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Abstract
Homeostatic control of blood glucose is regulated by a complex feedback loop between glu-

cose and insulin, of which failure leads to diabetes mellitus. However, physiological and

pathological nature of the feedback loop is not fully understood. We made a mathematical

model of the feedback loop between glucose and insulin using time course of blood glucose

and insulin during consecutive hyperglycemic and hyperinsulinemic-euglycemic clamps in

113 subjects with variety of glucose tolerance including normal glucose tolerance (NGT),

impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM). We analyzed the

correlation of the parameters in the model with the progression of glucose intolerance and

the conserved relationship between parameters. The model parameters of insulin sensitivity

and insulin secretion significantly declined from NGT to IGT, and from IGT to T2DM, respec-

tively, consistent with previous clinical observations. Importantly, insulin clearance, an insu-

lin degradation rate, significantly declined from NGT, IGT to T2DM along the progression of

glucose intolerance in the mathematical model. Insulin clearance was positively correlated

with a product of insulin sensitivity and secretion assessed by the clamp analysis or deter-

mined with the mathematical model. Insulin clearance was correlated negatively with post-

prandial glucose at 2h after oral glucose tolerance test. We also inferred a square-law

between the rate constant of insulin clearance and a product of rate constants of insulin sen-

sitivity and secretion in the model, which is also conserved among NGT, IGT and T2DM

subjects. Insulin clearance shows a conserved relationship with the capacity of glucose dis-

posal among the NGT, IGT and T2DM subjects. The decrease of insulin clearance predicts

the progression of glucose intolerance.
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Introduction
A feedback loop linking insulin and glucose plays an essential role in glucose homeostasis [1].
This feedback loop, in which an increase in the blood glucose level stimulates insulin secretion
and an increase in blood insulin concentration lowers the blood glucose level, has been ana-
lyzed with regard to two major aspects: insulin secretion and insulin sensitivity [2]. A number
of clinical indices that reflect these two aspects have been proposed and shown to be of use for
analysis of glucose homeostasis and the pathology of glucose intolerance [3]. Given that these
indices are usually determined by blood parameters under specific conditions [3], however, it
is unclear whether they reflect all aspects of insulin secretion and insulin sensitivity.

Application of a mathematical model is one approach to overcome the limitation of actual
measurement of clinical parameters [4–18]. The minimal model, derived from time series data
of a frequently sampled intravenous glucose tolerance test (FSIVGTT), is an example of a suc-
cessful mathematical model for assessment of glucose homeostasis [19, 20]. Mathematical
models based on time series data of an oral glucose tolerance test (OGTT) have also been devel-
oped and shown to be of clinical utility [21–30]. However, given that blood glucose and insulin
levels during an FSIVGTT or OGTT are mutually influenced via the negative feedback loop, it
is difficult to accurately determine parameters for insulin sensitivity and insulin secretion, and
a key feature of the negative feedback loop may therefore remain to be uncovered.

An ideal approach to the study of biological phenomena regulated by a feedback loop is to
analyze time series data obtained after severance of the feedback relation by clamping one of
the components. In this study, to further understand the regulation of glucose homeostasis.
We thus generated mathematical model with time series data of consecutive hyperglycemic
and hyperinsulinemic-euglycemic clamps, in which indices for insulin secretion and insulin
sensitivity are independently evaluated without an effect of the feedback relation. We have ana-
lyzed parameters of the model to uncover previously unrecognized relation in factors that regu-
late the capacity of glucose tolerance

Results

Mathematical model based on time series data of consecutive
hyperglycemic and hyperinsulinemic-euglycemic clamps
We developed a mathematical model of the feedback loop that links glucose and insulin with
the use of time series data of blood glucose and insulin concentrations during consecutive
hyperglycemic and hyperinsulinemic-euglycemic clamps (Fig 1A). In this model, the variables
G and I represent blood glucose and insulin concentrations, respectively. The variable Y is
affected by G and corresponds to the effective glucose concentration on induction of variable
X, which can be regarded as insulin secreted from pancreatic β-cells. G regulates I through Y
and X, and I directly regulates G, constituting the feedback loop.

Fluxes in the model indicate the flux between variables. Fluxes that regulate insulin secretion
are flux 5, flux 6, and flux 7, where flux 5 depends on Y and corresponds to insulin secretion in
response to an effective glucose concentration, and whose parameter k5 corresponds to the rate
constant of insulin secretion; flux 6 depends on X and corresponds to systemic circulation of
insulin from the pancreas to target organs; and flux 7 depends on I and corresponds to insulin
clearance, and whose parameter k7 corresponds to the rate constant of insulin clearance. Fluxes
that regulate insulin sensitivity are flux 3 and flux 4, where flux 3 is inhibited by I and corre-
sponds to glucose production by target organs, and flux 4 depends on both G and I and corre-
sponds to glucose uptake that is facilitated by both glucose and insulin. Systemic circulation of
glucose from the pancreas or of infused glucose to target organs is represented by flux 1,
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whereas flux 2 corresponds to circulation of glucose to the pancreas. Influx G and influx I cor-
respond to infused glucose and insulin during the consecutive hyperglycemic and hyperinsuli-
nemic-euglycemic clamps, respectively.

