
ONCOLOGY LETTERS  18:  291-297,  2019

Abstract. Glioma has one of the highest mortality rates 
of all cancer types; however, the prognosis cannot be 
predicted effectively using clinical indicators, due to the 
biological heterogeneity of the disease. A total of 31 gene 
expression‑based signatures were identified using selected 
features in The Cancer Genome Atlas cohorts and machine 
learning methods. The signatures were assayed in the training 
dataset and were further validated in four completely indepen-
dent datasets. Association analyses were implemented, and 
the results indicated that the signature was not significantly 
associated with age, radiation therapy or primary tumor size. 
A nomogram for the 1‑year overall survival rate of patients 
with glioma following initial diagnosis was plotted to facilitate 
the clinical utilization of the signature. Gene Set Enrichment 
Analysis was performed based on the signature, in order to 
determine the potential altered pathways. Metabolic pathways 
were determined to be significantly enriched. In summary, the 
31 gene expression‑based signatures were effective and robust 
in predicting the clinical outcome of glioma in 1,016 glioma 
samples in five independent international cohorts.

Introduction

It has been reported that there are ~3.19 glioma cases in 
every 100,000 people in USA  (1). Similar trends were 
reported in China (2), with >101,600 new glioma cases and 
>61,100 glioma‑associated mortalities were estimated in 2015; 
however, the clinical outcome of glioma is unfavorable, with 
a 5‑year overall survival rate of  <5%. Although clinical 

indicators have provided beneficial information (3,4), deter-
mining the prognosis of patients with glioma remains notably 
difficult, due to genetic differences between individuals (5,6). 
Isocitrate dehydrogenase [NADP(+)]1/2 mutations have been 
emphasized as prognostic biomarkers over the past decade and 
have been used clinically (7‑9). Nevertheless, single mutational 
biomarkers remain inadequate for prognosis prediction.

Previous studies have screened single biomarkers for the 
prognosis of glioma (10,11). It has been reported that the mRNA 
and protein expression of RAB34 are notably associated with 
poor survival rates in patients with glioma (12). Similarly, over-
expression of Roundabout4 has been demonstrated to predict 
a poor clinical outcome of glioma by affecting micro‑vessel 
density  (13). microRNAs (miRs), including miR‑34a, have 
been reported to be correlated with the survival of patients 
with glioma (14). Nevertheless, none of the aforementioned 
biomarkers, except for IDH1/2 mutation, have been used 
clinically, and the biomarkers currently utilized in the clinic 
remain limited. Multiple gene‑based prognostic models, which 
combine information from single biomarkers and effectively 
remove the redundant information of genomes/transcriptomes, 
have been reported (15‑17). Clinically used models, including 
Mammaprint and OncotypeDX, have been beneficial tools for 
prognosis and therapy guidance (18‑20); however, to the best 
of our knowledge, these models have not been employed to 
determine the prognosis of glioma to date.

In the present study, the prognostic genes in glioma were 
selected by associating gene expression and overall survival 
in The Cancer Genome Atlas (TCGA) cohort, and the prog-
nostic effect was further validated in 1,016 samples across five 
independent datasets. The signatures were not significantly 
associated with clinical indicators, and associated biological 
pathways were therefore identified.

Materials and methods

Data pre‑processing. The primary glioma samples from 
TCGA, GSE4412 (21), GSE16011 (22), GSE16581 (23) and 
GSE42669 (24) were used in the present study, whilst the other 
sample types, with the exception of primary glioma, were 
excluded. The gene expression data from the TCGA cohort 
(evaluated using RNA‑seq technique) was downloaded from 
the official website of TCGA (https://gdc‑docs.nci.nih.gov/). 
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Following upper‑quantile normalization, the FPKM values of 
each gene was log 2 transformed. The cohorts generated from 
microarray (GSE4412, GSE16011, GSE16581 and GSE42669) 
were downloaded from the Gene Expression Omnibus 
(https://www.ncbi.nlm.nih.gov/geo) website using the corre-
sponding accession number. The raw data were normalized 
using limma package of R software in a single cohort, and a gene 
expression matrix was generated, according to the raw data, 
where rows represented the genes and columns represented 
the samples. To reduce the complexity, probes representing 
the same gene were calculated using the mean average value. 
To eliminate the bias brought by the platforms, z‑scores were 
calculated in each cohort for subsequent analyses.

