Statistical Analysis
Overall survival was estimated using the Kaplan–Meier method, and
the difference between the high- and low- risk groups was examined
using log-rank test in each data set. The association of risk scores
with tumor mutational burden (TMB) and tumor neoantigen
burden (TNB) was analyzed using Pearson correlation analysis.
Wilcoxon’s test was used to test the risk score difference between
TCGA phenotype and immune phenotype. The risk scores were
then compared between the immune phenotypes through Kruskal-
Wallis test. Associations between risk scores and ICI efficacy or
driver gene mutation frequency were assessed, using Fisher’s exact
test. The “LIMMA” R package was used to analyze the differential
genes in the high- and low- risk score groups (p < 0.05). All analyses
were performed using R software (v4.0.5), and the p-value was
bilateral.

RESULTS

Establishment of the Hypoxia Signature
Model
To investigate the role of hypoxia in ICI treatment, we calculated
ssGSEA scores of the 50 pathways set from the GSEAHallmark gene
set. We found that genes in the hypoxia pathway was upregulated in
patients without response (p < 0.05, Figure 1A). Meanwhile, results
of univariate Cox regression revealed that high score of hypoxia
ssGSEA was correlated with poor prognosis in patients with MUC
(p � 0.00049, HR � 18, 95% CI � 3.6–95, Figure 1B). Kaplan-Meier
survival curves, illustrated that patients with poor prognosis had high
expression of hypoxia signature genes (log-rank p � 0.0013, HR �
1.52, 95% CI � 1.17–1.97, Figure 1C). Univariate analysis identified
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forty-four genes significantly related to overall survival in the
Hallmark hypoxia gene set as potential prognostic factors for
further analysis (Supplementary Figure S1B). Next, four hypoxia
genes, including TKTL1, JMJD6, IRS2 and ANXA2, were identified
as independent prognostic factors for OS by multivariate analysis
(Figure 1E). These identified prognostic factors were applied as basic
indexes in the novel prognostic model. Finally, we developed a
hypoxia risk score model to predict OS based on a low-risk hypoxia
gene (TKTL1) and three high-risk genes (JMJD6, IRS2, ANXA2)
(Figures 1F–I).

Validation of the Hypoxia Risk Prognostic
Model
To further evaluate the performance of the hypoxia model, we
compared our hypoxia prognostic model with the routine clinical
prognostic characteristics to ascertain whether our risk
assessment model was a feasible prognostic tool for MUC
patients. We subjected the predictor variables of hypoxia risk
score, clinical signatures, TMB, and TNB of patients in the MUC
training set to univariate Cox regression analyses. It was found
that three factors, including hypoxia risk score, TMB, and TNB,

FIGURE 1 | The expression of hypoxia microenvironment in metastatic urothelial carcinoma (mUC). (A) Histogram showed that the ssGSEA score of the Hallmark
pathway set was different in CR/PR vs PD/SD patients (logFC < 0, p < 0.05). (B) The enrichment scores of hypoxia gene set were different in forest map. (C) KM curve
showed that patients with high score of hypoxia gene set had poor OS (log rank p < 0.05). (D) The gene in each data set was shown by Wayne map. The forest map
shows the genes and coefficients of risk score.
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FIGURE 2 | Evaluation of hypoxia risk prognosis model. (A,B) shows the results of a univariate Cox regression and multivariate Cox regression showed that risk
score was an independent prognostic factor for patients with mUC treated by ICIs. (C,D) Risk curve showed the relationship between gene expression, hypoxia risk
score and survival. (E,H) Kaplan Meier curve showed that the high scores of hypoxia risk were associated with poor prognosis in MUC training set, testing set, MSKCC
skcm and GSE78220 data sets. (I,L) ROC curve evaluated the AUC values of risk score, TMB and TNB in the training set and testing set queue, and the training set
had better prediction effect (AUC � 0.71). ROC curve was used to evaluate the AUC value of risk score predicting 1-year and 3-year survival rate in the training set and
testing set cohort.
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were significant (p-value < 0.05) (Figure 2A). Next, we found that
the hypoxia risk scores (HR � 2.75, 95% CI � 1.683–4.306, p <
0.001) and TNB (HR � 0.73,95% CI � 0.571–0.982, p � 0.0364)
(Figure 2B) were independent predictors for ICIs treatment

