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Scope. Implantation loss is a considerable cause of early pregnancy loss in humans and mammalian animals. It is not addressed how
proliferative uterine defects implicate in implantation loss. Methods and Results. Herein, a comprehensive proteomic analysis was
conducted on proliferative endometria from sows with low and normal reproductive performance (LRP and NRP, respectively).
Enrichment analysis of differentially expressed proteins revealed alterations in endometrial remodeling, substance metabolism
(mainly lipid, nitrogen, and retinol metabolism), immunological modulation, and insulin signaling in LRP sows. Importantly,
aberrant lipid metabolite accumulation and dysregulation of insulin signaling were coincidently confirmed in endometria of
LPR sows, proving an impaired insulin sensitivity. Furthermore, established high-fat diet- (HFD-) induced insulin-resistant
mouse models revealed that uterine insulin resistance beginning before pregnancy deteriorated uterine receptivity and decreased
implantation sites and fetal numbers. Mitochondrial biogenesis and fusion were decreased, and reactive oxygen species was
overproduced in uteri from the HFD group during the implantation period. Ishikawa and JAR cells directly demonstrated that
oxidative stress compromised implantation in vitro. Conclusions. This study demonstrated that uterine insulin sensitivity
impairment beginning before pregnancy resulted in implantation and fetal loss associated with oxidative stress induced by

mitochondrial dysfunction.

1. Introduction

Early pregnancy loss contributes greatly to declined fertility
rates in humans and mammalian animals [1]. In humans,
about 15% of pregnancies result in pregnancy loss [2], and
40% to 50% of pregnant women failed to develop pregnancy
beyond 20 weeks, among which, 75% of this failure is caused
by implantation loss during early pregnancy [3, 4]. Among
the mammalian animals, pregnancy loss for pigs is the high-
est, accounting for about 20% to 45% [5], and 20% to 30% of
this loss occurs during the peri-implantation period [6].
Therefore, alleviating implantation losses is of importance
to improve pregnancy outcomes for humans and mamma-
lian animals.

Implantation loss is influenced by oocyte quality [7],
ovarian development [8], and uterine function [9]. The
endometrium, which provides the site for embryo implanta-
tion and development, undergoes fine-tuned morphological
and physiological changes in a cycle-dependent manner.
Embryos only successfully implant in the endometrium
during a short period in the midsecretory stage. Many
researches have studied the secretory endometrium [10-
14], but only a few are known about the proliferative endo-
metrium. The endometrium during the proliferative phase
mainly undergoes cellular proliferation and extracellular
matrix remodeling, which is fundamentally important for
subsequent embryo implantation during the secretory phase
[15, 16]. Bergeron et al. found some endometrial maturation
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disturbances during the secretory phase can be traced to dis-
orders during the proliferative phase [17]. Aldad et al.
reported that endometrial growth deficiency during the
proliferative phase may be a common abnormality in women
with infertility and repeated pregnancy loss [18]. However,
the underlying mechanisms causing proliferative endome-
trial defects which elicit implantation loss have not been fully
studied.

Pigs present an excellent animal model for studying
human nutrition and reproductive physiology, as they share
high similarity to humans in terms of pathological, physio-
logical, and anatomical features [19]. Therefore, to dissect
the underlying mechanisms of proliferative endometrial
defects in implantation loss, a comprehensive proteomic
analysis of proliferative endometria from low and normal
reproductive sows was conducted. Here, we identified disor-
ders in remodeling, substance metabolism, and immunolog-
ical modulation and compromised uterine local insulin
sensitivity in endometria of low reproductive sows. Results
from the high-fat diet-induced insulin-resistant mouse
model and Ishikawa cells revealed that uterine insulin resis-
tance beginning before the pregnancy deteriorates uterine
function through mitochondrial dysfunction causing oxida-
tive stress, resulting in compromised implantation sites and
fetal numbers. Our findings shed lights on the understanding
of the etiology of the uterine dysfunction-driven reproduc-
tive disorders and provided molecular mechanisms behind
uterine dysfunction under the uterine insulin-resistant state,
highlighting the importance of preventing/reverting treat-
ment before pregnancy.

2. Materials and Methods

2.1. Ethics Statement. Animal handling procedures were
approved by the Institutional Animal Care and Use Committee
of China Agricultural University (ID: SKLAB-B-2010-003).

2.2. Sow Housing and Endometrial Collection. Healthy
Landrace x Large White sows (n=10) with similar parity
and different reproductive performance were used: normal
reproductive performance (NRP) sows (n =5, average live
litter size over the last three parities = 12.53 + 0.46) and low
reproductive performance (LRP) sows (n = 5, average live lit-
ter size over the last three parity =8.07 +0.52) [20]. Sows
had free access to drinking water and diets that met the nutri-
ent requirements of swine (2012) [21]. In the preovulatory
follicular phase, sows were killed by electric shock. Blood
samples were collected and handled as described by Chen
et al. [20], and intact proliferative endometrial tissues were
immediately separated [22]. All samples were stored in
-80°C until analysis.

