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Introduction
The retina is considered a window to the body 
that provides insights beyond the eye when evalu-
ating the risk of systemic diseases.1,2 A thorough 
assessment of fundus features can lead to the 
early detection of different systemic conditions 
like cardiovascular diseases (CVDs), and neuro-
logical disorders, suggesting that retinal micro-
vascular abnormalities are markers or predictive 
indicators of CVD.3 For instance, arteriovenous 
nicking is associated with CVD mortality4 and 
stroke risk.5 Retinal hemorrhages, cotton wool 
spots, and microaneurysms are also associated 
with incident risk of stroke.5 Tortuosity is associ-
ated with the risk of death from ischemic heart 
disease.6 For a long time, researchers have 
explained these relationships largely depending 

on observable and classifiable features of the ret-
ina using fundus images. Manual assessment of 
fundus images to make systemic disease risk 
determinations often requires adequate expertise 
and is a tedious exercise to complete. On the 
other hand, automated fundus image analysis 
using deep learning (DL) systems may help to 
reduce practitioners’ need to manually look for 
retinal features to predict risk for systemic 
diseases.1,7

DL is one of the methods of artificial intelligence 
(AI) that focuses on computation systems’ ability 
to learn and recognize predictive features 
acquired digitally by sensors. A DL model uses 
multilayered neural network architecture to learn 
the desired features by itself without the need for 
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outside manipulation, that is, manually inputting 
other relevant features. The neural networks 
repeatedly adjust their parameters to improve the 
learning performance, meaning that a DL algo-
rithm has discriminative abilities comparable to 
human beings and the potential to improve our 
predictive and analytic accuracy of systemic dis-
ease risk. For retinal imaging tasks in ophthal-
mology, convolutional neural networks (CNN) 
are the most commonly used DL networks.8 
Different studies have applied DL systems in the 
last decade and successfully screened or detected 
ocular conditions such as diabetic retinopathy, 
age-related macular degeneration, and glaucoma 
from fundus images.9 The wide availability of 
fundus cameras that are easy to use, store and 
transfer data has provided an opportunity to cre-
ate datasets or fundus image repositories (i.e. 
UK Biobank) to train, validate and test DL sys-
tems, hence raising optimism for easy clinical 
integration. Recently, some researchers have 
extended this concept to CVDs noting that there 
is some information contained in a fundus image 
about CVD risk factors and major adverse car-
diac events (MACE) that can be leveraged for 
DL-fundus image related task. Though DL sys-
tems using fundus images cannot be applied con-
fidently in clinical settings to predict or detect 

systemic diseases at this stage in AI development, 
they show a promising future for innovative ways 
of disease management that require more 
research. This review summarizes recently pub-
lished studies and highlights ways in which the 
concept of DL applications on fundus images 
can be approached in managing CVD.

Review criteria
For this review, a literature search was conducted 
mainly in PubMed, Web of Science, and Google 
Scholar databases. We searched for studies using 
the following search terms, ‘artificial intelligence’, 
‘deep learning’, ‘fundus images’, ‘color fundus 
photography’, ‘eye’, and ‘cardiovascular diseases’. 
We also retrieved and reviewed related articles 
referenced in the identified articles. Except for 
the language to which we only included studies 
published in English, we applied no filter for the 
type of study and year of publication. However, 
for studies applying DL to predict, assess or diag-
nose systemic conditions, risk factors or biomark-
ers, particular interest was placed on those 
published in the last 5 years through 2022. A total 
of 19 studies published in the last 5 years were 
considered as the main references for this review, 
the details are summarized in Table 1.

Table 1.  Summary of included DL CVD-related studies.

Study/
Category

Country /Year DL algorithm Dataset No.images Study factors Model performance

Prediction of risk factors

Poplin et al.10 United States of 
America/2018

Inception-v3 neural 
network architecture

UK Biobank (www.
ukbiobank.ac.uk) 
and EyePACS (www.
kaggle.com/c/
diabetic-retinopathy-
detection)

1,779,020 Age MAE = 3.26 years

Gender AUC = 0.97

Smoking status AUC = 0.71

SBP AUC = 0.70

MACE AUC = 0.70

Zhu et al.11 China/2022 Xception architecture UK Biobank 80,169 Age MAE = 3.55 years

Gerrits et al.12 Belgium/2020 MobileNet-V2 
architecture

Qatar Biobank subset 12,000 Age MAE = 2.78 years

Gender AUC = 0.96

Smoking status AUC = 0.71

SBP and DBP MAEs = 8.96 and 
6.84 mmHg

Vaghefi et al.13 New 
Zealand/2019

Inception-v3 
architecture

UoA-DR database 165,104 Smoking status AUC = 0.71

(Continued)
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Study/
Category

Country /Year DL algorithm Dataset No.images Study factors Model performance

Betzler et al.14 Singapore/2021 VGG-16 neural 
network architecture

SEED study 172,170 Gender AUC > 0.85

Korot et al.15 United 
Kingdom/2021

CNN UK Biobank and from 
the MEH (for external 
validation)