efficacy in patients with MUC. Collectively, the above results
indicated that the hypoxia risk score model was a favorable
predictor of ICIs treatment efficacy (HR � 2.692, 95% CI �
1.683–4.306, p < 0.001).

FIGURE 3 | The interations of clinical features in MUC and hypoxia risk score. (A) The stacked histogram showed that the number of non-responders to ICI in the
MUC Training set high risk score subgroup was higher than that in the low score subgroup. (B,C) Kaplan Meier curve showed the survival results of the joint analysis of
MUC Training set risk score with TMB and TNB. (D) Box plot showed that the PD-L1 expression in tumor cells of the MUC training set. PD-L1 was higher in tumor cells
with high hypoxia risk score. (E) Histogram showed that the number of non-responders to ICI in the MUC testing set high risk score subgroup was higher than that
in the low score subgroup. (F,G) KM curve showed the survival results of risk score combined with TMB and TNB in the MUC testing set. (H) Box plot showed the
expression of risk score and PD-L1 in tumor cells of the MUC testing set. There was no significant difference in the expression level of risk score among different PD-L1
expression levels. (I–K) Violin diagram shows the distribution of MUC training set, MUC testing set and TCGA BLCA risk score in TCGA molecular subtypes. The results
showed that the risk score of TCGA III was higher than that of other types. The distribution of the MUC training set, MUC testing set and TCGA BLCA risk score in
immunophenotyping was shown by violin diagram.
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The training and testing set risk curves (Figures 2C,D) also
confirmed the accuracy of the model. Patients were categorized
into the high- and low-risk groups according to the median
hypoxia risk score, and analyzed with Kaplan–Meier survival
curves. As shown in Figures 2E,F, patients with high-risk
scores had shorter overall survival time than those with low-
risk scores (log-rank p < 0.0001, HR � 2.11, 95% CI �
1.51–2.95; log-rank p < 0.0001, HR � 2.11, 95% CI �
1.51–2.95; p <0.0001; log-rank p � 0.019, HR � 1.62, 95%
CI � 1.07–2.45). Although no significant difference was
observed across groups in the MSKCC skcm cohort treated
with anti-CTLA-4 drug or the GSE78220 melanoma treated
with anti-PD-1 drug, patients with high prognostic scores
showed a tendency of short-term OS (Figures 2G,H).

The area under the ROC curve (AUC) of three independent
prognostic factors: hypoxia risk score, TMB, and TNB, was
calculated to evaluate the efficacy of the prediction model. The
area under the curve (AUC) for the hypoxia-basedmodel (AUC �
0.71) was higher than that of both the TMB and TNB based
prediction (AUC � 0.33, 0.33) in the MUC training set. Similar
tendencies were observed in the testing group, in which the areas
under the curve (AUC) of hypoxia risk score, TMB, and TNB
were 0.59, 0.37 and 0.29, respectively (Figures 2I,J). Furthermore,
we found that the hypoxia risk score model had the best
predictive value at 3 years (training set: 1-year AUC � 0.707,
3-year AUC � 0.722, Figure 2K; test set: 1-year AUC � 0.547, 3-
year AUC � 0.574, Figure 2L).

Prognostic Model and Clinical Features of
Hypoxia Risk
Next, we evaluated the possible associations between hypoxia scores
and clinical characteristics. We investigated the relationship among
the following indicators: hypoxia scores, immunotherapy efficacy,
PD-L1 expression level on the tumor surface, PD-L1 expression level
in immune cells, immunogenicity related factors, TCGA molecular
phenotype, and tumor immune phenotype.