We estimated parameters of the model for each of 113 subjects (47 NGT, 16 IGT, and 50
T2DM subjects) (S1 Table) using normalized data of the consecutive hyperglycemic and hyper-
insulinemic-euglycemic clamps. We simulated the time course of blood glucose and insulin
concentrations in the clamp analyses, with one example each of NGT, IGT, and T2DM subjects
being shown in Fig 1B and the results for all subjects in S1 Fig.

To confirm that the simulation appropriately reflects characteristics of the subjects, we eval-
uated the consistency between the clinical indices calculated from the actual measurements
and those calculated from the simulation data. ISI calculated from the time course of blood glu-
cose and insulin concentrations in the simulation was greater for NGT subjects than for IGT or
T2DM subjects, whereas it did not differ significantly between the latter two groups of subjects
(Fig 1C). AUCIRI10 calculated in the simulation was similar in NGT and IGT subjects and sig-
nificantly greater in these two groups than in T2DM subjects. These characteristics of ISI and
AUCIRI10 in the simulation mimicked those calculated from the actual measurements (Fig 1D).
The disposition index (DI), originally defined as the product of indices for insulin secretion
and insulin sensitivity determined by the minimal model [19], is thought to reflect the capacity
for insulin secretion adjusted for insulin sensitivity and therefore to represent the integrated
capacity for glucose disposal. An analog of DI determined by consecutive glucose clamps
(clamp DI) has been shown to possess clinical characteristics similar to those of the original DI
[31]. A simulated clamp DI, the product of simulated ISI and simulated AUCIRI10, decreased
significantly with progression from NGT to IGT to T2DM (Fig 1C). This characteristic was
also similarly observed with clamp DI calculated from the actual measurements (Fig 1D).
These results thus suggested that the simulation model retains well the essential characteristics
of the capacity for glucose disposal among the study subjects.

Parameters in the model characterize progression of glucose
intolerance
To identify parameters that characterize the progression of glucose intolerance, we investigated
specific parameters of the model that differed significantly among the NGT, IGT, and T2DM
groups. We plotted the estimated parameter distributions in the three groups of subjects and
subjected them to statistical analysis with the nonparametric Steel-Dwass test [32] (Fig 2). The
parameters Y0 and k5 differed significantly between T2DM and the other two groups; k4 dif-
fered significantly between NGT and the other two groups; and k2 and k7 differed significantly
among all three groups of subjects.

Y0 is the initial effective blood glucose concentration for insulin secretion (Fig 1A), which
corresponds to the fasting plasma glucose (FPG) concentration in the actual measurements. It
is thus reasonable that Y0 is greater in T2DM subjects than in the other two groups. The
parameter k4 is the rate constant for glucose uptake facilitated by insulin and glucose (Fig 1A),

Fig 1. Feedback model represents essential features of NGT, IGT, and T2DM subjects. (A) The structure of the feedback model. Arrows indicate fluxes,
and lines ending in circles or bars indicate activation and inactivation, respectively.Φ denotes a fixed value. Functions f1(t) and f2(t) are described in
Materials and Methods. (B) The time courses of blood glucose, blood insulin, infused (In.) glucose, and infused insulin for typical NGT, IGT, and T2DM
subjects. Red circles and blue curves are actual measurement data and simulation results, respectively. The simulated values of each variable were rescaled
to absolute concentration and plotted. Periods of hyperglycemic and hyperinsulinemic-euglycemic clamps are indicated at the top. (C, D) The insulin
sensitivity index (ISI), insulin secretion as the incremental area under the curve of immunoreactive insulin concentration during the first 10 min (AUCIRI10) of
the hyperglycemic clamp, and the clamp disposition index (DI), which is given by the product of ISI and AUCIRI10, both for the simulation (C) and actual
measurements (D). Note that the indices in the simulation are calculated by normalized time course, and are dimensionless value. *P < 0.05, **P < 0.01 by
the Steel-Dwass test. NS, not significant.

doi:10.1371/journal.pone.0143880.g001
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which conceptually corresponds to insulin sensitivity, and the result that k4 for NGT subjects
was significantly higher than that for IGT or T2DM groups is consistent with the finding that
both simulated and actual ISI for IGT or T2DM groups was lower than that for NGT (Fig 1C
and 1D). The parameter k5, the rate constant for insulin secretion, conceptually corresponds to
the capacity for insulin secretion. The finding that k5 for the T2DM group was significantly
smaller than that for the NGT or IGT groups thus indicated that insulin secretion is reduced in
T2DM subjects compared with NGT and IGT subjects, consistent with the result that both sim-
ulated and actual AUCIRI10 values for T2DM were smaller than those for the other two groups
(Fig 1C and 1D).