84,995 Gender AUC = 0.93

Rim et al.16 Singapore/2020 VGG16 neural network 
architecture

BES, SEED study, 
UK Biobank and two 
health screening 
centers in South 
Korea

236,257 47 different 
systemic 
biomarkers

Predicted 13 
biomarkers, 
AUC ⩾ 0.90

Zhang et al.17 China/2020 Inception-v3 model A cross-sectional 
study of chronic 
disease by the 
Xinxiang Medical 
University

1222 HTN AUC = 0.77

Hyperglycemia AUC = 0.88

Dyslipidemia AUC = 0.70

Estimating CVD biomarkers

Chang et al.18 South 
Korea/2020

CNN HPC-SNUH database 15,408 CAA AUC = 0.73, 
sensitivity = 0.89

Rim et al.19 Singapore/2021 EfficientNet UK Biobank, SEED 
study and health 
screening centers in 
South Korea

216,152 CAC AUC = 0.74

Son et al.20 South 
Korea/2020

CNN Inception-v3 
architecture

Health Screening 
Center at Seoul 
National University 
Bundang Hospital

44,184 CAC AUC = 0.83

Cheung et al.21 Singapore/2020 SIVA-DLS UK Biobank, SEED 
study, BES, KSH 
study, Austin health 
study, SP2, Dunedin 
study, HKCES, AHES, 
RICP study, IRED 
study, CUHK-STDR 
study, GUSTO study, 
SiDRP, CVD screening 
study

>70,000 Retinal 
vessel caliber 
measurement

CRAE measured 
by SIVA-DLS was 
associated with 
incident CVD

Fukutsu 
et al.22

Japan/2021 U-Net CNN 
architecture

DRIVE (http://
www.drive.grand-
challenge.org) and 
Hokudai dataset

142 Vascular area 
measurement

 

Predicting diseases associated with CVD

Sabanayagam 
et al. 23

Singapore/2020 cCondenseNet SEED study, SP2 and 
BES

12,970 CKD AUC = 0.91

Zhang et al.24 China/2021 CNNs with ResNet-50 CC-FII database 115,344 CKD AUC = 0.86

T2DM AUC = 0.83

Kang et al.25 China/2020 VGG-19 architecture CGMH database 25,706 CKD AUC > 0.81

Table 1.  (Continued)

(Continued)
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Study/
Category

Country /Year DL algorithm Dataset No.images Study factors Model performance

Dai et al.26 China/2020 Five-layer CNN 
architecture

Shenyang He Eye 
Hospital

2012 HTN AUC = 0.61

Yun et al.27 South 
Korea/2022

ResNet-18 UK Biobank 114,375 DM AUC > 0.73

Mitani et al.28 United States of 
America/2020

CNN Inception-v4 
architecture

UK Biobank 114,205 Anemia AUC = 0.88

AHES, Australian Heart Eye Study; AUC, area under receiver operating curve; BES, Beijing Eye Study; CAA, carotid artery atherosclerosis;  
CAC, coronary artery calcium; CC-FII, China Consortium of Fundus Image Investigation; CKD, chronic kidney disease; CNN, convolution neural 
network; CRAE, central retinal artery equivalent; CUHK-STDR, Chinese University of Hong Kong Sight-Threatening Diabetic Retinopathy; CVD, 
cardiovascular disease; DRIVE, Digital Retinal Images for Vessel Extraction; GUSTO, Growing Up in Singapore Toward Healthy Outcomes; HKCES, 
Hong Kong Children Eye Study; HPC-SNUH, Health Promotion Center of Seoul National University Hospital; HTN, hypertension; IRED, retinal 
imaging study in renal patients; KSH, Kangbuk Samsung Health; MACE, major adverse cardiac events; MAE, minimum absolute error; MEH, 
Moorfields Eye Hospital; RICP, retinal imaging in chest pain; SBP/DBP, systolic/diastolic blood pressure; SEED, Singapore Epidemiology of Eye 
Diseases; SiDRP, Singapore Integrated diabetic Retinopathy Program; SIVA-DLS, Singapore I vessel assessment – deep learning system; SP2, 
Singapore Prospective Study program; T2DM, type 2 diabetes; UoA-DR, University of Auckland Diabetic Retinopathy; VGG, Visual Geometry Group.