As shown in Figure 3, patients with high-risk scores had an
inadequate response to anti-PD-L1 inhibitors (p � 0.000047,
Figure 3A). Despite no statistical difference in the testing set,
patients with high-risk scores illustrated a trend of poor response
to ICI treatment (p � 0.37, Figure 3B). We further performed
survival analysis on hypoxia risk scores, TMB, and TNB, to
explore the relationship between the survival rate and
prediction factors that may affect the efficacy of ICIs. We
found that high-TMB and low-risk score patients have longer
OS (paired log rank test p � 0.00000067). Significantly increased
OS was observed in high-TNB and low-risk patients compared
with low-TNB and high-risk patients (paired log-rank test p �
0.00074, Figures 3B,C). In the MUC testing set, the high-TMB
and low-risk group showed a similar trend of association with OS
in the training set (paired log-rank test p � 0.055). Additionally,
patients with high TNB and a low hypoxia risk score had longer
OS (paired log-rank test, p � 0.046, Figures 3F,G). These results
suggest that the risk score of hypoxia combined with
characteristics of tumor immunogenicity are good predictors
of survival and the efficacy of anti-PD-L1 inhibitors.

According to previous studies, the MUC cohort was divided
into three grades according to the results of the PD-L1
immunohistochemical staining of tumor cells. TC0 indicated
that the level of PD-L1 was lower than 1%, TC1 was between
1 and 5%, and TC2+ was more than 5%. The results showed that
the hypoxia risk score of TC2+ was significantly higher than that
of TC0 (Figure 3D). However, in the MUC testing set, there was
no significant difference in the hypoxia risk score at different TC
levels (Figure 3H). Based on the results of immune cell PD-L1
staining, the MUC cohort was also divided into three grades. IC0
indicated that the PD-L1 level was lower than 1%, IC1 indicated
that the PD-L1 expression level was between 1 and 5%, and IC2+
indicated that the PD-L1 expression level was more than 5%.
There was no significant difference in PD-L1 expression between
the MUC training set and the testing set on hypoxia risk scores
(Supplementary Figures S3C,F).

In a study by Thorson et al. (Ritchie et al., 2015), the TCGA
BLCA data set was classified into six subtypes according to
tumor molecular characteristics. These were C1 (wounding
healing) and C2 (IFN-γ Dominant), C3 (Inflammatory), C4
(Lymphocyte Depleted), C5 (Immunologically Quiet), and C6
(TGF-βDominant). The results show that the risk scores of
hypoxia for the C2 type are the highest among all immune
subtypes (Figure 3J). The TCGA phenotype is based on the
TCGA molecular phenotype of bladder cancer (Cancer
Genome Atlas Research, 2014). We observed that the
TCGA type III (basic/square-like) had a high hypoxia risk
score, and overexpression of KRT14 and KRT5 proteins
(Figures 3I,K).

Hypoxia Risk Prognostic Model, Gene
Mutation, Co-Occurrence and Mutual
Exclusion Analysis of Mutated Genes
Previous studies have shown that the chronic hypoxic
microenvironment reduces DNA repair ability and impairs the
DNA repair system. Therefore, we further distinguish the
function of hypoxic microenvironment on gene mutations in
metastatic urothelial carcinoma (Figures 4A–C). In the MUC
training set, TERT (64 vs 65%) and TP53 (49 vs 51%) were in the
high- and low- risk groups, among which TERT and TP53 were
known to have short mutations as the major mutation. The
mutation frequencies of ARID1A, KDM6A, FGFR3, and Rb1
were low in the subgroup with high-risk scores. Notably, there
was no significant difference in the mutation frequency of these
genes in any group.