We next performed parameter sensitivity analysis for ISI and AUCIRI10 in the simulation
(S3 Table) in order to evaluate the sensitivity of each parameter for reproduction of the simu-
lated time courses of blood glucose and insulin concentrations. We examined all 70 parameters
including the seven rate constants (k1 to k7), the 21 products of each pair of rate constants, and
the 42 quotients for each two rate constants. This analysis revealed that the most sensitive
parameter for ISI was k4, and that for AUCIRI10 was k7, although k5 was also one of the most
sensitive parameters for AUCIRI10 (S3 Table). These results are consistent with the functional
roles of k4 (insulin sensitivity) and k5 (insulin secretion) in the feedback model.

The product of k4 and k5 (k4�k5), which conceptually corresponds to DI, decreased signifi-
cantly with progression from NGT to IGT to T2DM (Fig 2B), as did the simulated and actual
DIs (Fig 1C and 1D). Of note, the parameter k7, the rate constant of insulin clearance, also sig-
nificantly declined with such progression (Fig 2B). These results thus suggested that k7 is corre-
lated with k4�k5, with DI, and, consequently, with the capacity for glucose disposal.

Although k2, the rate constant for flux from glucose to effective glucose for insulin secretion,
differed significantly among the three groups, it decreased in the rank order T2DM> NGT>

IGT, indicating that k2 does not represent progression of glucose intolerance. The physiological
relevance of this difference remains to be elucidated.

Parameters that characterize the ability of glucose disposal
Given that our results suggested that the rate constant for insulin clearance, k7, might be related
to the capacity for glucose disposal, we next examined the correlation between parameters of
the mathematical model and various clinical indices determined by the OGTT performed in
each subject (S4 Table and S2 Fig). Among the 70 parameters consisting of each rate constant
as well as the products and quotients for each pair of rate constants, k7 showed the highest cor-
relation with 90-min plasma glucose (PG) and AUCPG values, the latter being the integrated
glucose concentration during the OGTT, as well as the second highest correlation with FPG,
60-min PG, and 120-min PG during the OGTT (S4 Table and Fig 3A), indicating that k7 is
highly correlated with the capacity for glucose disposal. An analog of DI calculated from
parameters measured during an OGTT (oral DI) has been proposed and shown to possess
characteristics similar to those of the original DI (Materials and Methods). We found that k7
also exhibited the highest correlation with oral DI (Fig 3A), whereas the correlation of k7 with
each index of insulin sensitivity or insulin secretion, including the components of oral DI (Mat-
suda index and AUCIRI120/PG120), was not especially high (S4 Table). The tight relation between
the capacity for glucose disposal and k7 was thus confirmed by the results of the OGTT. In

Fig 2. Parameters in the feedbackmodel characterize glucose tolerance in NGT, IGT, and T2DM
subjects. (A) The estimated parameters for NGT (green), IGT (red), and T2DM (blue) subjects. (B) The
parameters for NGT, IGT, and T2DM subjects, with k4, k5, k7, and k4�k5 being rate constants of insulin
sensitivity, insulin secretion, insulin clearance, and DI, respectively. *P < 0.05, **P < 0.01 (Steel-Dwass test).

doi:10.1371/journal.pone.0143880.g002
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addition, k7 showed the highest correlation with the insulinogenic index (Fig 3A), which is
thought to be an important determinant of the capacity for glucose disposal.

The parameter that exhibited the highest correlation with MCR (metabolic clearance rate)
calculated from the insulin infusion rate and circulating insulin levels during hyperinsuline-
mic-euglycemic clamp analysis [33], was k7 (S4 Table and Fig 3A). MCR is a clinical index of
insulin clearance rate, and corresponds to k7 in the mathematical model. However, MCR
was not highly correlated with either 30-min PG (r = –0.22), 60-min PG (r = –0.22), 90-min
PG (r = –0.16), 120-min PG (r = –0.17), AUCPG (r = –0.20), oral DI (r = 0.23), or clamp DI

Fig 3. Model parameters that characterize clinical indices of glucose tolerance. (A) The scatter plots for k7 in the model versus actual measured clinical
indices. Each circle corresponds to the values for a single subject. Green, red and blue indicate NGT, IGT, and T2DM subjects, respectively; r is the
correlation coefficient; and P values are for testing the hypothesis of no correlation. The distribution of k7 and plasma glucose concentration (PG) at individual
time points during the OGTT was fitted by a power function (see Materials and Methods), which is also indicated at the top of the corresponding plots. RSS,
residual sum of the square between the parameter and the fitted curve. I.I., insulinogenic index; MCR, metabolic clearance rate. (B) The scatter plots for the
indicated parameters in the model versus clinical indices for both actual measurements and the simulation, as indicated. The units of the indicated indices are
shown in Materials and Methods.

doi:10.1371/journal.pone.0143880.g003
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(r = 0.32) (S5 Table and S3 Fig). It should be noted that MCR is not exactly the same as insulin
clearance; MCR indicates the ratio between insulin infusion rate and blood insulin level at
steady state whereas k7 indicates the rate of insulin degradation, which is denoted as insulin
clearance in this study.