Table 1.  (Continued)

The rationale for new directions in CVD risk 
assessment
CVDs are responsible for more than 30% of all 
deaths globally.29 Efforts to prevent the occurrence 
of CVD events involve early identification of peo-
ple at increased risk to initiate appropriate inter-
ventions.30 To achieve this, healthcare providers 
have been using prediction models or calculators 
such as the Pooled Cohort equations,31 Systematic 
Coronary Risk Evaluation (SCORE),32,33 and 
Framingham34 for CVD stratification. The param-
eters for calculation are mainly risk factors derived 
from the patient’s history (i.e. gender, age, smok-
ing status, body mass index, presence of diabetes 
and hypertension)35 and the patient’s blood or 
urine samples. However, variations of CVD risk 
estimates exist among the models,31,36,37 possibly 
due to differences in calibration (i.e. selection of 
clinical endpoint and estimation period), databases 
used, and discriminative ability. That may result in 
the models predicting different CVD out-
comes.38–40 Furthermore, the assessment of pre-
dicting parameters may also be affected by other 
factors such as the unavailability of adequate 
resources, high costs of equipment, invasiveness of 
some of the sampling procedures, risk of infection 
during the sampling procedure, and that some 
sampling resources may be biohazardous.41 
Therefore, there is a need for newer and innovative 
ways to complement the current CVD risk assess-
ment tools, and DL analysis of fundus images is 
one of them.

DL and fundus image analysis approaches 
for CVD
This section shows evidence of DL applications 
using color fundus photography in predicting or 
detecting CVD-related factors. The study find-
ings show the validity of DL models, and the 
potential benefits that DL can offer to clinicians 
regarding screening and monitoring vascular-
related diseases.

Predicting risk factors from fundus images
Assessment of risk factors is a crucial part of CVD 
risk stratification because some are used by risk 
calculators to predict CVD risk.42 CVD risk fac-
tors can be modifiable or non-modifiable. 
Modifiable risk factors are associated with life-
style habits such as smoking, lack of physical 
exercise, hypertension, diabetes, obesity, and dys-
lipidemia. In contrast, non-modifiable risk factors 
include age, gender, and familial history. The 
practical and effective use of risk calculators is 
more complex for some health workers than it 
may be for cardiologists, or any person directly 
involved in managing CVD. Generally, some 
obstacles may hinder the routine application of 
CVD risk prediction tools, such as a lack of ade-
quate knowledge of risk estimates and the inabil-
ity to demonstrate with absolute certainty that the 
tool accurately identifies individuals at risk, which 
may cause concern to healthcare providers.43 In 
addition, the whole process of risk assessment 
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using charts, tablets, and risk calculator-based 
applications is time-consuming for healthcare 
providers, even if only a few risk factors are being 
assessed.44

Several studies have demonstrated that DL sys-
tems can predict CVD risk factors from fundus 
images. The first widely visible study was by 
Poplin et al.10 The DL model in their study pre-
dicted CVD risk factors from fundus images col-
lected from the UK Biobank and EyePACS 
datasets of more than 280,000 patients. The 
model directly and accurately predicted risk fac-
tors such as age and systolic blood pressure achiev-
ing a mean absolute error (MAE) within 3.26 years 
and 11.23 mmHg, respectively. The model also 
achieved an area under the receiver operating 
characteristics curve (AUC) of 0.97 and 0.71 for 
predicting gender and smoking status. Correlating 
the images directly to CVD events, the model pre-
dicted the risk of MACE, achieving an AUC of 
0.70, comparable to the European SCORE risk 
calculator’s AUC of 0.72.

In a recent study by Zhu et al.,11 the model pre-
dicted age excellently and achieved a strong cor-
relation between predicted retinal age and 
chronological age (0.81, p < 0.001), with an MAE 
of 3.55 years, slightly higher than that of Poplin 
et al. Other studies have also reported good model 
performance in predicting risk factors from fun-
dus images. A model by Yun et  al.27 predicted 
age, sex, and HbA1c status using a DL algorithm, 
achieving an impressive performance within the 
validation set, with AUC of 0.931, 0.933, and 
0.734, respectively. Gerrits et al.12 predicted age 
and smoking status with an MAE of 2.78 years 
and an AUC of 0.96, respectively. Vaghefi et al.13 
achieved an AUC of 0.86 for smoking status. 
Betzler et al.14 and Korot et al.15 achieved an AUC 
of 0.94 and 0.93 for gender, respectively. A model 
by Rim et  al.16 predicted 10 out of the 47 bio-
markers studied with an outstanding performance 
observed for age and sex. Similarly, a model by 
Zhang et  al.17 achieved AUCs of 0.880, 0.766, 
and 0.703 for predicting hyperglycemia, hyper-
tension, and dyslipidemia, respectively. In addi-
tion, the model predicted other blood test 
erythrocyte parameters and a group of CVD risk 
factors (age, drinking status, smoking status, and 
body mass index) with AUCs > 0.70.