2.3. Proteomic Sample Preparation and Label-Free Proteomic
Analysis of Endometrial Tissues. Proteomic samples were
prepared using endometria from NRP and LRP sows [23].
Label-free analysis of peptides was achieved on an Eksigent
425 (AB SCIEX) LC system coupled with a Q-Exactive mass
spectrometer (Thermo Scientific, Bremen, Germany).
Sequence database searching and protein identification were

Oxidative Medicine and Cellular Longevity

conducted. The false discovery rate (FDR) was strictly limited
to <0.01. The NRP group was set as the control to the LRP
group. Proteins with a fold change (FC) > 1.5 (or <0.6667)
and p <0.05 were regarded as differentially expressed pro-
teins (DEPs). Detailed methods are described in Supporting
Information.

2.4. Bioinformatics Analysis and Pathway Analysis. Molecu-
lar functions, biological processes, and cellular components
of DEPs were analyzed by gene ontology (GO) enrichments.
ReviGO (http://revigo.irb.hr/) was employed for deducing
redundancy of enriched GO terms. Cytoscape (version
3.5.1) was used to visualize and summarize GO enrichment
results. Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment was also conducted based on all DEPs. The
threshold of significant GO terms and KEGG pathways was
set at p < 0.05.

2.5. Mouse Housing. Seven-to-eight-week-old female ICR
mice (Charles River Laboratories, China Inc.) were kept
under controlled conditions (12h light and 12h night,
22°C-25°C). Mice were randomly assigned to two groups:
feeding a normal diet (D1032, Beijing HFK Bioscience Co.
Ltd.) or a high-fat diet (HFD, D12492, Research Diet, Inc.).
After 16 weeks, mice were mated with normal male mice.
Pregnant mice were continued with a control diet or HED.
Uteri (implantation sites) and serum were collected, and
implantation site/fetal number was recorded.

2.6. Glucose Tolerance Tests and Insulin Tolerance Tests.
After 16 weeks, six to nine mice per diet were randomly
selected for glucose tolerance test (GTT) and insulin toler-
ance test (ITT) [24]. For GTT, mice were fasted overnight
and then intraperitoneally injected with glucose (2 g per kg
body weight). For ITT, mice were intraperitoneally injected
with insulin (0.75IU per kg body weight). Blood samples
were harvested from the tail vein at 0, 30, 60, 90, and
120 min after glucose or insulin administration. Glucose con-
centrations were immediately measured using a HemoCue B
glucose analyzer (Angelholm, Sweden).

2.7. Index Measurements in Serum and Endometrium. Con-
centrations of glucose, insulin, adenosine monophosphate
(AMP), adenosine triphosphate (ATP), triglyceride (TG),
leptin, malonyl-CoA, and diacylglycerol in the endometrium,
as well as glucose, TG, low-density lipoprotein-cholesterol
(LDL-C), high-density lipoprotein-cholesterol (HDL-C),
cholesterol (CHOL), and insulin in serum, were determined
using assay kits (Biosino Bio-Technology and Science Inc.,
Beijing, China) according to the manufacturer’s instructions.
Insulin resistance was estimated using the homeostatic
model assessment method (HOMA-IR) [25], which was
expressed as insulin (mIU/L) x glucose (mmol/L)/22.5.

2.8. Hormone Measurement. Concentrations of 173-estradiol
and progesterone in mouse serum were determined using
enzyme-linked immunosorbent assay kits (Cusabio, Wuhan,
China, http://www.cusabio.com/) according to the manufac-
turer’s instructions.
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2.9. Western Blotting. Total protein from sow endometria
and mouse uteri was extracted as described above. Equal
amounts of protein were loaded and separated on SDS-
PAGE gels and then transferred to PVDF membranes
(0.45 pm, Millipore, MA, USA). After blocking with 5% skim
milk or bovine serum albumin for 1h at room temperature,
membranes were incubated with corresponding primary
antibodies (Supplemental Table 2) overnight at 4°C. After
five washes with TBST, membranes were incubated with
DyLight 800-labeled secondary antibodies (Cell Signaling
Technology, MA, USA) for 2h at room temperature.
Membranes were washed and then visualized with the
Odyssey CLx (LI-COR, NE). Band densities were quantified
using the Image] software. 3-Actin was used as the loading
control.

2.10. RNA Preparation and Quantitative RT-PCR. Total RNA
was isolated using RNAiso Plus reagent (9109, Takara Bio,
Kusatsu, Japan), and cDNA was synthesized using the Prime-
Script RT reagent Kit with gDNA Eraser (RR047A, Takara
Bio, Kusatsu, Japan) according to the manufacturer’s instruc-
tions. Quantitative RT-PCR was performed in a LightCycler
96 system (Roche Diagnostics, Basel, Switzerland) using TB
Green® Premix Ex Taq™ II (Tli RNaseH Plus) (RR820A,
Takara Bio, Kusatsu, Japan) following the manufacturer’s
instructions. 3-Actin was used as an internal control. The
primers used in this work are presented in Supplemental
Table S3. Relative mRNA expression level was calculated
using the 244" method [26].