Conserved relationship between insulin clearance and clinical indices
The clinical indices that differed significantly among each of the NGT, IGT, and T2DM groups
were actual and simulated clamp DI (Fig 1C and 1D), and the parameters in the model that dif-
fered significantly among each of the three groups were k7 and k4�k5 (Fig 2B). We therefore
examined the correlation between clamp DI and these model parameters (Fig 3B). The actual
and simulated clamp DI showed a high correlation with both k7 and k4�k5. The similarity
between k7 and k4�k5 suggests the existence of an unrecognized relation between insulin clear-
ance and both insulin sensitivity and insulin secretion. We further investigated the relation
between k4�k5 and k7 by fitting their distribution with a power function, with the power index
appearing to be 1.98 (Fig 4A), indicative of a square-law relation between k7 and k4�k5 (Eq 1 in
Fig 4C). We plotted the distribution of k4, k5, and k7 in a contour plot (Fig 4B), with each
parameter appearing along the curve surface of the square-law equation. Analysis of our math-
ematical model thus allowed us to infer the hidden square-law relation between two function-
ally different parameters, k4�k5 and k7.

Discussion
In this study, we estimated parameters from the time courses of consecutive hyperglycemic
and hyperinsulinemic-euglycemic clamps and inferred a square-law relation between the rate
constant of insulin clearance (k7) and the product of the rate constants of insulin sensitivity
(k4) and insulin secretion (k5) (Eq 1 in Fig 4C). Of note, the right and left sides of the fitted

equation in Fig 4A have the same dimension, and the ratio between k7 and
ffiffiffiffiffiffiffiffiffiffiffiffi
k4 � k5

p
always

remains constant among NGT, IGT, and T2DM subjects. The ratio between k7 and
ffiffiffiffiffiffiffiffiffiffiffiffi
k4 � k5

p
may therefore indicate a homeostasis constant of glucose tolerance that constrains the rate con-
stant of insulin clearance as well as those of insulin sensitivity and insulin secretion. As far as
we are aware, such a relation between insulin secretion, sensitivity, and clearance has not previ-
ously been proposed on the basis of actual measurement of clinical indices. The reason why we
have discovered this relation may be because of using both consecutive hyperglycemic and
hyperinsulinemic-euglycemic clamps and mathematical modeling. Hyperglycemic clamp data
involves quantitative relation between insulin clearance and secretion, and hyperinsulinemic-
euglycemic clamp data involves quantitative relation between insulin clearance and sensitivity.
In addition, because model structure constrained the relation between insulin clearance, secre-
tion and sensitivity, parameter estimation based on consecutive hyperglycemic and hyperinsu-

linemic-euglycemic clamps uncovered quantitative relation between k7 and
ffiffiffiffiffiffiffiffiffiffiffiffi
k4 � k5

p
conserved

among NGT, IGT, and T2DM subjects. Our study has thus elucidated an unrecognized relation
between factors that play important roles in the regulation glucose homeostasis.

The role of insulin clearance in glucose intolerance has thus far been studied, however, the
role of insulin clearance remains controversial. Insulin clearance has been reported to be nega-
tively correlated with the progression of glucose intolerance [34–40]. On the other hand, it has
been reported that insulin clearance is increased in subjects carrying diabetes-susceptible gene
[41], and that insulin clearance is not affected by decreasing insulin secretion by free fatty acid
administration [42]. The controversial role of insulin clearance may be because the data
obtained by OGTT or single clamp alone contain less information regarding insulin clearance
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than that obtained by the consecutive clamps in this study, or because the insulin clearance
directly calculated from the measured data is less quantitative than that obtained by the mathe-
matical modeling. Our study strongly supports the conclusion in the former studies [34–40].

Insulin secretion and insulin sensitivity are thought to determine the capacity for glucose
disposal, and DI, defined as the product of indices for these two parameters, has indeed been
shown to reflect the integrated capacity for glucose disposal. Given that k4�k5 conceptually cor-
responds to DI, it is not surprising that it correlates with parameters for glucose disposal to a
certain extent. An unexpected finding in the current study, however, is that k7, the rate constant
of insulin clearance, showed the highest or one of the highest correlations with PG level as well
as with AUCPG during an OGTT (Eq 2 in Fig 4C). This finding, together with the high correla-
tions of k7 with oral and clamp DIs, is indicative of the strong relation between insulin clear-
ance and the capacity for glucose disposal.