This evidence suggests that DL applications can 
quantify and predict risk factors with reasonable 

precision, particularly age, sex, and smoking sta-
tus, which are the commonly used risk factors for 
all CVD risk assessment tools.45 This ascertains 
that DL applications on fundus images may offer 
a simple and quick way of identifying CVD risks, 
thereby improving risk stratification.

Estimating CVD biomarkers from fundus 
images
A novel question may be whether DL systems 
using fundus images can replace already existing 
diagnostic or prognostic biomarkers of CVD. 
Carotid intima-media thickness (CIMT) is one of 
the validated predictive biomarkers for the inci-
dence of major CVD events. It is used for predict-
ing early atherosclerosis among patients in the 
intermediate-risk category.46 However, measur-
ing CIMT is a complicated procedure that 
requires specialized equipment and a well-trained 
sonographer. Chang et al.18 used a DL model to 
predict carotid artery atherosclerosis from fundus 
images. The model achieved an AUC of 0.713, 
and the model’s calculated Deep Learning 
Funduscopic Atherosclerosis score was predictive 
of an increased hazard for CVD mortality. 
Interestingly, their results suggest that DL and 
fundus images can predict atherosclerosis as well 
as CIMT, especially in patients that are in the 
preclinical or asymptomatic stage. This also offers 
an added benefit to CVD risk stratification, as 
conventional risk estimates may underestimate 
the risk.47

Coronary artery calcium score (CAC) is another 
validated independent CVD biomarker associ-
ated with developing MACE, all-cause mortality, 
and cardiac mortality.48,49 CAC score is used for 
diagnosing atherosclerosis.50 It plays a crucial role 
in identifying asymptomatic patients at an inter-
mediate-risk stage of CVD.51,52 It also provides 
extra prognostic information related to other 
CVD biomarkers and helps to improve the accu-
racy of prediction by risk calculators.49,53 To 
measure the CAC score, a patient is supposed to 
undergo a CT scan, which carries the risk of radi-
ation to users. In addition, it may induce patient 
psychological stress in cases of a positive CAC 
scan and potentially influence a series of other 
cardiac-related tests that may not be necessary for 
a clinically stable individual.53 The predicting fac-
tors for a high CAC score include age, smoking 
status, and cholesterol levels. The retina also con-
tains such predictive information.

https://journals.sagepub.com/home/taj
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A study by Rim et  al.19 using fundus images 
trained a DL algorithm first to predict the pres-
ence of CAC (using a Retinal Coronary artery 
calcium score, RetiCAC) and secondly, to evalu-
ate the RetiCAC score’s ability to predict cardio-
vascular events. The model predicted the presence 
of CAC with good performance (AUC of 0.742), 
like other predicting factors such as age and 
smoking status, respectively. The RetiCAC score 
was also predictive of CVD events comparable to 
the traditional CT scan-measured CAC score. A 
similar study by Son et al.20 also reported a high 
predicted CAC score using DL systems on fun-
dus images; this strongly suggests that color fun-
dus image-estimated CAC score could predict 
CVD events, replacing or as an adjunct (less inva-
sive, radiation-free biomarker) to CT-scan-
measured CAC score.

Retinal blood vessel measurements like retinal 
vessel caliber and arteriovenous ratio are also cru-
cial for CVD risk assessment. However, their 
analysis using semiautomated systems is affected 
by the complexity of the quantification tools and 
established protocol guidelines that require sub-
stantial expertise for objective manipulation. 
Therefore, as reported by Cheung et  al.21 and 
Fukutsu et al.,22 the combined use of DL applica-
tions and fundus images may be a reliable method 
of obtaining vascular measurements that are pre-
dictive of CVD on a large sample of subjects. 
Their DL algorithms measured retinal vessel 
caliber and vessel alterations, respectively, and 
achieved comparable performance to human 
beings.

Predicting CVD-related diseases from fundus 
images
Despite the significant progress made in the ther-
apeutic management of CVD, many patients 
remain asymptomatic, and the risk of mortality 
remains high because some patients simultane-
ously suffer from other associated conditions, 
such as chronic kidney disease (CKD), diabetes 
mellitus, hypertension, and anemia, which com-
plicate disease management.