Optimizing panel and model development. Cox univariate 
regression was implemented by associating the overall survival 
and gene expression information of the TCGA (n=529) dataset. 
Genes significantly associated with overall survival (P<0.01) 
were selected as candidate genes for model development. 
Redundant information existed among the candidate genes, 
due to complex regulations. To narrow the panel, the redun-
dant information was removed, utilization was facilitated, and 
a machine learning algorithm called random forest variable 
selection method was used in this step. Using the selected 31 
genes generated (Table I), Cox multivariate regression was 
performed by associating the overall survival and expres-
sion of these 31 genes. The coefficient of each gene is listed 
in Table I.

Gene panel optimization and model development. Expression 
of genes significantly associated with overall survival, as 
determined by Cox univariate regression (P<0.01), were iden-
tified for further analysis in the TCGA cohort. The random 
forest variable selection was conducted using the following 
parameters: 100 iterations and 100 repeats. Subsequently, the 
top selected gene list (panel) using this random forest survival 
algorithm was optimized for model development. The model 
was developed using Cox multivariate regression by associ-
ating the optimized panel and overall survival information in 
the TCGA cohort. The glioma risk score was calculated using 
the following formula:

Where bi is the coefficient, and ei is the relative expression of 
corresponding gene.

Statistical analysis. All analyses listed in the present 
study were implemented on an R programming platform 
(www.r‑project.org; v3.2.0). The clinical information of 
samples in TCGA cohort was listed as following: 439 received 
radiation and 98 did not. The median age was 59 years old 
(1st‑3rd quartile, 50‑68 years, and 60 was used as a cut‑off 
value); 235 females and 375 males. Genes significantly asso-
ciated with survival were identified using Cox univariate 
regression (P<0.01), and the risk score was calculated using 
Cox multivariate regression in TCGA cohort. The Gene 
Set Enrichment Analysis (GSEA) was implemented on the 
publicly released GSEA 3.0 software (25). The nomogram was 

plotted with the R package ‘rms’, and random forest variable 
selection was implemented with the package ‘randomfor-
estSRC’  (26,27). The receiving operating characteristic 
(ROC) curve was calculated using the package ‘pROC’ (28). 
Kaplan‑Meier method and log‑rank test was used to determine 
the survival difference between high‑risk and low‑risk groups. 
Association between risk score and clinical indicators were 
assayed using unpaired Student's t‑test. P<0.05 was considered 
to indicate a statistically significant difference.

Results

Prognostic value of SACH‑CASS in the TCGA cohort. The 
prognostic performance of the signatures was assessed in 
the TCGA cohort. The samples of the TCGA cohort were 
divided into high‑score and low‑score groups, according 
to the median risk score value, and the survival difference 
between the high‑ and low‑risk groups was later compared. 
The patients in the low‑score group had a significantly 
(Kaplan‑Meier test, P=0.00048] reduced overall survival 
time [median survival time, 12.7 months; 95% confidence 
interval (CI), 11.7‑15.1 months), compared with the patients 
in the high‑score group (median survival time, 14.9 months, 
95% CI, 14.0‑16.9 months; Fig. 1A). The disease‑free survival 
difference between the high and low‑risk groups were also 
compared. The low‑score group had significantly increased 
disease‑free survival time, compared with the high‑score 
group (Fig. 1B; P<0.05). As depicted in Fig. 1C, low‑score 
samples were characterized by early incidence, high expres-
sion of glioma‑promoting genes and low expression of 
glioma‑suppressing genes (middle panel, red dots). Taken 
together, these results indicated that the glioma scores are 
important and beneficial clinical indicators for glioma in the 
TCGA cohort.