Although our analysis suggests the existence of a previously unrecognized relation among
the three important components of insulin-regulated glucose homeostasis—insulin secretion,
insulin sensitivity, and insulin clearance—the mechanism for the overall control of these com-
ponents remains unknown. Insulin is degraded in cells after its receptor-mediated internaliza-
tion, with this internalization being tightly linked to the intrinsic tyrosine kinase activity of the
insulin receptor, a key signaling function of this protein [43]. Both insulin clearance and insulin
sensitivity may thus be strongly influenced by the integral of the abundance and activity of the
insulin receptor. Indeed, insulin clearance in the liver has been shown to be an important deter-
minant of insulin sensitivity in dogs [44]. Insulin secretion in the living body manifests a pulsa-
tile pattern, and the maintenance of this pattern is thought to be important for both insulin
sensitivity and glucose tolerance. Although the mechanistic link between pulsatile insulin
secretion and insulin sensitivity is not fully understood, we have recently shown that certain
elements of insulin signaling respond not to the absolute value but to the temporal profile of
insulin concentration [45, 46]. Loss of the pulsatile pattern of insulin secretion induced by par-
tial pancreatectomy was also found to result in a decrease not only in insulin sensitivity but
also in insulin clearance [47]. Theoretically, if insulin clearance is impaired, the retention
period of circulating insulin would be expected to be prolonged and rapid temporal changes in
insulin secretion would not be well reflected by circulating insulin levels [48], suggesting that
the pulsatile pattern is observed only when insulin clearance is fully operative. We found that
k7 also showed the highest correlation with the insulinogenic index, an index of early insulin
secretion. It is possible that the higher k7 is, the more the rapid temporal changes in insulin
secretion are reflected in circulating insulin levels. A high level of insulin clearance is thus likely
important for full transmission of information from pancreatic β-cells to the whole body. This
notion may be related, at least in part, to the underlying relation between the secretion, sensi-
tivity, and clearance of insulin.

Many mathematical models of systemic insulin-glucose dynamics have been reported [5–
20, 23, 25]. One of the differences between these previous models and the present model is
incorporation of the infusion of glucose and insulin in our model. Another key difference is

Fig 4. Square-law relation between rate constants of insulin clearance (k7) and DI (k4�k5). (A) The
scatter plot of k7 and k4�k5, with circles indicating the parameters of each subject and the curve fitted with the
estimated power function shown at the top. The boxed region in the left plot is expanded in the plot on the
right. (B) The contour plot of k4, k5, and k7 (upper left), with the value of k7 being indicated by colors, as well as
three-dimensional plots of k4, k5, and k7, where circle colors of green, red and blue indicate NGT, IGT, and
T2DM subjects, respectively. RSS was 0.0168. Parameters with k4 � 0.3 and k5 � 0.3 are plotted. (C) The
square-law relation (Eq 1) and the inverse proportion relation (Eq 2) inferred from the feedback model.
PGOGTT indicates postprandial plasma glucose level at each time point during the OGTT. (D) The relation
between clinical indices and parameters in the model. Solid arrows indicate the relations for which |r|� 0.5.

doi:10.1371/journal.pone.0143880.g004
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that we performed both hyperglycemic and hyperinsulinemic-euglycemic clamps, which
allowed us to evaluate indices for insulin secretion and insulin sensitivity without an effect of
the feedback relation. To examine whether both hyperglycemic and hyperinsulinemic-euglyce-
mic clamps are necessary to uncover the relation between insulin clearance and glucose intoler-
ance, we estimated parameters using hyperglycemic or hyperinsulinemic-euglycemic clamp
data alone, and found that insulin clearance did not significantly differ between three groups
(S4 Fig). In the model with hyperinsulinemic-euglycemic clamp, insulin clearance declined
from NGT to IGT, suggesting that addition of hyperglycemic clamp data is necessary to find
the difference of insulin clearance from IGT to T2DM.

In conclusion, our mathematical analysis has revealed that the rate constant of insulin clear-
ance represents both the capacity for glucose disposal and a product of insulin sensitivity and
insulin secretion among subjects with a range of glucose tolerance (Fig 4D). Further elucidation
of underlying mechanism of this law may provide important insight into the physiology of glu-
cose homeostasis and the pathology of glucose intolerance.