2.11. Cell Culture. Ishikawa cells and JAR cells were cultured
in the RMPI 1640 medium (Gibco, USA) supplemented with
10% fetal bovine serum (Gibco, Australia) in a humidified
atmosphere with 5% CO,.

2.12. ROS Level Measurement. ROS levels in mouse uteri and
Ishikawa cells were determined using the DCFH-FA kit
(Nanjing Jiancheng, Nanjing, China) according to the manu-
facturer’s instructions.

2.13. In Vitro Implantation Model. In vitro implantation was
performed using Ishikawa and JAR cells as described previ-
ously with minor modification [27]. A detailed protocol is
described in the Supporting Information.

2.14. Statistical Analysis. Results are expressed as the mean
+ SEM. For results of index measurements in serum and
endometria, qPCR, and western blot, data were analyzed by
Student’s ¢ test using SAS software (version 9.0). For the
results of the proteomics, t test, volcano plot, one-way
ANOVA, partial least squares-discriminant analysis (PLS-
DA) and post hoc analysis as well as correlation analysis were
used. p < 0.05 was considered significant.

3. Results

3.1. Proteomic Profiling of the Endometria from NRP Different
from LRP Sows. To explore the underlying mechanisms of
proliferative endometrial defects implicated in implantation
failure/loss, a label-free quantitative proteomic analysis was

performed using the proliferative endometria derived
from LRP and NRP sows. The experimental flowchart is
shown in Figure S1. SDS-PAGE bands and peptide length
distribution demonstrated the high reliability of sample
preparation for proteomic analysis (Figure S2). Based on at
least two unique peptides and the criteria of FDR < 0.01 on
both peptide and protein level, 148,268 peptides and 3,318
unique proteins were identified (Figure 1). Among them,
101 DEPs with p <0.05 and FC>1.50 (or FC < 0.67) were
identified. There were 52 upregulated proteins (red) and
49 downregulated proteins (green) (Figure 1(b)). Next,
expressions of five randomly selected proteins, including
cystatin-B  (CSTB), cathepsin S (CTSS), disintegrin and
metalloproteinase domain-containing protein 10 (ADAM10),
mitochondrial glutamate carrier 1 isoform X1 (SLC25A22), and
corticosteroid 11-beta-dehydrogenase isozyme 1 (HSD11B1)
were determined using western blot. As shown in Figures 1(e)-
1(j), high consistence between western blot and proteomic
data indicated the high reliability of our label-free proteomic
data. Based on PLS-DA analysis, LRP endometria could be
easily distinguished from NRP endometria (Figure 1(d))
indicating there may be a distinct regulatory network in
NRP and LRP endometria.

3.2. GO Enrichment Analysis of DEPs. To identify the differ-
ent regulatory networks in NRP and LRP endometria, we
next conducted GO annotation and enrichment analysis
based on DEPs. A total of 181 significantly enriched GO
terms (p < 0.05) were identified, including 55 cellular compo-
nent terms, 23 molecular function terms, and 103 biological
process terms. Then, ReviGO was used to process signifi-
cantly enriched GO terms, and Cytoscape was used to
present the grouped GO terms (Figure 2). As shown in cellu-
lar component terms (Figure 2(a)), DEPs were mainly
located in intracellular organelle parts and membranes,
spliceosomes, and electron transport chain complexes. Based
on enriched molecular function terms, we found that DEPs
were mainly related to binding functions and enzyme activi-
ties. Furthermore, 6 clusters of biological process terms
(Figure 2(c)), including the cluster related to organization,
assembling, and remodeling (®), the cluster related to
genetic information processing (®), the cluster related to sig-
naling and transduction (®), the cluster related to regulation
(@), the cluster related to substance metabolism ((®), and the
cluster related to transportation ((®), were enriched.

Of note, “collagen fibril organization,” “translation,”
“negative regulation of catabolism,” “cellular amide metabo-
lism,” and “organonitrogen compound metabolism” were the
4 most significantly enriched biological process terms, indi-
cating the important role of organization/remodeling, trans-
lation, and substance metabolism in regulating endometrial
function. More specifically, organization/remodeling-related
DEPs are involved in terms of “collagen fibril organization,”
“extracellular fibril organization,” “extracellular matrix struc-
tural constituent,” “extracellular structure organization,”
“basement membrane disassembly,” and “vesicle organization”
in LRP sows. Substance metabolism-related terms, such as
nitrogenous substances metabolism (L-amino acid transporta-
tion, nitrogenous compound metabolism), lipid metabolism
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FIGURE 1: Proteomic profiling of endometria from NRP different from LRP sows. (a) Identification summary of label-free quantitative
proteomic results. n=>5. (b) The scatter plot. Proteins with p <0.05 and fold change > 1.5 (or <0.67) were deemed as differentially
expressed proteins (DEPs). Upregulated and downregulated DEPs were shown in red and green, respectively. (c) A total of 52 proteins
were upregulated, and 49 were downregulated in the endometria of LRP sows. (d) Multivariate partial least squares-discriminant analysis
(PLS-DA) scatted plots clearly distinguished LRP endometria from NRP endometria. (e-i) Relative protein levels of CSTB, CTSS,
ADAM10, SLC25A22, and HSD11B1 were assessed by western blot (n = 3). 3-Actin was used as a loading control. (j) Fold change of those
proteins quantified in label-free proteomic data. LRP: low reproductive performance; NRP: normal reproductive performance. Fold
change, LRP sows relevant to NRP sows. Data are expressed as mean + SEM. Student’s ¢ test was used for statistical analysis. *p < 0.05.
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(“triglyceride catabolism,” “negative regulation of lipase activ-
ity,” “phospholipid efflux,” and “negative regulation of fatty
acid metabolic process”), and retinol metabolism, were found
in LRP proliferative endometria (Figure 2 and Figure S3).

