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In a recent issue of the Lancet, the prevalence of Inflammatory Bowel Disease (IBD) was
estimated at 7million worldwide. Overall, the burden of IBD is rising globally, with direct and
indirect healthcare costs ranging between $14.6 and $31.6 billion in the U.S. alone in 2014.
There is currently no cure for IBD, and up to 40% of patients do not respond to medical
therapy. Although the exact determinants of the disease pathophysiology remain
unknown, the prevailing hypothesis involves complex interplay among host genetics,
the intestinal microenvironment (primarily bacteria and dietary constituents), and the
mucosal immune system. Importantly, multiple chronic diseases leading to high
morbidity and mortality in modern western societies, including type II diabetes, IBD
and colorectal cancer, have epidemiologically been linked to the consumption of high-
calorie, low-fiber, high monosaccharide, and high-fat diets (HFD). More specifically, data
from our laboratory and others have shown that repeated consumption of HFD triggers
dysbiotic changes of the gut microbiome concomitant with a state of chronic intestinal
inflammation and increased intestinal permeability. However, progress in our
understanding of the effect of dietary interventions on IBD pathogenesis has been
hampered by a lack of relevant animal models. Additionally, current in vitro cell culture
systems are unable to emulate the in vivo interplay between the gut microbiome and the
intestinal epithelium in a realistic and translatable way. There remains, therefore, a critical
need to develop translatable in vitro and in vivo models that faithfully recapitulate human
gut-specific physiological functions to facilitate detailed mechanistic studies on the impact
of dietary interventions on gut homeostasis. While the study of murine models has been
pivotal in advancing genetic and cellular discoveries, these animal systems often lack key
clinical signs and temporal pathological changes representative of IBD. Specifically, some
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limitations of the mouse model are associated with the use of genetic knockouts to induce
immune deficiency and disease. This is vastly different from the natural course of IBD
developing in immunologically competent hosts, as is the case in humans and dogs.
Noteworthily, abundant literature suggests that canine and human IBD share common
clinical and molecular features, such that preclinical studies in dogs with naturally occurring
IBD present an opportunity to further our understanding on disease pathogenesis and
streamline the development of new therapeutic strategies. Using a stepwise approach,
in vitromechanistic studies investigating the contribution of dietary interventions to chronic
intestinal inflammation and “gut leakiness” could be performed in intestinal organoids and
organoid derivedmonolayers. The biologic potential of organoids stems from themethod’s
ability to harness hard-wired cellular programming such that the complexity of the disease
background can be reflected more accurately. Likewise, the effect of therapeutic drug
candidates could be evaluated in organoids prior to longitudinal studies in dog and human
patients with IBD. In this review, we will discuss the value (and limitations) of intestinal
organoids derived from a spontaneous animal disease model of IBD (i.e., the dog), and
how it can heighten understanding of the interplay between dietary interventions, the gut
microbiota and intestinal inflammation. We will also review how intestinal organoids could
be used to streamline the preclinical development of therapeutic drug candidates for IBD
patients and their best four-legged friends.

Keywords: 3D organoids, inflammatory bowel diseases, dietary intervention, one health, dog

INFLAMMATORY BOWEL DISEASE–A
MULTIFACTORIAL DISEASE

Inflammatory Bowel Disease (IBD) is a serious chronic relapsing
inflammatory disorder that primarily affects the gastrointestinal
(GI) tract. IBD affects over 2 million adults in the United States
(US), 2.5–3 million in the European Union (EU) and 7 million
worldwide, with the prevalence of IBD consistently increasing
over time (Bonen and Cho, 2003; Burisch et al., 2013; GBD 2017
Inflammatory Bowel Disease Collaborators, 2020; Ng et al., 2017).
IBD detrimentally impacts the psychological and physical quality
of life of patients through GI symptoms, health care costs, extra-
intestinal manifestations, and interference with employment,
education, and proper nutrition (Knowles et al., 2018). New
epidemiological data suggest that the incidence and prevalence
of the diseases are increasing, and medical therapy and disease
management have changed significantly in the last decade. The
economic impact of IBD is also substantial with direct and
indirect healthcare costs ranging between $14.6 and $31.6
billion in the U.S. alone in 2014 and direct healthcare costs of
4.6–5.6 bn Euros/year in the EU (Burisch et al., 2013; Alatab et al.,
2020). Thus, improved treatments are desperately needed.