Materials and Methods

Subjects and measurements
Study subjects were recruited as described previously [31] at Kobe University Hospital from
October 2008 to June 2014. The study was approved by the ethics committee of Kobe Univer-
sity Hospital, and written informed consent was obtained from all subjects. Consecutive hyper-
glycemic and hyperinsulinemic-euglycemic clamp analyses as well as a standard 75-g OGTT
were performed within a period of 10 days as described previously [31]. In brief, before the
onset of the consecutive clamp analyses, fasting plasma glucose and serum insulin concentra-
tions were measured as the data for time zero. From 0 to 90 min, a hyperglycemic clamp was
performed by intravenous infusion of a bolus of glucose (9622 mg/m2) within 15 min followed
by that of a variable amount of glucose to maintain the plasma glucose level at 200 mg/dL. Ten
minutes after the end of the hyperglycemic clamp, a 120-min hyperinsulinemic-euglycemic
clamp was initiated by intravenous infusion of human regular insulin (Humulin R, Eli Lilly
Japan K.K.) at a rate of 40 mUm–2 min–1 and with a target plasma glucose level of 90 mg/dL.
For NGT and IGT subjects whose plasma glucose levels were<90 mg/dL, the plasma glucose
concentration was clamped at the fasting level. We measured the plasma glucose level every
1 min during the clamp analyses and obtained the 5-min average values. We also measured
the insulin level in serum samples collected at 5, 10, 15, 60, 75, 90, 100, 190, and 220 min after
the onset of the tests. First-phase insulin secretion during the hyperglycemic clamp was
defined as the incremental area under the immunoreactive insulin (IRI) concentration curve
(μUmL–1 min) from 0 to 10 min (AUCIRI10). An index of insulin sensitivity derived from the
hyperinsulinemic-euglycemic clamp, the insulin sensitivity index (ISI), was calculated by divid-
ing the mean glucose infusion rate during the final 30 min of the clamp (mg kg–1 min–1) by
both the plasma glucose (mg/dL) and serum insulin (μU/mL) levels at the end of the clamp
and then multiplying the resulting value by 100. A clamp-based analog of the disposition
index, which we termed the clamp disposition index (clamp DI), was calculated as the product
of AUCIRI10 and ISI, as described previously [31]. The metabolic clearance rate (MCR) [33], an
index of insulin clearance, was calculated by dividing the insulin infusion rate at the steady
state (1.46 mU kg–1 min–1) by the increase in the insulin concentration above the basal level in
the hyperinsulinemic-euglycemic clamp as described previously [31]: [1.46 (mU kg–1 min–1) ×
body weight (kg) × body surface area (m2)/(end IRI–fasting IRI) (μU/mL)], where body surface
area is defined as [(body weight (kg))1/2 × (body height (cm))1/2 / 60] (Mosteller formula). Cal-
culation of other clinical indices is described in the following section (Calculation of Clinical
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Indices). Fifty NGT, 18 IGT, and 53 T2DM subjects (121 in total) were initially used for param-
eter estimation. Three NGT, two IGT, and three T2DM subjects were subsequently eliminated
as outliers (see Determination of parameter outliers below), and the remaining 47 NGT, 16
IGT, and 50 T2DM subjects were studied (S1 Table). The actual data for all 121 subjects are
shown in S6 Table.

Mathematical model
We constructed the feedback model (Fig 1A) as follows:

dG
dt

¼ flux 1� flux 2þ flux 3� flux 4 ¼ k1 � Y � k2 � Gþ k3
1þ I

� k4 � G � I
dI
dt

¼ flux 6� flux 7 ¼ k6 � X � k7 � I
dY
dt

¼ �flux 1þ flux 2þ influx G ¼ �k1 � Y þ k2 � Gþ f1ðtÞ
dX
dt

¼ flux 5� flux 6þ influxI ¼ k5 � Y � k6 � X þ f2ðtÞ

where the variables G and I denote normalized blood glucose and insulin concentrations,
respectively (see Parameter estimation below), and the model parameters for each subject are
estimated to reproduce the time course of the corresponding clamp data. The actual glucose
infusion rate (GIR [mg kg–1 min–1]) and insulin infusion rate (IIR [mU kg–1 min–1]) were con-
verted to the corresponding blood concentrations (cGIR and cIIR, respectively) as follows:

cGIRðmg dL�1 min�1Þ ¼ GIRðmg kg�1min�1Þ � BW
BW � BV � 100

cIIRðm U mL�1min�1Þ ¼ IIRðmU kg�1min�1Þ � BW
BW � BV � 1000

where BW and BV denote body weight and blood volume (75 and 65 mL/kg for men and
women, respectively [49]), respectively.

In the model, glucose and insulin infusions are represented by influx G and influx I, respec-
tively. These fluxes follow the nonlinear functions f1 and f2 that predict glucose and insulin
infusion concentrations, respectively. Given that the infusion protocol differed between hyper-
glycemic (from 0 to 90 min) and hyperinsulinemic-euglycemic (from 100 to 220 min) clamps,
the functions of the infusion rates also differ between the hyperglycemic clamp (f 0–90) and the
hyperinsulinemic-euglycemic clamp (f 100–220) and are given by the following equations:

f 0�90
1 ðtÞ ¼ gc1 � expðgc2 � tÞ þ gc3; f 0�90

2 ðtÞ ¼ 0

f 100�220
1 ðtÞ ¼ gi1 �

ððt � 100Þ=gi3Þgi2
1þ ððt � 100Þ=gi3Þgi2

; f 100�220
2 ðtÞ ¼ ii1 � expðii2 � ðt � 100ÞÞ þ ii3

From 90 to 100 min, the values of f1 and f2 were fixed at 0 (mg dL–1 min–1 or μU dL–1 min–1).
The parameters gcj, gij, and iij (j = 1, 2, 3) are estimated to reproduce infusion rates for each sub-
ject with a nonlinear least squares technique [50].

We also considered alternative infusion patterns of influx G to G or Y, and influx I to I or X
(Equations in S2 Table). Each pattern was fitted to the clamp data, and compared based on
residual sum of the square (RSS) (see below) for each subject (S2 Table). The above model (Fig
1A), influx G to Y and influx I to X, appeared to be the best model.