3.3. KEGG Analysis of DEPs. To depict pathways that regulate
NRP and LRP endometrial function, KEGG enrichment
analysis was performed. The top 40 enriched pathways are
shown in Figure 3. These pathways were mainly related to
metabolic pathways (a), regulatory functions (b), immuno-
logical modulation (c), reproduction and development (d),
genetic information processing (e), and human diseases (f).
Of note, we found that “biosynthesis of amino acids” and
“protein digestion and absorption,” “oxidative phosphoryla-
tion,” and “citrate cycle (TCA cycle)” were significantly
enriched. Interestingly, pathways related to metabolic regula-
tion such as the “PI3K-AKT signaling pathway,” “insulin sig-
naling pathway,” and “mTOR signaling pathway,” which are
associated with organic insulin sensitivity [28], were also
enriched. In addition, the “toll-like receptor signaling path-

way,” “chemokine signaling pathway,” and “B cell receptor

signaling pathway” were enriched in the immune regulation
cluster.

3.4. Insulin Sensitivity Was Compromised in LRP Sows. As
indicated above, disrupted lipid and protein metabolism
and perturbed insulin signal were present in the endometria
of LRP sows evidenced by GO and KEGG enrichment analy-
sis. Given that endometrium is a peripheral tissue responsive
to insulin, we postulated there might be impaired insulin sen-
sitivity in the endometria of LRP sows. Therefore, lipid
metabolites and insulin signaling were determined in the
endometria of NRP and LRP sows. Levels of malonyl-CoA,
diacylglycerol (DAG), and ceramide were higher (p < 0.05)
(Figures 4(b)-4(d)), while leptin and AMP/ATP levels were
lower (p <0.05) (Figures 4(e)-4(h)) in the endometria of
LRP sows compared with those of NRP sows, indicating the
occurrence of abnormal lipid accumulation and oxidative
phosphorylation in the endometrium of LRP sows. Impor-
tantly, Ser phosphorylation of IRS-1 was diminished in the
LRP group (p < 0.05). The pl110« protein level was also sig-
nificantly reduced in the LRP group, while the p85a protein
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FIGURE 2: GO enrichment analysis of differentially expressed proteins. Clusters of GO terms (p < 0.05) for (a) cellular component, (b)
molecular function, and (c) biological process were visualized using ReviGO. Node color intensity is scaled according to the p value.

level tended to be decreased (p =0.089) compared with the
NRP group. Consistently, the phosphorylation of Akt and
AS160 was decreased in the endometria of LRP sows
(p <0.05) (Figure 4(i)). We also found that protein expres-
sion levels of GLUT4 (p=0.094) and GLUT2 (p=0.064)
tended to be decreased in LRP endometria compared with
NRP counterparts, although the GLUT1 protein level was
not altered in the endometria of sows with different repro-
ductive performance (Figure 4(j)). In addition, the IDH3B
protein level was lower in the endometria of LRP sows com-
pared with NRP (p < 0.05, Figure 4(j)). Collectively, these
data revealed that local insulin sensitivity was impaired in
LRP endometria compared with that in NRP endometria.
Furtherly, we assessed systematic alteration of insulin sen-
sitivity of NRP and LRP sows. As shown in Figure 4, concen-
trations of glucose and insulin were significantly increased in
the serum of LRP sows (p < 0.05), while no changes were
observed in TG, CHOL, and LDL-C (p > 0.05). Meanwhile,
the level of HDL-C tended to be decreased in the LRP group
(p < 0.1, Figure 4(m)). Noteworthy, the HOMA-IR score was
significantly increased in LRP sows, indicating that systematic
insulin sensitivity was impaired in LRP sows (Figure 4(0)).