IBD is a multifactorial disease with a complex pathogenesis
related to interplay between genetic predisposition and a
multitude of environmental triggers that, collectively,
negatively impacts intestinal microbiota, epithelial
permeability, and ultimately, leads to inappropriate intestinal
immune activation as shown in Figure 1 (Piovezani Ramos
and Papdakis, 2019). IBD in humans consists of two broad yet
distinctive clinical and histopathologic phenotypes, Crohn’s

disease (CD) and Ulcerative Colitis (UC). CD can affect any
portion of the intestinal tract, but the terminal ileum is most
frequently implicated with a transmural, discontinuous pattern of
lesions. In contrast, UC lesions are localized to the mucosa and
submucosa with a continuous pattern that primarily affects the
colon and proximal rectum although secondary inflammation of
the adjacent terminal ileum may occur due to proximity
(Fakhoury et al., 2014). The multifactorial nature of IBD has
made investigations into disease pathogenesis as well as
development of treatment modalities challenging.

Unfortunately, IBD is not a single gene disorder, but rather has
a complex genetic component (Graham and Xavier 2020). GWAS
and meta-analyses of 25,305 IBD cases identified approximately
300 risk loci for developing IBD (De Lang et al., 2017). Trans-
ancestry studies of IBD identified differential risk associations for
NOD2 being more prevalent in European populations and
TNFSF15 being more prevalent in East Asian populations (Liu
et al., 2015). Twin studies have underscored that while there is a
genetic contribution to IBD, the disease is not inherited in a
simple Mendelian fashion (Farmer et al., 1980; Monsen, et al.,
1987; Halme et al., 2006). In fact, genetic linkage studies have
identified multiple susceptibility genes such as CARD15/NOD
(Hugot, 2004), autophagy genes ATG16L1 and IRGM (Glocker
et al., 2009; Noguchi et al., 2009). And, specifically in young
children with IBD, IL-10R polymorphisms have been described
and characterized (Moran et al., 2013; Shim et al., 2013).
Noteworthily, the variable contribution of genetic
susceptibilities and associated genes is one contributing factor
to the lack of novel successful therapeutic and diagnostic
modalities.
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IBD and other autoimmune disorders occur at a lower
incidence in less industrialized nations. One possible
explanation for this lies in the “hygiene hypothesis” which
proposes that several factors affecting early life environments
including exposure to common infectious agents and use of
antimicrobials is necessary to program the immune system for

appropriate future responses to antigenic stimulation (Koloski
et al., 2008). Early exposure to microbes helps establish an
important balance between pro-inflammatory Th1 helper type
1 (Th1) cells responses and tolerant regulatory (Treg) responses.
These early exposures may help prevent hyperactive immune
responses to intestinal microbiota and other stimuli. Conversely,

FIGURE 1 | Multifactorial pathophysiology of canine IBD. (A) In the normal intestinal mucosa, Toll-like receptors (TLRs) sample pathogen-associated molecular
patterns (PAMPs) from commensals in the intestinal lumen, which send signals to naïve T cells to differentiate primarily into T regulatory cells, which produce anti-
inflammatory cytokines, such as TGF-beta and IL-10. (B) In the case of canine IBD, microbial dysbiosis drives the messaging toward a pro-inflammatory pathway of Th
cell differentiation, resulting in the production of pro-inflammatory cytokines, mainly IL-1beta. In addition, mutations in pattern recognition receptors, such as TLR5,
result in hyper-responsiveness to flagellin. Since the dysbiosis in canine IBD is characterized by an increase in Enterobacteriaceae (which express flagellin), this will further
increase pro-inflammatory responses of themucosa. Moreover, the inflammatory cytokines will lead to architectural changes in epithelial cells, such as increased leakage
through tight junction, and therefore increased permeability. This in turn will result in more bacteria breaching the mucosal barrier, therefore leading to a self-enhancing
circle of inflammation. IL-4: Interleukin 4, IFN: Interferon, STAT3: Signal Transducer And Activator Of Transcription 3, IL-23: Interleukin-23, IL-12: Interlleukin-12, IL-27:
Interleukin-27, TGF-beta: Tissue growth factor-beta, IL-10: Interleukin-10, IL-beta: Interleukin-beta.
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overly clean environments may contribute to an untrained and
therefore exaggerated immune response when antigens are
encountered later in life (Strachan, 1989; Hoshen et al., 2008;
Kondrashova et al., 2013).