A Conserved Insulin-Glucose Homeostatic Law

PLOSONE | DOI:10.1371/journal.pone.0143880 December 1, 2015 12 / 19



Parameter estimation
Blood glucose and insulin concentrations of each subject were normalized by dividing them by
the respective maximum value of each time course. The model parameters for each subject
were estimated to reproduce the normalized time course by a meta-evolutionary programming
method to approach the neighborhood of the local minimum, followed by application of the
nonlinear least squares technique to reach the local minimum [51]. For these methods, the
parameters were estimated to minimize the objective function value, which is defined as resid-
ual sum of the square (RSS) between the actual time course obtained by clamp analyses and the
model trajectories. RSS is given by the equation

RSS ¼ nI

nG þ nI

XnG
i¼1

½GðtiÞ � GsimðtiÞ�2 þ
nG

nG þ nI

XnI
i¼1

½IðtiÞ � IsimðtiÞ�2

where nG and nI are the total numbers of time points of measuring blood glucose and insulin,
respectively, for the hyperglycemic and hyperinsulinemic-euglycemic clamps, ti is the time of
i-th time point, G(t) is the time-averaged blood glucose concentration within the time range
(t – 5) min to tmin with every 1-min interval, and I(t) is the blood insulin concentration at
tmin. Gsim(t) and Isim(t) are simulated blood glucose and insulin concentrations, calculated in
the same way as G(t) and I(t), respectively. The numbers of parents and generations in the
meta-evolutionary programming were 400 and 4000, respectively. The model parameters for
all subjects are shown in S7 Table.

Determination of parameter outliers
The outliers of model parameters were detected by the adjusted outlyingness (AO) [52]. The
cutoff value of AO was Q3 + 1.5e3MC � IQR, where Q3,MC, and IQR are the third quartile,
medcouple, and interquartile range, respectively. The medcouple is a robust measure of
skewness [53]. The number of directions was set at 7000. Subjects found to have outlier
parameters (three NGT, two IGT and three T2DM subjects) were excluded from further
study.

Parameter sensitivity analysis
We defined the individual parameter sensitivity for each subject [S(f(x), x)] as follows:

Sðf ðxÞ; xÞ ¼ @log f ðxÞ
@log x

¼ x
f ðxÞ �

@f ðxÞ
@x

where x is the parameter value and f(x) is ISI or AUCIRI10. The differentiation is numerically

approximated by central difference @f ðxÞ
@x

� f ðxþDxÞ�f ðx�DxÞ
2Dx , and x + Δx and x – Δx were set so as

to be increased [x (1.1x)] or decreased [x (0.9x)] by 10%, respectively. Finally, we defined
the parameter sensitivity by the median of the individual parameter sensitivity for all
subjects.

We examined the parameter sensitivity for 70 parameters consisting of all rate constants,
the products of each pair of rate constants, and the quotients of each two rate constants. For
the products of each two rate constants, x = ki � kj, we configured the 10% increased x and 10%

decreased x by 1:1x ¼ ffiffiffiffiffiffiffi
1:1

p
ki �

ffiffiffiffiffiffiffi
1:1

p
kj and 0:9x ¼ ffiffiffiffiffiffiffi

0:9
p

ki �
ffiffiffiffiffiffiffi
0:9

p
kj, respectively, and we

adopted a similar approach for the quotients of each two parameters. The higher the absolute
value of parameter sensitivity, the larger the effect of the parameter on ISI or AUCIRI10.
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Fitting by power function
We hypothesized that a power function accounted for the relation between two correlated
model parameters or clinical indices. We used the function f(x) = a�xb, where x is the model
parameter on the horizontal axis in Figs 3A and 4A. The parameters a and b were estimated to
minimize the RSS,

RSS ¼
X

ðy � f ðxÞÞ2

where y is the model parameter or clinical index on the vertical axis in Figs 3A and 4A, with
the use of a nonlinear least squares technique.

Calculation of clinical indices
HOMA-β:

[360 × fasting serum immunoreactive insulin (F-IRI) (μU/mL)/fasting plasma glucose
(FPG) (mg/dL) – 63]

HOMA-IR:
[F-IRI (μU/mL) × FPG (mg/dL)/405]
Insulinogenic index (I.I.):
Ratio of the increment of serum IRI to that of plasma glucose at 30 min after the onset of

the OGTT
[ΔIRI(0–30 min) (μU/mL)/ΔPG(0–30 min) (mg/dL)]
AUCIRI10–90 [31]:
Incremental area under the insulin concentration curve from 10 to 90 min during the hyper-

glycemic clamp
AUCIRI120/PG120:
Ratio of the area under the insulin concentration curve from 0 to 120 min to that for plasma

glucose from 0 to 120 min, without using the data measured at 90 min, in the OGTT
[AUCIRI(0–120 min) (μU/mL)/AUCPG(0–120 min) (mg/dL)]
Matsuda index [54]:

½10; 000=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FPGðmg=dLÞ � F� IRI ðm U=mLÞ � �G � �I

q
�

where �G and �I are mean PG and serum IRI concentrations during the OGTT, respectively.
Oral DI [55, 56]:
[AUCIRI120/PG120 × Matsuda index]

Statistical analysis
Unless indicated otherwise, data are expressed as the median with first and third quartiles.
Medians of clinical indices and parameter values were compared among NGT, IGT, and
T2DM subjects with the use of the Steel-Dwass test [32], a statistical nonparametric test for
multiple comparisons. A P value of<0.05 was considered statistically significant.