Chronic kidney disease.  CKD affects approxi-
mately 8–16% of the world’s population and is 
associated with an increased risk of CVD and 
death.54 In addition to the significant burden of 
stroke, myocardial infarction and congestive heart 

failure, CVDs are responsible for more than 50% 
of all deaths in patients with CKD.55 Early detec-
tion or screening relies on evaluating a wide range 
of tests. Estimated glomerular filtration rate 
(eGFR) from serum or urine samples is the most 
widely used diagnostic test, yet not necessarily 
feasible in other settings.23 Many patients with 
CKD tend to have diabetes and hypertension, 
which are considered high risks for CVD 
mortality.24

As part of eyecare, screening for retinopathy is 
necessary for all patients with hypertension and 
diabetes. Different studies have reported the asso-
ciation of structural changes in the retinal micro-
vasculature or retinopathy changes with the 
presence and progression of CKD.56–62 Likewise, 
albumin to creatinine ratio, blood uric acid, blood 
creatinine, blood albumin, and eGFR have been 
shown to have a significant correlation with the 
progression of retinopathy.63 A meta-analysis 
study assessing the association of CKD and reti-
nal occlusive diseases reported a higher preva-
lence of CKD in patients diagnosed with retinal 
vein occlusion.64 This suggests that a fundus 
assessment may facilitate early detection of CKD 
in high-risk populations.

A few studies using DL algorithms and fundus 
images explored the relationships between retinal 
characteristics and renal function. A CKD detec-
tion first-reported study using DL and fundus 
images was by Sabanayagam et al.23 The model 
predicted CKD with good performance in all 
datasets (AUC more than 0.80), including sub-
groups of diabetes and hypertension. The 
researchers also reported no difference in model 
performance when fundus images only were used 
and after incorporating clinical metadata in the 
DL evaluation. The finding suggests that using 
fundus images alone without other factors to 
screen CKD is possible. In another study by 
Zhang et al.24 using fundus images only, the DL 
model predicted and detected CKD with a good 
performance, AUC 0.861. However, the model 
performed better when tested using a combina-
tion of patient metadata and retinal images (AUC 
of 0.930). Kang et al.25 using DL, detected early 
renal functional impairment in an overall study 
population of diabetic patients, AUC > 0.81. The 
model performed better in those with elevated 
serum HbA1c partly because of retinal microvas-
cular damage secondary to diabetes. Furthermore, 
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reduced eGFR is associated with changes in the 
retinal vasculature.56 Zhang et al.24 tested if eGFR 
can be measured using a DL-based analysis of 
fundus images alone. There was a strong linear 
correlation between DL-predicted glomerular fil-
tration rate and measured eGFR, meaning that 
AI models can identify subtle changes or informa-
tion contained in fundus images about renal 
function.

Hypertension.  Hypertension is yet another com-
plex condition associated with multiple CVD 
events. As already cited above, DL approaches 
showed good predictive performance of hyperten-
sion. In Dai et al.,26 even though their model pre-
dicted hypertension with slightly good 
performance (AUC of 0.606 and precision of 
58.97%), they showed that microvascular mor-
phological changes at the branch sites of blood 
vessels are crucial areas that DL algorithms may 
use to detect hypertension because that is where 
the effect of hypertension relatable to AI may be.

Hypertension manifests on the retina as hyperten-
sive retinopathy and choroidopathy. Independent 
of other traditional risk factors, hypertensive 
retinopathy reflects vascular changes happening 
throughout the body.65 So far, no DL algorithms 
that detect or predict hypertensive retinopathy 
have been reported in the literature. Nevertheless, 
creating such algorithms may help in the early 
detection and intervention of hypertension, espe-
cially in asymptomatic patients, thereby prevent-
ing any associated CVD-related mortality.

Diabetes mellitus.  CVD is also a common cause 
of death in diabetic patients.66 The retina’s mani-
festations are progressive microvascular and reti-
nal tissue damage, defined as diabetic retinopathy. 
Fundus photography is the most commonly used 
imaging modality in detecting diabetic retinopa-
thy.67 Fundus image analysis not only helps to 
detect retinopathy but can also be used to detect 
predictive features or biomarkers associated with 
diabetes, such as age, body mass index, and 
hypertension.16 Different studies have reported 
the association of diabetic retinopathy with a sig-
nificant risk of developing conditions such as 
stroke, coronary heart disease, myocardial infarc-
tion, and the risk of CVD-related mortality.68–74 
These findings show the importance of early 
identification and management of diabetic 
patients with diabetic retinopathy.

Diabetic retinopathy is the number one condition 
widely explored or studied using DL systems in 
ophthalmology. Several studies have reported 
good algorithm performance (AUCs > 0.90) and 
comparably higher specificity and sensitivity in 
detecting diabetic retinopathy.75–81 Based on 
reported accuracies of DL-related fundus image 
analysis, one can conclude that the creation of 
more detection algorithms for diabetes would be 
a significant milestone in managing CVD-related 
conditions. One of the challenges with this con-
cept is that the onset of diabetic retinopathy dif-
fers between the two types of diabetes. Type 2 
diabetics may show signs 10 years after the onset 
of diabetes.82 Therefore, developing models that 
focus on diabetic retinopathy lesions alone may 
be limited in detecting many patients with type 2 
diabetes. It is also essential to include other risk 
factors that must be considered to improve detec-
tion accuracy.