In the MUC testing set, TERT (70 vs 60%) and TP53 (49 vs
57%) had high frequencies of known short mutations in both the
high-risk and low-risk subgroups. However, in contrast to the
MUC training group, the mutation frequency of ARID1A,
KDM6A, and Rb1 was higher in the subgroup with high-risk
scores. There was no significant difference in the mutation
frequency of these genes in any group. In the TCGA BLCA
cohort, Rb1, KDM6A, and FGFR3 showed significant differences
in mutation frequency among the hypoxia risk groups. The high-
risk group had a higher mutation frequency of Rb1 (26%) than
that of the low-risk subgroup (11%), whereas the high-risk group
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FIGURE 4 | Panoramic view of metastatic urothelial carcinoma and TCGA BLCA mutation gene, gene co mutation and mutual exclusion analysis. (A) Panoramic
view of the top20 driving gene mutation of the MUC training set. (B) Panorama of top20 driving gene mutation of the MUC testing set. (C) Panorama of top driving gene
mutation in the TCGA BLCA cohort.
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had lower mutation frequencies of KDM6A (22%) and FGFR3
(10%) than that of the low-risk subgroup.

Diagrams of mutation genes with computation and mutual
exclusion analysis (Supplementary Figures S4A–C) show
the results of three clinical cohorts. In the high-risk MUC
training set, RB1 and TP53, ERB2 and TSC1, Rb1 and
ARID1A had co-mutations. In the low-risk set, TP53 was
mutable with FGFR3 and CDKN2A, TSC1 and EP300, Rb1
and ERBB2, PIK3CA and STAG2. In the TCGA BLCA data
set with high hypoxia risk scores, Rb1 and TP53, KDM6A,

and FGFR3 had co-mutations. TP53 and FGFR3 had
mutually exclusive mutations. In the TCGA BLCA cohort
with low hypoxia risk scores, Rb1 showed co-mutation with
TP53 and ARID1A, and Rb1 had a mutually exclusive
mutation with FGFR3.

Immune Correlation Analysis
Some studies suggest that a hypoxic microenvironment might
affect the activation of infiltrating immune cells and the immune
response of tumor cells. Therefore, we examined the possible

FIGURE 5 | Changes of immune components in tumor hypoxia microenvironment. (A–D) Diagram shows the immune microenvironment infiltration score of the
training set, testing set, TCGA BLCA and GSE120736 datasets in metastatic urothelial carcinoma. The figure shows the immune cells with statistical difference in the
analysis results (p < 0.05), and the results show that T cells, B cells, macrophages, and Treg cells were more infiltrated in the high hypoxia risk score subgroup. (CD4 +
Tcm: CD4+ central memory T cells, CD8 + Tcm: CD8+ central memory T cells, NKT: natural killer T cells).
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FIGURE 6 | The results of GSEA analysis of risk score group. (A,B) Histogram showed the enrichment of up-regulated genes (p < 0.05, logFC > 0) and down
regulated genes (p < 0.05, logfc < 0) in the top15 pathways of the GO gene set (p < 0.05, logFC < 0). The pathways were mainly the intercellular and hypoxia related
pathways. (C,D) Results of GSEA analysis on inflammatory pathway, immune pathway, glucose metabolism and lipid metabolism in metastatic urothelial carcinoma
(FigC) and TCGA BLCA (FigD) cohort (p < 0.05).
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FIGURE 7 | Results of drug sensitivity analysis of GDSC and CMAP. (A) Thermogram showed the small molecule drugs in the CMAP analysis results. Blue means
that the cell expression profile treated with the small molecule drugs has similar effect with the low hypoxia score subgroup, and red represents that the effect of the cell
expression profile treated with the small molecule drugs is similar to that of the high hypoxia score subgroup (|score| > � 60). (B) The drug molecular mechanism of small
molecule drugs according to the above CMAP results.
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associations between hypoxia and immune microenvironment.
We used the xCell method to calculate the infiltration of immune
cell components in the training set, testing set, TCGA BLCA
cohort, and GSE120736 cohort downloaded from the GEO
database.