3.5. Uterine Insulin Resistance Beginning before Pregnancy
Impacted Endocrine Status and Compromised Implantation
during Pregnancy. Insulin resistance during pregnancy links
to adverse reproductive outcomes [29-31]. For example,
diet-induced obesity and insulin resistance potentially impair
endometrial stromal cell decidualization in mice in early
stage pregnancy [31], insulin resistance during postimplanta-
tion period impairs mice uterine morphology, decidualiza-
tion, and placentation processes [29], and overfeeding prior
to parturition in dairy cows impaired insulin sensitivity and
that negatively affected fertility [30]. Based on these observa-
tions, we speculated that uterine insulin resistance before
pregnancy would negatively impact uterine functions and

lead to adverse pregnant performance. To verify this
hypothesis and further explore the possible mechanisms, an
insulin-resistant mouse model was established by continu-
ously feeding mice with a normal diet or HFD for 16~20
weeks beginning at 8 weeks of age. As expected, female mice
that consumed the HFD, but not the control diet, developed
glucose intolerance, insulin resistance (Figure S4), and
alterations in insulin signaling (Figure S5A) before
pregnancy. In addition, the aberrant higher glucose level
continued with advancing gestation (Figure S5B) in the
HFD group. Disruption of insulin signaling was confirmed
in uteri during the peri-implantation period (gestational
day 5). Briefly, protein expressions pIRSI, pAkt, and
PAS160 were significantly decreased (p < 0.05), and p110«
tended to be decreased (0.05 < p <0.1) in uteri of mice fed
HED (Figure 5(a)). Importantly, GLUT4 protein expression
was significantly depressed in the HFD group (Figure 5(a)),
implying aberrant glucose metabolism in the uterus of
HFD mice.

Next, we investigated the reproductive parameters under
uterine state of insulin resistance. We found that serum con-
centrations of estradiol increased (p <0.05) in the HFD
group compared with control-fed mice, but not the proges-
terone level (Figures 5(b) and 6(c)). Serum total cholesterol
and LDL levels increased in the HFD group (p <0.05,
Figure 5(d)). Moreover, expression levels of genes related to
implantation were analyzed, and mRNA expression levels
of Lif, Msxl, and Cldn4 were decreased (p <0.05), and
mRNA expression levels of Ifgl tended to be decreased
(p=0.07) in uteri of the HFD group on day 4 of the preg-
nancy (Figure 5(e)) compared with controls. Igfl, Lif, and
Itgb3 mRNA expression levels were decreased (p <0.05),
and the MsxI mRNA expression level was increased
(p<0.05) in the uterus of the HFD group on day 5 of the
pregnancy (Figure 5(f)). Additionally, diminished implanta-
tion sites on day 6 and fetal numbers on days 11 and 18 of the
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processing, and (f) human diseases.

pregnancy were observed (p < 0.05, Figures 5(g)-5(i)) in the  3.6. Mitochondrial Dysfunction-Induced Oxidative Stress in
HED group compared with the control. Collectively, these  the Uterus with Insulin Resistance during the Peri-
data suggested that uterine insulin resistance impacted uter-  Implantation Period. Mitochondrial dysfunction and endo-
ine receptivity, leading to reduced reproductive performance. ~ plasmic reticulum stress are features of peripheral insulin
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FIGURE 4: Serum and endometrial indicators implied a compromised insulin sensitivity in the endometria of LRP sows, compared with NRP
sows. Levels of (a) TG, (b) malonyl-CoA, (c) DAG, (d) ceramide, (e) leptin, (f) AMP, (g) ATP, and (h) AMP/ATP in endometrial tissues.
Representative blot (i) and quantification (k) of protein abundance of IRS1, p-IRS1 er307, p85a, pl10a, Akt, p—Aktser473, AS160, and
p—ASlGOThr462, and representative blot (j) and quantification (I) of protein abundance of GLUT4, GLUT2, GLUTI, and IDH3B in the
endometria. Serum levels of (m) glucose, TG, CHOL, HDL-C, LDL-C, and (n) insulin. (o) HOMA-IR scores were used to reflect insulin
sensitivity. n =3. Data are expressed as mean + SEM. Student’s ¢ test was used for statistical analysis. *p < 0.05. TG: triglyceride; CHOL:
cholesterol; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; TG: triglyceride; DAG: diacylglycerol;
NRP: normal reproductive performance; LRP: low reproductive performance.

resistance and type 2 diabetes at the molecular, cellular, and
organismal levels and might be the underlying cause of dis-
turbed tissue function and homeostasis [29, 32, 33]. Here,
we found that uterine mtDNA copy number tended to be
decreased in HFD uteri (p=0.07) compared with controls
at gestational day 5 (GD5), indicated by decreased Nd4
mRNA expression (Figure 6(a)). In addition, mRNA expres-
sion levels of genes involved in mitochondrial fusion (Mfnl,
Mfn2, and Opal), fission (Fis1) and biogenesis (PGCla, Erra,
and Nrfl), remodeling (Parl), and endoplasmic reticulum
stress status (Hspa5, Dd1t3, Hsp90bl, Erp44, Pdia3, Pdia4,
Atfb, Eif2ak2, Bax, and Caspasel2) were estimated in the
uterus at GD5 (Figure 6(b)). We found that mitochondrial
fusion and biogenesis were dysregulated, indicated by decreased
mRNA expression of PGCla, OPAI, Mfnl, and Mfn2 genes
(p < 0.05, Figure 6(b)), during the peri-implantation period in
HFD mouse uteri. By contrast, mRNA levels of genes related
to endoplasmic reticulum stress were not changed (Figure S6).