In addition to, and as part of early life exposures, the host GI
microbiota not only play a crucial role in maintaining normal GI
physiology but also have been implicated as having a key role in the
development of IBD (Cho, 2008). In fact, in some individuals
multiple bacterial, viral, fungal and parasitic infections have been
implicated to increase the risk of developing IBD as well as
contribute to relapse in patients with previously well controlled
disease (Axelrad et al., 2021).While pathogen exposure or “pathogen
trigger” is believed to contribute to the development of IBD in some
individuals (Axelrad et al., 2021), a unique and distinct pathogen has
not been associated with all cases of IBD. Overall, the so-called
“pathogen trigger” hypothesis may be related to alterations in the
intestinal microbial community that contribute to the development
of IBD in susceptible individuals.

Although IBDwas initially thought to be due to specific pathogen
exposure, current studies propose that perturbations in commensal
enteric bacteria play a role in the development of IBD (Packey and
Sartor., 2008). Commensal GI microbiota may contribute to the
development of IBD by carrying atypical virulence factors or
constituting abnormal compositions of the microbiota resulting in
an alteredmetabolome (Bourgonje et al., 2021). On the other hand, it
has been speculated that if the host has defective intestinal barrier
function resulting in increased immune response against
commensals. Several studies have reported a decrease in GI
microbial diversity in IBD patients (Frank et al., 2007; Scanlan
and Marchesi, 2008), where the composition and diversity of
beneficial microbial community members is reduced while the
numbers of potentially harmful bacteria (such as
Enterobacteriaceae) are increased in patients with IBD (Scanlan
et al., 2006). Specific bacteria and/or virulence factors that lead to
the development of IBD in an individual have not yet been identified;
however various candidates have been suggested. For example,
changes in populations of resident Escherichia coli have been
recorded in patients with CD (Frank et al., 2007), including
increased antibody titers to the E. coli outer membrane protein C
(OMP C) in patients with IBD (Arnott et al., 2004). Similarly, in one
study, the presence of adherent invasive E. coli was found in 65% of
ileal resections in chronic inflammation (Darfeuille-Michaud et al.,
2004). The increased incidence of microbial fluctuations may
contribute to a heightened immune response to what would
otherwise be considered normal GI microbial components (Reiff
and Kelly, 2009).

In addition to alterations in GI microbial community members
and composition, the metabolome, or metabolic products of the
resident GI microbial community may contribute to the
development of IBD (Roediger et al., 1993). For example,
butyrate, a metabolic byproduct of beneficial microbiota
(Clostridiales, Bacteroidetes), is a source of energy for colonic
epithelial cells which improves the GI epithelial barrier integrity
and the host immune response (Roediger et al., 1993). Increases in
sulphate-reducing bacteria have also been recorded in IBD patients;
sulphate-reducing bacterial species produce hydrogen sulfide, and
their presence has been linked to blockage of butyrate use by

colonocytes (Christl et al., 1996; Thibault et al., 2010). The
functional composition of a microbial community has gained
interest in recent years as opposed to simply the presence/
absence or relative abundance of specific microbial community
members.

Furthermore, some individuals with IBD appear to have reduced
immune tolerance to their normal GI microbiota (Cho, 2008; Yap
andMarino, 2018). In normal individuals, the immune system elicits
appropriate anti-microbial responses against pathogens while
tolerating the host commensal GI microbiota. The underlying
basis for this interaction is a defective or amplified cross-
communication between the GI microbiota and the host’s
immune system. Specifically, four potential defective
microbiota-immune system interactions have been
hypothesized to contribute to IBD pathogenesis (Figure 1)
(Packey and Sartor, 2008). In the first and second scenario,
an increase in the abundance of pathogenic bacteria, or
virulence of the normal microbiota may cause increased
stimulation of both adaptive and innate immune responses.
In the third scenario, an altered, although non-pathogenic
composition of the GI microbiota can adversely affect the GI
physiology, making mucosal surfaces more susceptible to
damage and invasion. In the fourth and last scenario, even
with normal populations of commensal bacteria, the host’s
ability to prevent bacteria from crossing the mucosal barrier
may be impaired. A key role of altered or decreased intestinal
barrier function has been demonstrated in both human and
animal models of IBD (Kobayashi et al., 2007; Gerova et al.,
2011; Dorofeyev et al., 2013; van der Post et al., 2020). Further,
recent evidence has emerged to suggest that epithelial barrier
dysfunction is a primary defect of IBD, rather than a secondary
consequence to inflammation, due to mutations in genes
regulating intestinal epithelial cell function (Keita et al., 2018).