As is shown in Figure 5, we found that the number of CD4+

T cells was higher in the high-risk subgroup than in the low-risk
subgroup. And the immunosuppression-related cells, such as
Treg cells and macrophages, were significantly higher in the
high-risk subgroup than in the low-risk subgroup, whereas the
immune cell scores tended to be lower in the high-risk subgroup.
In the MUC training set, the high-risk subgroup showed high
immune cell infiltration scores in the following cell types: Treg
cells, Th2 cells, macrophages, macrophages M1, macrophages
M2, CD4+ T cells, CD4+ central memory T cells (CD4 + Tcm). In
contrast, naive B cells, CD8+ T cells, and CD8+ central memory
T cells (CD8 + Tcm) remained at a relatively low level in the high-
risk subgroup.

In the TCGA BLCA cohort, significantly decreased expression
of naive CD4+ T cells, CD4+ central memory T cells (CD4 +
Tcm), and naive CD8+ T cells was observed in the high-risk
subgroup, while the expression of CD8 T cells, CD8+ central
memory T cells (CD8 + Tcm), Th2 cells, and macrophages M1
tended to be low in the low-risk subgroup. In the GSE120736
bladder cancer cohort, B cells and CD4+ central memory T cells
(CD4 + Tcm) were lower in the high-risk subgroup than in the
low-risk subgroup. In comparison, the number of natural killer T
(NKT) cells was high in the high hypoxia risk score subgroup
(Figures 5A–D). The differentially expressed genes were HLA-
DPA1, HLA-DPA2, BTN3A2, GZMA, CD27, PDCD1, and
TIGIT (Supplementary Figure S5A).

GSEA Analysis and Functional Verification
Next, we performed Gene Ontology (GO) analysis and GSEA
analysis to elucidate the biochemical functions. We selected
differentially expressed genes (DEGs) in the high-risk groups
compared with low-risk groups (p < 0.05, logFC > 0) for a GO
pathway enrichment analysis. In terms of the top15 GO
pathways, the high-risk subgroup was mainly concentrated in
the extracellular matrix remodeling related pathways
(Figures 6A,B).

To gain further insight into the potential mechanisms, we used
GSEA to explore the relationship between hypoxia
microenvironment and lipid metabolism, glucose metabolism,
and immune pathways. In terms of metabolic pathways, the genes
of the high-risk subgroup were mainly enriched in the glucose
metabolism-related pathway. Meanwhile, the genes of the low-
risk subgroup were mainly concentrated in lipid metabolism-
related pathways. T cells, macrophages, and NK cells were
significantly enriched in the high-risk subgroup in the
immune process-related pathways but not in the low-risk
subgroup. Meanwhile, inflammation-related pathways were
enriched considerably in the high-risk subgroup (Figures 6C,D).

To further verify the associated signaling pathways activated in
hypoxia microenvironment, we downloaded the GSE158632
dataset and classified six samples from the hypoxia group into
the high-risk group and the other three samples from the control

group into the low-risk group. Then, we performed GO analysis
comparing the high- and low-risk groups. As is shown in
Supplementary Figures S8A,C, RNA and mRNA catabolic
processes were activated under hypoxia in the CACO2 cell
line. Similarly, the GO analysis demonstrated that the hypoxia
microenvironment was significantly associated with cellular
response to topologically incorrect protein and regulation of
autophagy in the HT29 cell line. These results indicated that
the low level of oxygen during hypoxic conditions leading to
increased abnormal protein expression and cell membrane
instability of tumor cells.

Next, we calculated the activation degree of the glucose metabolic
pathway through the GSEA algorithm to verify the role of glucose
metabolism in the hypoxic tumor microenvironment. Pathway
enrichment analysis indicated that glucose catabolic pathway was
significantly enriched under hypoxic microenvironment both in the
CACO2 and HT29 cell lines. This result was in consistent to a
previous study from Denko (2008). Immune-related genes were
reported to orchestrate tumor-associated immune responses;
therefore, we further investigated the differences in the expression
of immune-related genes. As is shown in Supplementary Figure
S8G, the expression of immune-related genes ACTN4, TMBIM6,
DAZAP2 and CAMTA1 were significantly up-regulated in the
hypoxic groups.