Considering the dysfunction in mitochondria as indi-
cated above, OXPHOS complex abundance, which is respon-
sible for mitochondrial ROS production, was determined in
uteri at GD5. As is shown in Figure 6(c), protein levels of
three key components (ATP5A1, UQCRC2, and NDUFBS)
of OXPHOS complexes tended to be increased in the HFD
group (p = 0.05 ~ 0.06), which was consistent with proteomic
data of sows which described that “mitochondrial organiza-
tion,” “mitochondrial morphogenesis,” and “mitochondrial
inner membrane” terms were dysregulated and respiratory
chain complexes (NDUFA5, NUDFV2, and NDUEFES5) were
significantly increased in the endometria of LRP sow. As a
result, uterine ROS production was increased in the
HED group at both GD4 (p<0.05) and GD5 (p < 0.05)
(Figure 6(d)). We further investigated the abundance of pro-
teins involved in oxidative stress defense and response path-
ways in uteri at GD5. The expression of SOD2 and PDI
deceased (p <0.05), while Apexl tended to be decreased
(p=0.09) in the HFD group compared with controls. In

addition, the expression of Keapl, cNrf2, and total Nrf2
decreased (p <0.05), while nNrf2 tended to be decreased
(p=0.09) in the HFD group (Figures 6(e) and 6(f)). Taken
together, these data suggested that uterine mitochondrial
dysfunction under insulin resistance differentially modulated
the oxidative stress response of the uterus during the peri-
implantation period.

3.7. ROS Overproduction Impaired Uterine-Embryo
Implantation In Vitro. Cellular ROS could directly affect bio-
logical functions and signaling pathways. We hypothesized
that cellular oxidative damage caused by ROS exposure
might underly uterine dysfunction at implantation. There-
fore, oxidative stress models were established by high glucose
or high insulin treatment in Ishikawa cells to investigate the
effect of elevated ROS production on embryo implantation
in vitro (Figure 6). Ishikawa monolayer cells were pretreated
with high glucose (41.1 mM) or high insulin (100, 500, or
1000nM) for indicated time and then cocultured with
CMFDA-labeled JAR cells. We found that ROS production
was increased after 36, 48, 72, and 96 h of high glucose treat-
ment (p < 0.05, Figure 7(a)). In vitro implantation indicated
by an adhesion rate was increased for 72h (p < 0.05), while
significantly decreased for 96h (p < 0.05) with high glucose
treatment (Figures 7(b) and 7(c)). Similarly, the ROS level
was increased by 100, 500, and 1,000 nM insulin treatment
for 72h (p <0.05, Figure 7(d)). The adhesion rate was
decreased by high insulin treatment for 72h (p <0.05,
Figures 7(e) and 7(f)). Collectively, these results indicated
that overproduction of ROS impaired uterine implantation.

4. Discussion

Implantation loss contributes greatly to the pregnancy loss
for humans and mammalian animals [9, 34]. To dissect the
underlying mechanism of proliferative endometrial defects
in implantation loss, a proteomic analysis of endometrium



12 Oxidative Medicine and Cellular Longevity

CON HFD
—— 0.25 10 p=0.08 L0
pIRST )
= 0.20 - g 08 g 08 T
IRSI|—~‘ ‘~-| & 015 2 06 I 06
3 o Q@
p110a|_ —— —I & 010 ok S 04 = 04
Y = 2
p85a |- e == — = | 0.05 i 2 0.2 &~ 0.2
- 0.00 T 0.0 0.0
_ - -~ g, ca - T . T
p-AKt jm. - — CON  HFD CON  HED CON  HFD
Akt [ S e e e ] 2.0 25 0.6
o T =]
ASIE0 [ m— — — — ] 15 T 20 g
P z 3 3 04
< < 15 Q@ T
A5160|_————_| E 1.0 \OD Q «
T —~ 1.0 =
(€105 7Y [ p———— R v 2 2 2 02
m - °
B-actin o - - o> = | 0.0 : 0.0 : 0.0 :
CON HFD CON HFD CON HFD
()
40 - 25 -
—_ * :]E\
g 30 - ES 20
o0
o, v 15 -
;g g 10
g 101 2
& g 3]
0 - A 0
CON HFD CON HFD

mmol/L
[} — [ 38}
Relative mRNA expression

— a9 — o (=} [a4] a4 <t
TC TG HDL LDL VLDL Lop = & 6 z 2 g E
m CON - = E 3 o
= HFD -
m CON
B HFD
(d) (e)
GDe6
g 25 * 20
% 2.0 4 ] 18 °
& Z 164 e x
g s £ 0] eesseee  um
= s 144 eb smm
=~ 1.0 " % =] e000 asEe
g ® —2 12{ oeeee [T]
Iy .
£ 054 E 10 .
=
& 00 8 T T
oORE 09 S oMo CON HFD
S =86 =a8¢ 7
- 2 EF S
jan)

® (®

FiGure 5: Continued.