An individual diet can have both direct and indirect effects on the
microbial community, metabolome, intestinal barrier function and
intestinal mucosal immunity crosstalk (Gasaly et al., 2021). Globally,
the consumption of highly processed diets has been positively
associated with an increased risk of IBD development (Narula
et al., 2021). Specifically, a high protein, high fat, low fiber diet,
commonly referred to as a “westernized diet”, has been shown to
adversely affect intestinal permeability (Tanka et al., 2020), the
metabolome (David et al., 2014), GI mucosal microbial
communities and pathogen susceptibility (Desai et al., 2016), all
of which play key roles in the development of IBD.

In summary, IBD represents a spectrum of serious GI diseases
due to a multitude of contributing factors which may vary
between patients and patient populations.

PITFALLS OF CURRENT IBD MODELS–A
ROADBLOCK IN TREATMENT DISCOVERY

Challenges With Traditional Rodent Models
of IBD
A 2003 review identified 63 different animal models of IBD
within the scientific literature (Hoffman et al., 2003). These
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animal models were classified within one or more of the following
categories: 1) antigen-specific and bacterial models; 2) other
inducible models (chemical, immunological, and physical); 3)
genetic models (transgenic and knockout); 4) adoptive transfer
models; and 5) spontaneous animal models. Most rodent models
used for the study of IBD are the result of one or two defined
factors such as genetic manipulations (e.g., IL-10 deletions/
knockouts), GI irritants (e.g., dextran sulfate sodium) and/or
pathogen exposure (e.g., Helicobacter hepaticus)–true
spontaneous rodent models do not exist as they do not
develop IBD spontaneously. Furthermore, rodent models fail
to adequately recapitulate many of the factors suspected to
play a role in the development of IBD in some humans
including early life exposures and the role of select dietary
constituents. Although the use of inducible, genetic and/or
transfer models provides pathophysiological insight for certain
aspects of IBD, the inability of these models to fully emulate the
multifactorial nature of IBD results in a high rate of
pharmaceutical and treatment failures when candidates are
first tested in mice and then brought forward to human
clinical trials (Hackam and Redelmeier, 2006). The continued
use of models that have failed to accurately predict human clinical
responses not only delays identification of treatments that are
desperately needed but also wastes valuable time and resources.

Ideally, a disease animal model should closely mimic the
natural population. Yet, the multifactorial nature of IBD
significantly limits the usefulness and translatability of
traditional rodent models to study and elucidate treatment
modalities for IBD as outlined in Table 1 (DeVoss and Diehl,
2014; Oh et al., 2014). Also, while many rodent models of IBD
exist, none adequately predict human response to candidate
treatments (Valatas et al., 2013; Pizarro et al., 2019). Thus,
results from these models have limited translatability for
predicting treatment response and safety of candidate
drugs to the human population. Conversely, spontaneous
animal models are considered to have high clinical and
physiological relevance as they more closely mirror the
natural course of IBD pathogenesis and chronicity of the
intestinal inflammation. Thus, the use of models that
represent the true complexity of the disease is imperative
to identify and develop new candidate treatments for IBD
(Pizarro et al., 2019).