Drug Sensitivity Analysis
To explore the drug sensitivity using our hypoxia risk
stratification system, we conducted a drug sensitivity analysis
of 138 small and medium molecular drugs through the GDSC
database. Clinically, cisplatin, gemcitabine, and methotrexate are
commonly used for chemotherapy in urothelial carcinoma. These
drugs did not show superior drug sensitivity in the subgroup with
high hypoxia scores (p > 0.05) (Supplementary Figure S1D).

We also used CMAP to analyze the similarities in gene expression
profiles between other drugs and theMUChypoxia risk score group.
The results show that protein synthesis inhibitor, bacterial cell wall
synthesis inhibitor, farnesyltransferase inhibitor, glycogen synthase
kinase inhibitor, and HSP inhibitor were effective in patients with a
high hypoxia score. These drugs may reverse the hypoxia
microenvironment of patients and changing it into a state of
mild hypoxia.

DISCUSSION

Metastatic urothelial carcinoma usually responds poorly to
treatment with immunosuppressive agents. In this study, we
speculate that the insensitivity of some MUCs to ICI may be
related to the hypoxic microenvironment. Therefore, we screened
the hypoxia-related genes to construct a risk model to evaluate
hypoxia microenvironment and predict the survival of patients
with MUC undergoing ICI treatment. We constructed a hypoxia
risk prognostic model based on four hypoxia-related genes
(TKTL1, JMJD6, IRS2, ANXA2) through multivariate Cox
regression analysis. TKTL1 was negatively correlated with
survival rate, while JMJD6, IRS2 and ANXA2 showed a
positive correlation. The robustness of the proposed model
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was evaluated on multiple cohorts. The results showed that the
model effectively identified distinct subgroups with different
hypoxia risk, indicating that high hypoxia was correlated with
poor prognosis. Simultaneously, the potential mechanisms of
action were determined by multi-omics studies.

We found that TP53, Rb1, KDM6A, and TSC1 experience
mutational inactivation in a hypoxic microenvironment by
analyzing the mutations of driver genes. TP53 is a known
tumor suppressor gene and expresses p53 protein to regulate
the DNA repair system in cells under normal conditions (Zhang
and Zhang, 2015). Rb1 is a known tumor suppressor gene that
regulates cell cycle (Dyson, 2016). Arakawa et al. found that Rb1
mutational inactivation may cause lung cancer resistance to PD-1
inhibitors (Arakawa et al., 2021). Our study found that Rb1 and
TP53 co-mutate in a hypoxic microenvironment, suggesting that
Rb1 and TP53 mutational inactivation may cause tumor
resistance to ICIs in a hypoxic microenvironment (Ku et al.,
2017). KDM6A belongs to the KDM6 family of histone H3 lysine
27 (H3K27) demethylases. KDM6A deletion mutation induce a
repressive H3K27 demethylation state and block differentiation
(Chakraborty et al., 2019). Yuichiro et al. (Itoh et al., 2019) found
that a KDM6A deletionmutation resulted in the activation of Th1
and Th2 cell pathways and the down regulation of an
inflammatory response in CD4+ T cells, which is likely to
contribute to a pro-tumor microenvironment. Thus, we
consider that a hypoxic microenvironment may promotes the
formation of KDM6A deletion mutation, enhancing the
differentiation of immunosuppressive cells, and ultimately
results in immunological resistance and poor prognosis. Our
mutation analysis also found that KDM6A and FGFR3 have co-
occurrence, suggesting that both may lead to immune
resistance. The protein encoded by TSC1 and TSC2
constitutes tuberous sclerosis (TSC) complex, which
negatively impacts the regulation of mTOR activity, and
participates in the functional regulation of macrophages
(Yang et al., 2011; Yang et al., 2013). Meanwhile, tumor-
associated macrophages tend to differentiate into M2 type
and inhibit immune response in a hypoxic microenvironment
(Samanta and Semenza, 2018). Therefore, unique driver gene
mutations in a hypoxic microenvironment may enhance the
ability of tumor cells to escape being killed by immune cells or
affect the function of immune-related cells. This may lead to a
poor response to immunosuppressive therapy.