In Yun et al.27 the DL model performed modestly 
well in predicting type 2 diabetes using fundus 
images only (AUC 0.731), but the performance 
was enhanced by combining non-invasive tradi-
tional risk factors and achieved an AUC of 0.810. 
Zhang et  al.24 reported a model performance, 
AUC > 0.828, in detecting type 2 diabetes and 
AUC > 0.80 in predicting the development of 
type 2 diabetes in healthy patients after 5 years.

Anemia.  Anemia is a common complication of 
diseases like CKD83 and type 2 diabetes.84 In 
recent years, anemia has increasingly been con-
sidered an independent and significant risk factor 
for CVD.85 In addition, several studies have indi-
cated an increased risk of mortality and morbidity 
from heart failure and acute coronary syndrome 
in patients with anemia.86–88 The most reliable 
indicator of anemia is hemoglobin (Hb) concen-
tration. Hb plays a crucial role in CVD develop-
ment, especially in patients with CKD. Horwich 
et  al.89 observed that Hb was a prognostic bio-
marker, and its lower levels predicted increased 
mortality. Hb is mainly measured using blood 
samples, a procedure considered invasive. It 
requires a specialized laboratory infrastructure, 
sophisticated equipment (hematology analyzer, 
biochemical reagents), and expert technicians to 
perform phlebotomy for efficient analysis.90 Stud-
ies have also shown that anemia detection is pos-
sible through simple observation of the eye’s 
conjunctiva color changes.91,92
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Recently, other studies have explored estimating 
Hb levels through automated means, using digital 
photographs of the conjunctiva captured by a 
smartphone which has shown positive prospects 
of making anemia detection from the eyes eas-
ier.93–95 It is postulated that anemia contributes to 
the development of diabetic retinopathy in 
patients with diabetes,96,97 and that anemia mani-
fests on the retina in the form of Roth spots, hard 
exudates, cotton wool spots, hemorrhages, and 
optic disc pallor.98 This suggests that predicting 
or detecting anemia from the retina is possible, 
more so using DL applications. Mitani et  al.28 
reported that a DL algorithm trained using fun-
dus images could estimate Hb levels. The model 
achieved an AUC of 0.88 for detecting anemia. In 
a similar study, Zhao et al.99 used ultrawide field 
fundus images to train a DL model that predicted 
Hb concentration and screened anemia with a 
good performance, MAE of 0.83 g/dl and AUC of 
0.93, respectively.

Implications for clinical practice and 
integration
It is undoubtedly true that CVDs pose a signifi-
cant public health burden. Furthermore, some of 
the procedures currently being used to assess 
CVD risk are invasive, expensive, and not feasible 
for underdeveloped health facilities. As a result, 
many people often remain undetected, which 
may increase CVD-related deaths. As the popula-
tion is aging and the prevalence of diabetes and 
other CVD-related conditions increases, the need 
for more accessible and user-friendly risk assess-
ment tools is more urgent.44 DL algorithms may 
offer a quick, less invasive, and cost-effective way 
for early detection of CVD-related conditions. 
Ophthalmology is one of the ideal areas for inte-
grating DL systems to predict CVD; as it has 
been observed, many people are concerned about 
eye or visual health, such that they would visit 
eyecare providers for regular eye checkups or par-
ticipate in vision screening more than they would 
for CVD screening.38,100 Retinal evaluation results 
shared by eye care providers with other health 
workers may help identify individuals requiring 
comprehensive checkups and interventions to 
prevent complications.

Integrating DL into clinical practice may involve 
various modalities such as teleophthalmology, 
office-based use, and in-built DL-based fundus 

camera settings. Teleophthalmology is particu-
larly ideal for health systems with telemedicine/
retina platforms already in existence such that an 
algorithm can easily be incorporated into the plat-
form to analyze fundus images and predict 
CVD.101 Office-based modalities may involve the 
use of tablets, laptops, or desktop computers that 
have an installed application to analyze fundus 
images. However, this modality may be a little 
involving, requiring the transfer of fundus images 
from one device to another. Alternatively, cloud 
storage can improve AI systems’ data transfer, 
storage, and adaptability. This involves automati-
cally transferring electronic data to a centralized 
data storage center. For instance, the Japan 
Ocular imaging registry, created in 2017 by the 
Japanese Ophthalmological Society, stores medi-
cal records from more than 20 collaborating insti-
tutions, promoting AI development and clinical 
research by utilizing vast amounts of data.102 
Another strategy is having DL algorithms built 
into portable devices and handheld smartphone-
based fundus cameras.103,104

Other than being used in hospital settings, DL 
algorithms can also enhance our understanding of 
the association of systemic diseases with ocular 
diseases through clinical research without the 
need for invasive and high-cost screening activi-
ties. DL systems can be applied retrospectively to 
clinical data contained in datasets to study or ana-
lyze disease associations.