A One Health Approach to Improving
Treatment for IBD–In Human and Canine
Patients
The one health initiative highlights the benefits of a
multidisciplinary approach to human and animal health issues.
The need for large animal models to improve translational science
has been widely emphasized by the National Institute of Health
(National Institute of Diabetes and Digestive and Kidney
Diseases, 2009; NIH symposium, 2012). Dogs represent an
underutilized model for human diseases with many appealing
attributes, particularly for the study of multifactorial complex
diseases such as IBD. The use of dogs with canine IBD (cIBD)
presents a unique opportunity for additional data acquisition as
well as performing clinical trials in patients suffering from this
spontaneously occurring disease. With domestication, canine
intestinal anatomy, physiology, and diet have gradually
evolved with and mirrored those of their owners (Lyu et al.,
2018; Alessandri et al., 2019). Perhaps not surprisingly, with dogs
and humans living side-by-side, there is notably more taxonomic
and functional overlap of the GI microbiome in humans and dogs
(60%) compared to pigs (33%) and mice (10–20%) (Coelho et al.,
2018). Comparison of the functional and structural changes of
wild versus domesticated dogs support the evolution of
domesticated canine GI microbiota to match human GI
microbiota which likely has been influenced by a large degree
by diet overlap (Lyu et al., 2018). The significant overlap in
functional and taxonomic GI microbiota is particularly
significant given the role that the GI microbiota, directly or
indirectly, play in the majority of contributing factors leading
to the development of IBD. Canine IBD refers to a naturally
occurring group of chronic idiopathic enteropathies resulting in
persistent and/or recurrent GI clinical symptoms (Jergens, 1999;
Allenspach et al., 2006; Cerquetella et al., 2010; Simpson and
Jergens, 2011; Allenspach et al., 2016). Comparisons of IBD in
dogs and humans reveal clinical, genetic, microbial, and
pathophysiological similarity between species with few notable
exceptions (Xenoulis et al., 2008; Cerquetella et al., 2010; Kathrani
et al., 2014; Vázquez-Baeza et al., 2016; Cabrera-García et al.,
2020). The true prevalence of cIBD is unknown, however cIBD is
the most common histopathologic diagnosis in dogs with chronic
GI clinical signs (Jergens, 1999; Allenspach et al., 2016). Like IBD

TABLE 1 | Comparison of human IBD with cIBD in dogs and traditional rodent models of IBD.

Feature Humans Canines Rodents

Genetic basis Yes Yes Engineered
Etiology Multifactorial Multifactorial +/- multifactorial
Intact immune system Yes Yes +/-
Role of GI microbiota Yes Yes Yes
Blood in stool Yes Yes Yes
Diarrhea Yes Yes Yes
Definitive diagnosis GI mucosal biopsy GI mucosal biopsy GI mucosal biopsy
Longitudinal studies Yes–endoscopy, histology Yes–endoscopy, histology No
IBD treatment Diet + drugs Diet + drugs Drugs
Disease heterogeneity Yes Yes Variable

Frontiers in Toxicology | www.frontiersin.org November 2021 | Volume 3 | Article 7739535

Kopper et al. A Canine Model of IBD

https://www.frontiersin.org/journals/toxicology
www.frontiersin.org
https://www.frontiersin.org/journals/toxicology#articles


in humans, cIBD is a multifactorial disease which includes a
combination of genetic predispositions, alterations in intestinal
microbiota, and abnormal intestinal mucosal immune responses
(Jergens and Zoran, 2005). Themultifactorial contributing factors
for the development of IBD/cIBD in humans and dogs, have
striking similarities. For example, as with humans, genetic
susceptibilities are also suspected to play a role in cIBD given
that there are several noted breed predispositions (Breitschwerd,
1992; Churcher and Watson, 1997; German et al., 2000; Littman
et al., 2000; Hostutler et al., 2004; Kathrani et al., 2010; Kathrani
et al., 2011a; Kathrani et al., 2014). Similar to humans, allelic
variation in TLR 2, 4 and 5 have been identified in German
Shepard Dogs with cIBD, which contributes to an abnormal
response to intestinal microbiota (Allenspach et al., 2010;
Kathrani et al., 2012; Kathrani et al., 2014). Additionally,
multiple SNPs were identified in NOD2 of dogs with cIBD
(Kathrani et al., 2014). Furthermore, similarities in alterations
of the intestinal microbiota have been reported between humans
with IBD and dogs with cIBD (Simpson et al., 2006; Baumgart
et al., 2007). Similarities have also been identified in altered
immune responses between humans and dogs with IBD/cIBD.
Such abnormalities include a large number of IgE positive cells in
dogs with cIBD (Locher et al., 2001), a decrease in mast cell
numbers with a concomitant increase in CD3+ cells, IgG+ plasma
cells, CD11c cells and reduced Treg cells (Jergens et al., 1996;
Jergens et al., 1998; German et al., 2001; Kathrani et al., 2011b;
Schmitz et al., 2012). Furthermore, diet has also been shown to
impact mucosal microbiota and the GI metabolome and mucosal
microbiota in dogs with cIBD (Atherly et al., 2019; Ambrosini
et al., 2020a). Recently, early-life risk factors for developing IBD
have been an area of interest and studies have identified similar
findings in dogs and humans with cIBD/IBD such as an
association with early life high-fat low-carbohydrate diets and
the later development of IBD/cIBD (Hemida et al., 2021). Like
humans, a diagnosis of cIBD is made based on chronic GI signs,
eliminating other known causes of intestinal inflammation and
histopathologic confirmation of intestinal inflammation.
Treatment for cIBD involves sequential treatment with
elimination diet, prebiotics and probiotics, and
immunosuppressive medications with some dogs failing to
respond to currently available treatment options. Overall,
many similarities exist between dogs and humans with cIBD
and IBD making them an ideal, yet underutilized, spontaneous
disease model. Given the high prevalence of cIBD in dogs,
utilizing these canine patients, will further IBD research
without requiring induction of disease or development of
artificial models such as traditionally used rodent knockouts as
previously described. Utilizing more accurate spontaneous
disease animal models will hopefully improve the
translatability and success of pre-clinical trials in IBD research.
Subscribing to the one-health approach, use of dogs with cIBD to
further IBD research provides an opportunity to improve efficacy
and translatability of IBD research which will benefit human and
canine patients alike.