Supporting Information
S1 Fig. Time courses of blood glucose and insulin concentrations for each subject. The time
courses of blood glucose and insulin concentrations for each subject in the simulation (blue
curves) and in the clamp measurements (red circles) are shown. Subjects #1 to #50 are NGT
(green background), #51 to #68 are IGT (red background), and #69 to #121 are T2DM (blue
background). Subjects shown with a gray background (three NGT, two IGT, and three T2DM)
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were excluded from further analysis as outliers (see Materials and Methods). The residual sum
of the square (RSS) between the time course for the clamp and the model trajectory is shown
for each subject. The distribution of RSS for all subjects is shown in the bottom plot.
(PDF)

S2 Fig. Parameters showing the highest correlation with clinical indices. Scatter plots for the
indicated measured clinical indices versus the highest correlated model parameters (S4 Table)
were constructed. Each circle indicates the values for an individual subject, with r indicating
the correlation coefficient and the P values being for testing the hypothesis of no correlation.
The parameter that shows the highest correlation with AUCIRI10 is k5/k7 (S4 Table), which
seems reasonable given that this ratio is the normalized rate constant of insulin secretion
divided by that of insulin clearance and corresponds to apparent insulin secretion. k5 itself also
showed a high correlation with AUCIRI10 (S4 Table). Together, k5/k7 and k5 thus characterize
insulin secretory capacity. The parameter that shows the highest correlation with ISI is k4�k7
(S4 Table), which seems reasonable given that k4�k7 is the product of the rate constants of insu-
lin sensitivity and insulin clearance. k4 itself showed a high correlation with ISI (S4 Table).
Together, k4�k7 and k4 thus characterize insulin sensitivity. Importantly, the product (k4�k5) of
k5/k7 and k4�k7, which show the highest correlations with insulin secretion and sensitivity,
respectively, itself showed a high correlation with both measured and simulated clamp DI (Fig
3B). Taken together with the data in Fig 2B, this finding suggests that k4�k5 is a functional
parameter that represents clamp DI in the feedback model (Figs 3 and 4).
(PDF)

S3 Fig. Scatter plots for MCR versus Clamp DI or 120-min PG. Each circle corresponds to
the values for a single subject.
(PDF)

S4 Fig. Insulin clearance estimated by use of both hyperglycemic and hyperinsulinemic-
euglycemic clamps or either one of them. 		P< 0.01 (Steel-Dwass test).
(PDF)

S1 Table. Characteristics of the three groups of study subjects. Data are means ± SD. BMI,
body mass index; FPG, fasting plasma glucose concentration; 2-h PG, 2-h plasma glucose level
during the OGTT; F-IRI, fasting serum immunoreactive insulin concentration.
(DOC)

S2 Table. Tested patterns of influxes and RSS. All four patterns differ according to which var-
iables were increased by influx G and influx I. Each pattern was fitted to the clamp data of each
subject, and individual RSS’s were calculated. P values were determined by paired t-tests, and
RSS average of each pair of patterns was significantly different at a level alpha of 0.05. The best
pattern was therefore pattern A, and used in this study.
(DOC)

S3 Table. Parameter sensitivity analysis for insulin sensitivity and insulin secretion.Medi-
ans of the indicated parameters for all subjects were used for parameter sensitivity analysis
with regard to ISI and AUCIRI10 (see Materials and Methods). The higher the absolute value of
the parameter, the higher the sensitivity. P values relative to the median for the top-ranked
parameter were determined by the two-sided Wilcoxon rank sum test. Parameter sensitivity of
k7 (–2.28) and that of k5 (1.50) for AUCIRI10 are not significantly different (P = 0.460)
(DOC)
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S4 Table. Correlation between model parameters and measured clinical indices. Correlation
coefficients (r) for the model parameters versus the indicated clinical indices are listed in
descending order of absolute value (see Materials and Methods). P values are for testing the
hypothesis of no correlation (corrected by the number of correlation calculation: multiplied by
1190). HOMA-β, homeostasis model assessment of β-cell function; HOMA-IR, homeostasis
model assessment of insulin resistance; I.I., insulinogenic index.
(XLS)

S5 Table. Correlation between the clinical Indices. Correlation coefficients (r) for the indi-
cated clinical indices are listed in descending order of absolute value (see Materials and Meth-
ods). P values are for testing the hypothesis of no correlation (corrected by the number of
correlation calculation: multiplied by 289).
(XLS)

S6 Table. Experimental measurements for each subject. Subjects shown with a gray back-
ground (three NGT, two IGT, and three T2DM) were excluded from further analysis as outliers
(see Materials and Methods).
(XLS)

S7 Table. Estimated parameters for each subject. Subjects shown with a gray background
(three NGT, two IGT, and three T2DM) were excluded from further analysis as outliers (see
Materials and Methods)
(XLS)
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