Challenges to clinical integration
As DL is fast gaining interest and technology 
advances in the field of medical imaging, one of 
the imminent challenges to its full clinical adop-
tion and integration is the medical, legal and reg-
ulatory approvals aspect especially because there 
are variations in regulations across the world. 
These ethical and regulatory concerns generally 
dwell on privacy and fairness of the data, trans-
parency, accountability, and product liabil-
ity.105–107 An algorithm’s performance largely 
depends on the size and quality of the data that 
comes from people, raising concerns about data 
protection and privacy. Different institutions 
through ethics committees require that research-
ers obtain the informed consent of the individuals 
before data collection. However, there are no 
adequate regulations in many countries on how 
data should be used or shared among researchers 
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beyond the institutional review board’s recom-
mendation. Such data must have data sourcing, 
protection, and privacy requirements or regula-
tions that determine authorized data uses.106 
Medical data is sensitive, and bias could affect its 
intended purpose when used for any algorithm 
development. Likewise, a lack of data or restric-
tions over the use of personal health data may also 
affect algorithm development.

AI is not just about big data management; the 
safety risks of using algorithms to manage dis-
eases are also a concern. For instance, the com-
mercialization of AI products may result in 
built-in biases to suit the interests of the develop-
ers, thereby indirectly putting the population that 
will use the applications at potential risk of harm. 
In healthcare, the safety and transparency of any 
AI application is necessary. A lack of understand-
ing of how the algorithm works or derives its con-
clusions or predictions is also a significant concern 
to patients and clinicians because of the danger of 
absolute total dependence on AI models, which 
may lead to fatal outcomes if other pertinent clin-
ical findings are not available and are not consid-
ered. Therefore, proper information sharing, 
training for healthcare workers and other educa-
tional approaches to create awareness and under-
standing of DL systems’ abilities and limitations 
can help to mitigate this problem. In addition, the 
question of malicious liability and product liabil-
ity for DL applications must be addressed before 
full clinical adoption; it must be clear who takes 
responsibility when the applications get things 
wrong, that is, when misclassifying and misdiag-
nosing cases during automated CVD risk assess-
ment, will the user (physician) be held responsible 
for such failures or will the failure be treated as a 
product liability (i.e. a technical fault/malfunc-
tioning device), a manufacturer’s responsibility? 
Full clinical integration may be easier once proper 
standards to manage or mitigate such challenges 
are developed and effected.

Limitations and future directions
In this review, we have reviewed recent work 
showing the potential of DL applications on fun-
dus images for CVD risk assessment. However, 
the evidence provided should be considered bear-
ing in mind other limiting factors. First, it is about 
the complex nature of CVDs. CVDs are associ-
ated with numerous risk factors and conditions 

that affect different groups of people, such as 
those with diabetes, CKD, anemia, hypertension, 
and dyslipidemia. These conditions indepen-
dently have other risk factors even though in some 
cases they tend to occur simultaneously. Although 
ophthalmoscopic markers in the retina can pro-
vide new insights into systemic diseases and 
potentially prove helpful, the current state of evi-
dence is probably not sufficient to define specific 
risk profiles for CVD outside of the entire clinical 
picture; this means that the identification of a 
seemingly ideal area and population to apply the 
DL algorithms may be challenging. Furthermore, 
it may be argued that patients with more compli-
cated case details may be problematic to evaluate 
using DL algorithms. Therefore, using fundus 
images alone may not be sufficient to make defin-
itive diagnoses or high-stakes decisions to manage 
CVD. While this may be a valid observation, inte-
grating clinical metadata in the analysis produced 
better algorithm performance in some of the 
above-cited studies, which suggests that other 
CVD-related examination results or factors are 
still an essential consideration in the final deci-
sion-making at this stage of AI development. 
However, the studies did not fully cover the effect 
of all the associated risk factors. Future studies 
should extensively evaluate the effect of other risk 
factors on the performance of DL algorithms in 
addition to age, sex, diabetes, and hypertension. 
Studies should also explore the effect of using a 
multimodal approach that combines fundus 
images with reports from other imaging modali-
ties to predict or detect CVD-related conditions. 
To the best of our knowledge, only one study has 
reported an excellent algorithm performance in 
CVD detection after integrating fundus images 
and dual-energy X-ray absorptiometry scans.108

Second, the studies cited above showed good pre-
dicting performance of CVD risk factors, bio-
markers, and other CVD-related conditions. 
Nevertheless, the studies did not adequately eval-
uate the added diagnostic value of the DL models 
by directly comparing the algorithms with the 
existing CVD risk assessment tools or stratifica-
tion methods; this may impact the perceived 
applicability and acceptance by patients, regula-
tory agencies, and other healthcare providers 
involved in managing CVD. Future studies 
should also focus on evaluating the algorithm’s 
superiority over or on par with the widely accepted 
CVD risk estimators to help clear the doubts 
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about DL systems’ ability to predict or detect sys-
temic diseases from fundus images confidently.