The hypoxia microenvironment facilitates glucose uptake in
malignant tumor cells, therefore affects the functions of some of
the most important immunologically active cells, especially the
recognition and clearance functions of T cells. We found that the
infiltration of CD4+ T cells inMUCwas slightly higher than in the
high-risk subgroup. Treg cells, macrophages, and Th2 cells play
an inhibitory role in ICI treatment, also have a higher infiltration
degree in the high-risk subset (Gajewski et al., 2013; Samanta and
Semenza, 2018). The research of Chang et al. (2015) shows that
tumor cells compete with T cells for glucose in a mouse model,
and the ability of tumor cells to utilize glucose for energy is more
potent than that of T cells, which results in the inhibition of
nutritional metabolism in T cells. Hypoxia increases the
activation of glucose metabolism-related pathways as well as

the competitive uptake of glucose by tumor cells, which
promotes T cells to a unfavorable nutritional status and
inhibits T cells from carrying out their immune functions or
clearing out tumor cells. Additionally, the enhanced glycolysis
activity of tumor cells in a hypoxic environment leads to an acidic
microenvironment, which also affects the function of T cells
(Leone and Powell, 2020). The PDCD1 gene was up-regulated in
the high hypoxia risk subgroup. PDCD1 encodes PD-1 protein,
an essential protein on the surface of T cells (and other immune
cells) that recognizes abnormal cells. It has been found that in an
inflammatory environment, PD-1 protein is overexpressed on the
surface of T cells. This overexpression inhibits the expression of
PD-1 protein in T cells around the tumor and suppresses a T cell-
mediated immune response (Baumeister et al., 2016; Multhoff
and Vaupel, 2020). In addition, Nicole E. et al. established a
mouse model with a hypoxia microenvironment to observe
possible changes in T cells under hypoxic conditions
(Scharping et al., 2021). Their research confirmed that the
metabolic stress under hypoxia could accelerate the terminal
cell differentiation, increase reactive oxygen species (ROS)
level of T cells, and eventually cause severe T-cell dysfunction,
which further verified our conjecture.

One of the crucial mechanisms of tumor invasion and
metastasis mediated by a hypoxic microenvironment is the
degradation of fibrin and collagen (Ricard-Blum, 2011; Dragoš
and Kovács, 2017). The results of the GO analysis showed that
genes related to extracellular matrix remodeling exist in the
subgroup with a high hypoxia score. The destruction of
stromal cells can easily lead to abnormal differentiation and
malfunction of T cells, resulting in immunosuppression (Vito
et al., 2020). Therefore, we believe that hypoxia can promote the
decomposition and reconstruction of the matrix structure of
tumor cells. Additionally, it may inhibit the differentiation of
T cells into Th1 cells and promote the differentiation of T cells
into Treg cells, thus leading to immunosuppression (Schito and
Semenza, 2016).

Several limitations to the present study should be considered.
First, although we have included as many ICI treatment cohorts
as possible to verify the accuracy of the model, the sample size of
some cohort is small. In addition, the validation cohort used is
based on retrospective data, so the model needs to be further
validated in large-scale clinical studies. Finally, the theoretical
mechanisms need to be further verified by biological
experiments.

CONCLUSION

Our study establishes a novel four-gene risk stratification system
that could inform ICIs treatment response in urothelial
carcinoma with by evaluating hypoxic microenvironment. In
addition, we systematically explained the reasons for the poor
efficacy of ICI treatment in MUC with a hypoxic
microenvironment from the perspectives of genome,
transcriptome sequencing data, and the immune
microenvironment. The validation of our results and the
underlying mechanisms remain to be studied further.
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