Robustness of risk score. Due to the model being developed 
based on expression in the TCGA cohort, the validity of 
the model may result from over‑fitness, as the model may 
only be effective in the TCGA cohort. Therefore, in order 
to evaluate the robustness of the risk score in an unbiased 
manner, The coefficients of these 31 genes were locked, 
therefore, the coefficients of these genes were identical to the 
TCGA cohort. the risk score of each sample in the validation 
cohorts (expression data were generated using microarray) 
was calculated, including the samples from the following: 
GSE4412, GSE16011, GSE16581 and GSE42669 cohorts. 
Similarly, to the training cohort, the samples in each cohort 
were subsequently divided into high‑score and low‑score 
groups according to the median glioma risk score, and the 
survival difference between high‑score and low‑score groups 
was compared (Fig. 2A‑D). As expected, the gene expression 
pattern was similar to that of the TCGA cohort (Fig. 2E‑H). 
Taken together, the aforementioned results indicated that the 
glioma risk scores are robust in predicting glioma survival 
across cohorts and platforms.

Existing clinicopathological indicators and glioma 
risk score. Associations between glioma risk scores and 
clinicopathological indicators, including age, tumor size, 
radiation were analyzed by comparing the glioma risk scores 
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in different sub‑categories. The results indicated that the 
glioma risk scores were not clinicopathological indicators 
for age (P>0.05; cut‑off, 60  years), radiation therapy or 
primary tumor size (cut‑off:10 mm; Fig. 3A; Student's t‑test). 
To evaluate the clinical significance of clinical indicators 
and glioma risk scores, Cox multivariate regression was 
implemented, and the results indicated that the glioma scores 
are an important indicator for overall survival  (Fig. 3B). 
To facilitate the utilization of other clinical indicators and 
glioma risk scores, a 1‑year overall survival nomogram was 
calculated (Fig. 3C). In summary, these results indicated that 
the glioma scores are an important indicator for the prog-
nosis of patients with glioma.

Biological relevance of risk score. Due to the signatures being 
developed based on the expression level of 31 genes and the 

glioma scores being independent of the majority of clinical 
indicators, it was suspected that the glioma scores predicted 
the survival of glioma via reflecting the biological differ-
ences among individuals; therefore, GSEA was performed by 
comparing the difference between the high‑ and low‑score 
groups. As expected, pathways, including terpenoid back-
bone biosynthesis, glycosphingolipid biosynthesis lacto and 
neolacto series, were identified  (Fig.  4). In summary, the 
results indicated that the glioma risk score may be associated 
with metabolic pathways in glioma and therefore predict the 
survival of patients with glioma.

Discussion

Genetic alterations of glioma have been frequently reported 
previously  (8,9,29,30). Genetic heterogeneity across 

Table I. Parameters of candidate genes.

	 Cox univariate	 Cox multivariate
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
Entrez_ID	 HR	 95% CI	 P‑value	 HR	 95% CI	 P‑value

6383	 1.2	 1.1‑1.3	 0.00032a	 0.96	 0.84‑1.1	 0.547
4493	 1.2	 1.1‑1.3	 8x105a	 1.05	 0.93‑1.18	 0.433
4223	 1.1	 1‑1.1	 0.00036a	 1.00	 0.93‑1.07	 0.948
4016	 1.1	 1.1‑1.2	 0.00027a	 1.05	 0.94‑1.17	 0.411
9922	 1.4	 1.1‑1.6	 0.00031a	 0.97	 0.76‑1.23	 0.777
3383	 1.2	 1.1‑1.3	 0.00085a	 0.88	 0.72‑1.08	 0.217
1116	 1.1	 1.1‑1.1	 1x105a	 0.98	 0.9‑1.07	 0.725
9332	 1.1	 1‑1.2	 4x104a	 1.03	 0.94‑1.13	 0.492
716	 1.1	 1.1‑1.2	 3x105a	 1.06	 0.94‑1.2	 0.311
622	 1.3	 1.1‑1.5	 3x105a	 1.14	 0.95‑1.37	 0.153
597	 1.1	 1.1‑1.2	 0.00076a	 1.06	 0.92‑1.23	 0.385
10630	 1.1	 1.1‑1.2	 <0.001a	 1.02	 0.91‑1.14	 0.727
4615	 1.3	 1.1‑1.5	 0.00015a	 0.86	 0.68‑1.1	 0.236
3964	 1.3	 1.1‑1.4	 1x104a	 1.07	 0.84‑1.37	 0.574
3669	 1.2	 1.1‑1.3	 0.00045a	 1.01	 0.87‑1.18	 0.855
487	 0.32	 0.18‑0.56	 7x105a	 0.44	 0.22‑0.89	 0.022a