Third, the lack of interpretability of the results. 
Thus far, the exact predictive mechanism of DL 
algorithms is poorly understood. Such knowledge 
to end users is essential for easy clinical integra-
tion because an algorithm’s performance alone is 
insufficient to necessitate high-risk decisions that 
can be made on the patient; the recommended 
outcomes must also be convincing. In addition, a 
comparison of the effectiveness of one algorithm 
over another is difficult since the datasets used in 
the studies are different. During algorithm devel-
opment and validation, there is always a risk of 
using biased datasets. For instance, patient char-
acteristics (such as age, gender, ethnicity, etc.) 
may not be evenly distributed. Variations in image 
quality either because the images were collected 
using multiple cameras with different settings or 
due to patient-related factors such as the presence 
of ocular media opacities, high refractive errors, 
poor mydriasis, etc. – these may result in the algo-
rithm reporting false positives and negative 
results, thereby affecting its accuracy. Researchers 
should also endeavor to avoid using poor data 
sources or evaluate thoroughly the negative 
impact of the data they have before using it to 
avoid errors in their results. More importantly, 
clinical trials using real clinical situations are 
needed to ascertain or validate the accuracy of the 
algorithms.109

Finally, the review does not cover other machine 
learning (ML) approaches currently available in 
the literature. For a long time, ML techniques 
have been used in the diagnosis or assessment of 
diseases. But to the best of our knowledge and 
throughout the literature search, we did not find 
any studies about CVD and fundus image analy-
sis using alternative ML approaches that fit the 
scope of this review other than those used DL 
methods. It is the authors’ opinion that this could 
be attributed to DL’s better performance in med-
ical image analysis compared to other ML types. 
Traditionally, ML techniques require data with 
discriminative features that are manually and 
accurately annotated or designed by physicians 
with adequate expertise, and the identification of 
useful features is only achieved after a thorough 
training, validation, and testing of the model. 
This is an extremely time-consuming task that 
involves a repetitive cycle of identifying and 

developing new features, rebuilding the model, 
and measuring results until a satisfactory out-
come is achieved.110 ML models are also chal-
lenged when used on datasets that contain 
multiple dimensions, and large amounts of data 
which affects their accuracy.110–112 This implies 
that, the complexity of retinal images (and other 
medical images) where extraction of the most 
predictive features is not obvious and the need for 
large amounts of annotated data may also hinder 
the wide use of ML techniques in the field of ocu-
lomics. On the other hand, DL methods as we 
have previously mentioned in the introduction, 
can be presented with raw data, and extract the 
required features without human input; they do 
not need structured or labeled datasets to learn 
from like ML algorithms do. They can identify 
subtle features and changes in the fundus or other 
medical images which may not be easily recogniz-
able by other ML types.111 DL algorithms are also 
efficient with any amount of data.111–113 Thus, 
DL algorithms can adapt and improve their accu-
racy over time as they are trained on more data, 
making them highly effective for medical image 
analysis tasks. These and other reasons may 
explain why there is an influx of studies focusing 
on DL techniques more than other ML tech-
niques. In addition, we also acknowledge that 
although relevant literature was reviewed in detail 
to discuss this topic, it is possible that a few latest 
DL studies or approaches were not fully covered. 
We have also dealt with CVD as a single issue, 
but obviously, there are many different CVDs, 
each of which might require a different analytical 
data-based strategy.

Conclusion
DL application on fundus images is a promising 
technological advancement with the potential to 
revolutionize the delivery of healthcare services. 
The studies reviewed show that DL systems may 
enhance the current risk stratification methods 
for CVD and other systemic diseases, especially 
in resource-constrained settings. More research is 
needed to develop algorithms with higher accu-
racy and predictive abilities using larger datasets 
containing sufficient data about cardiovascular 
events. With adequate clinical validation, DL sys-
tems applied on fundus images may replace some 
of the already established markers or better act as 
an adjunct assessment tool for systemic disease 
detection. A clinical change to incorporate DL 
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systems and fundus images as an equally good 
test over more expensive and invasive procedures 
may require conducting prospective clinical trials 
to mitigate all the possible ethical challenges and 
medicolegal implications.
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