Oxidative Medicine and Cellular Longevity

GDl11
20 *
[

2 o0
@ e00
g 15 oswe (1]
3 eoo
s ° -
=] ° T
= []
o 10 =
£

13
GD18

20
L *
= ° [
g s oo n
9] n
g= .:6;.
2 ° [
<
e o
=) 10 (TTT]
= 6

3 Lv—v—
CON  HFD

FiGure 5: High-fat-induced-uterine insulin resistance beginning before pregnancy impaired endocrine status and embryo implantation in
mice. Female mice of 8-week-age were fed with a CON diet or HFD (D12492 experimental diet) for 16 weeks and then mated with
normal male mice. Day 1 of pregnancy was considered as the day when vaginal plug was observed. Uterine tissues and serum were
collected at indicated time. (a) Representative blot and quantification of protein abundance of IRS1, p-IRS15™%, p85a, p110a, Akt, p-
Akt ™73 AS160, and p-AS160™"™°? in the uterus on day 5 of pregnancy. Levels of estradiol (b) and progesterone (c) and serum lipid
changes (d) were determined on day 5 of pregnancy. Uterine receptivity-related gene changes on days 4 (e) and 5 (f) of pregnancy and the
number of implantation site on days 6 (g), 11 (h), and 18 (i) of pregnancy were also recorded. Data are mean + SEM values (n = 6 for (b-f
), n=14-20 for (g)). Student’s t test was used for statistical analysis. *p < 0.05 and **p < 0.01. CON: control; HFD: high-fat diet.

from NRP and LRP sows was conducted in this study. GO
and KEGG enrichment analysis revealed that DEPs were
mainly involved in remodeling, immunological modulation,
substance metabolism, and insulin signaling.

The endometria in the early proliferative phase are fea-
tured by appropriate tissue remodeling, angiogenesis, and
modulation of immune function. During this period, the
endometria are characterized by marks of the onset of
expression of genes required for endometrial receptivity
and a dampening of estrogen responsiveness [35]. The obser-
vation of impaired immunological modulation endometrial
remodeling found in proliferative endometria of LRP sows,
therefore, suggested that remodeling and immunological
modulation defects in LRP proliferative endometrium might
contribute to compromised endometrial receptivity and sub-
sequent implantation loss in pregnancy.

In addition, pregnancy involves physiological changes
and metabolic adaptations week by week. Amino acid
requirement sharply increases during the peri-implantation
period [36-38]. Accordingly, amino acids accumulate in the
endometrium in response to progesterone [39]. Previous
practices have demonstrated that dietary supplementation
of amino acids, like arginine, leucine, or methionine, during
pregnancy improves implantation by simulation of the
PI3K/PKB/mTOR/NO signaling pathway, mTOR pathway
[40, 41], and SAMTOR/mTORC1/S6K1/CAD pathway
[42]. Besides, retinol metabolism and relevant signaling mol-
ecules, including binding proteins (CRBPs), synthesizing
enzymes (Aldhlal, Aldhla2, and CRBPI1), catabolizing
enzymes (Cyp26al), and receptors (RAR and RXR), are all
expressed in the uterus [43, 44], which lay the foundation
of retinol’s involvement in endometrial development and
maintenance, stromal decidualization, and blastocyst implan-
tation [45]. Consist with this, vitamin A deficiency impacts
histological and histochemical properties of the endometrium
[46] and decidualization process [47]. However, little is known
about amino acid or retinol metabolism related to endometrial
functions during the proliferative phase. Based on the observa-
tions of abnormalities of L-amino acid transportation, nitrog-

enous compound metabolism, and retinol metabolism found
in the endometria of LRP sow, we deduced that amino acid
and retinol metabolism might regulate in endometrial func-
tions during the proliferative phase.