7253	 0.67	 0.53‑0.84	 0.00072a	 0.8	 0.62‑1.03	 0.080
7132	 1.2	 1.1‑1.4	 0.00046a	 0.8	 0.63‑1	 0.049a

6988	 1.3	 1.1‑1.5	 8x105a	 1.2	 0.97‑1.48	 0.085
11000	 1.2	 1.1‑1.3	 4x105a	 0.99	 0.86‑1.15	 0.911
6279	 1.1	 1‑1.2	 0.00042a	 1.04	 0.93‑1.17	 0.499
5154	 1.2	 1.1‑1.2	 0.00017a	 1.06	 0.94‑1.19	 0.367
4599	 1.1	 1‑1.2	 0.00091a	 1.05	 0.96‑1.15	 0.264
4478	 1.3	 1.1‑1.4	 1x105a	 0.92	 0.75‑1.11	 0.378
3281	 0.73	 0.61‑0.87	 0.00049a	 0.62	 0.49‑0.77	 3.00E‑05a

8324	 1.2	 1.1‑1.3	 1x105a	 1.05	 0.93‑1.19	 0.433
6990	 1.3	 1.1‑1.4	 <0.001a	 1.06	 0.88‑1.28	 0.556
4192	 1.2	 1.1‑1.3	 3x105a	 1.06	 0.94‑1.21	 0.343
2887	 1.2	 1.1‑1.3	 0.001a	 1	 0.87‑1.13	 0.953
11068	 1.4	 1.2‑1.7	 0.00052a	 0.94	 0.68‑1.31	 0.729
1819	 1.5	 1.3‑1.8	 <0.001a	 1.28	 0.97‑1.7	 0.086

aP<0.05. HR, hazard ratio; 95% CI, 95% confidence interval.
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individuals has also been reported (31). These data explained 
why single biomarkers have frequently failed to predict the 
clinical outcome of glioma. Previous studies have emphasized 
the multiple gene expression‑based models for prognosis, and 
models for other cancer types have been developed (15,32); 
For example, Mammaprint has been reported as a powerful 
tool for therapy decision of breast cancer and OncotypeDX has 
been used in many types of cancer (18,20), including ovarian 
cancer, breast cancer and colorectal cancer; as such, the model 
appears to be a successful predictor in independent cohorts 
using different platforms.

One limitation of the present study is that the detailed 
clinical information, including treatment and time to recur-
rence, which were critical for determining the prognosis of 
glioma, was unknown in all of the cohorts. Additionally, 
the surgical technique (R0/R1) is also not described in the 
clinical records. Another limitation is that the genes used 
for the calculation of glioma scores were a relatively large 
panel; however, it was considered that the panel is relatively 
small, compared with the transcriptome, and a large panel 
may reflect the biological status of glioma with greater 
accuracy.

Figure 1. Performance of glioma scores in the training cohort. (A) The overall survival rate and (B) disease‑free survival rate difference between the high‑ and 
low‑score groups were depicted. (C) The detailed glioma score, survival status and gene expression profile were depicted. P<0.01.
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Figure 2. Robustness of the glioma score. The performance of the signature was also assayed for the (A) UCLA (GSE4412), (B) Netherland (GSE16011), 
(C) NPTB (GSE16581) and (D) Seoul cohorts (GSE42669), and the overall survival and expression pattern of (E) GSE4412, (F) GSE16011, (G) GSE16581, 
(H) GSE42669 were also presented. P<0.05. The x‑axis is survival time (months), the y‑axis is the overall survival rate.
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(B) Cox multivariate regression and nomogram demonstrated that it is an important indicator, and (C) a nomogram indicating the clinical utilization of glioma 
scores along with other clinical indicators. P<0.05.
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