What is more, high and low fertility endometria display
discrepancies in the lipid metabolism during middle and late
luteal phases, indicating that lipid metabolism is involved in
the luteal phase endometrial functionality [11, 12]. Our
group has proved that maternal short- and medium-chain
fatty acid supply during early pregnancy enhances uterine
phospholipid metabolism, leading to improved embryo sur-
vival [48]. Combined with the altered lipid metabolism
observed in LRP proliferative endometria, it is deducible that
lipid metabolism not only in the pregnancy period but also
before pregnancy regulates the endometrium function for
optimal pregnancy. Besides, long-chain acyl CoAs, DAG,
and ceramides activate a host of serine kinases which nega-
tively regulate insulin action [49]. Ceramide inhibits insulin
action through reducing phosphorylated Akt protein expres-
sion, while DAG increases PKC- action which impairs insu-
lin function via phosphorylation of IRS-1 [50]. Therefore,
together with these studies, our observations of elevated mal-
onyl-CoA, DAG, and ceramide in LRP endometria not only
confirmed dysfunctional lipid metabolism but also further
indicated a compromised uterine insulin sensitivity in LRP
sows. The IRS1/PI3K/Akt pathway is a cascade of central sig-
naling that mediates insulin’s functions in glucose homeosta-
sis in the body [51, 52]. Dysfunction of the IRS1/PI3K/Akt
pathway responses to the abnormal insulin sensitivity. Here,
we found alterations in the insulin signaling pathway, PI3K-
Akt signaling pathway, and its downstream mTOR signaling
pathway which were enriched in proteomic analysis and sup-
pressed IRS1-PI3K-Akt signaling in LRP endometrium, as
well as increased HOMA-IR index in LRP sows. Therefore,
we concluded that uterine insulin sensitivity was impaired
in LRP sows, which implied that proliferative endometrial
defects in insulin sensitivity may potentially be one underly-
ing mechanism of implantation loss. This thought is sup-
ported by that impaired glucose metabolism was observed
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FiGure 6: High-fat-induced-uterine insulin resistance beginning before pregnancy altered uterine mitochondrial function, leading to oxidative
stress during the peri-implantation period in mice. Female mice fed with a CON diet or HED for 16 weeks were mated with normal male mice.
The day when vaginal plug was observed was considered as day 1 of pregnancy. Uterine samples were collected on day 5 of pregnancy. Uterine
mtDNA copy number (a, #n =6), mitochondrial fission, and fusion genes (b, n=6) were evaluated by qPCR. OXPHOS complex protein
expressions were determined by western blotting with quantitation (c, n = 3). (d) Uterine ROS levels were determined using the DCFA-DA
kit (n=6). (e, f) Proteins involved in oxidative response (e) and defense (f) signaling pathway were determined by western blotting with
quantitation. Student’s ¢ test was used for statistical analysis. *p < 0.05 and **p < 0.01. CON: control; HED: high-fat diet.
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in nonimplantative IVF cycle using proteomic analysis of
endometrial fluid [53].

Insulin resistance during pregnancy links to adverse
reproductive outcomes. During the postimplantation period,
uterine hyperandrogenism and insulin resistance alter uter-
ine morphology and impair decidualization and placentation
processes [29]. Prior to parturition, overfeeding that induced
impaired insulin sensitivity negatively affected fertility [30].
Here, our finding is that impaired uterine insulin sensitivity
in the endometrium proliferative period was associated with
low litter size and that uterine insulin resistance beginning
before pregnancy lowers implantation sites and fetal number
which broaden our understanding on the importance of
appropriate insulin sensitivity before pregnancy.

Mitochondrial dysfunction and endoplasmic reticulum
stress are features of peripheral insulin resistance and type 2
diabetes at the molecular, cellular, and organismal levels and
might be the underlying cause of disturbed tissue function
and homeostasis [29, 32, 33]. It is reported that hyperandro-
genism and insulin resistance induce gravid uterine defects in
association with mitochondrial dysfunction and aberrant reac-
tive oxygen species production [29]. Therefore, together with
the evidences that “mitochondrial organization,” “mitochon-
drion morphogenesis,” and “mitochondrial inner membrane”
terms were dysregulated in the proliferative endometrium of
LRP sows and that uterine insulin resistance beginning before
pregnancy induced mitochondrial dysfunction (evidenced by
decreased Mfn2, Opal, and FisI) during the implantation win-
dow in mouse uteri from the HFD group, we concluded that
mitochondrial dysfunction, but not the endoplasmic reticulum
stress, underlaid uterine insulin resistance-induced impaired
reproductive performance.

Mitochondrial dysfunction will lead to oxidative stress.
Agarwal et al. have reported the development of spontaneous
and recurrent miscarriage associated with ROS-induced
oxidative stress [54]. Therefore, our evidence that ROS pro-
duction was increased in HFD mouse uteri implied that
mitochondrial dysfunction-induced ROS overproduction
was the underlying mechanism of insulin resistance-
induced pregnancy loss. In support with this, we demon-
strated that the increased ROS level decreased implantation
rate in vitro. In addition, in consistent with the elevated
ROS, oxidative stress response (SOD2 and PDI) and defense
(Nrf2) pathways were dysregulated. SOD2 protein expres-
sion was decreased in our current observations of HFD mice.
Nrf2, a critical transcriptional factor that regulates cellular
redox homeostasis [55], is suppressed in the gravid uterus
in PCOS-like pregnant rats [29], and mice specifically lacking
Nrf2 increase oxidative stress and display impaired fetal
development and placental function [56]. As the transcrip-
tional product of Nrf2, decreased SOD2 protein expression
might respond to the decreased Nrf2, and PDI decreased as
a supplement. Collectively, these data demonstrated that dete-
riorated uterine function through mitochondrial dysfunction
elevated oxidative stress under the insulin-resistant state, lead-
ing to compromised implantation sites and fetal numbers.

In conclusion, the current study demonstrated that
uterine insulin resistance beginning before pregnancy
resulted in implantation and fetal loss through mitochondrial

Oxidative Medicine and Cellular Longevity

dysfunction-induced oxidative stress. Nutritional strategies
(especially those targeting lipid, nitrogenous, and retinol
metabolism) could be applied before pregnancy to improve
insulin sensitivity and enhance endometrial preparation,
which optimize well reproductive outcomes.
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