Finally, although dogs with cIBD have many attractive
attributes for the study of IBD there are several disadvantages
including increased cost compared to rodent models and
increased welfare concerns given the human-canine bond all
of which impede discovery and preclinical testing of candidate
treatments for IBD. Thus, recent establishment of canine
intestinal organoid systems serve to further one health
initiatives (Mochel et al., 2017; Chandra et al., 2019; Kramer
et al., 2020) and presents a unique complementary opportunity to
advance IBD research. Although the use of canine organoids will
not replace the need for live animal models in preclinical testing
of candidate therapies for IBD, early use of the organoid
technology will accelerate early testing and identification of
candidate therapies with an increased probability of success in
subsequent live animal and human clinical trials (Figure 2).

ORGANOIDS–A POSSIBLE SOLUTION FOR
TRANSLATIONAL RESEARCH IN IBD

With the prevalence of GI diseases (including but not limited to
IBD) on the rise, there is a critical need for in vitro modeling
systems that offer high throughput, reproducibility, and clinical
application. Patient-derived organoids have provided substantial
advancement in personalized medicine with promising benefits
for clinical decision making (Li et al., 2020; Liu et al., 2021). As
such, there is strong evidence to support the use of intestinal
organoids to fill this critical need for high throughout,
reproducible and clinically relevant in vitro models (Fair et al.,
2018) and, in these efforts, dogs may serve to bridge the gap
between basic science and clinical research to allow for the
advancement of one health initiatives (Mochel et al., 2017;
Chandra et al., 2019).

Organoids can be defined as “cells growing in a defined three-
dimensional (3D) environment in vitro to form mini-clusters of
cells (aka, miniguts) that self-organize and differentiate into
epithelial cell types, recapitulating the structure and function
of an organ in vivo derived from either embryonic stem cells,
induced pluripotent stem cells, or adult stem cells” (Corró et al.,
2020). For purposes of this review, the term organoid refers
exclusively to those cultured from adult stem cells as they offer the
greatest utility in translational clinical research. Culture and
characterization of intestinal organoids derived from single
Lgr5+ adult stem cells in the intestinal crypts were first
described in mice (Sato et al., 2009). Notably, these cultures
offered a significant advantage over traditional monocultures as
they more accurately recapitulated in vivo cellular and
architectural heterogeneity (Sato et al., 2009). Since their
inception, intestinal organoids have been cultured from a wide
variety of mammalian species, including gut tissues obtained
from humans (Sato et al., 2011), mice (de Lau et al., 2012), dogs
(Chandra et al., 2019; Kramer et al., 2020), cats, and several
livestock species (Powell and Behnke, 2017). Importantly,
intestinal organoid cultures recapitulate cellular heterogeneity,
morphological changes, and the polarization of the colonic
epithelium with the apical and basolateral sides oriented
toward and outward from the lumen, respectively (d’Aldebert
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et al., 2020). Further, techniques for reproducibly culturing
patient-derived organoids have been established (VanDussen
et al., 2015).

Intestinal organoid systems are a highly efficient in vitro
modeling technique that lends itself to high-throughput
systems. Creation of cell cultures starts with a collection of
intestinal biopsies from human- or veterinary-patients and
subsequent isolation of the intestinal stem cells. The use of
endoscopically obtained biopsy specimens decreases
experimental related morbidity and mortality, ultimately
improving welfare and improving experimental efficiency and
decreases inter-experimental variation by allowing the same
animal to be used multiple times. Within 10–12 days of
culture, organoids are highly differentiated from both a
phenotypic and morphological aspect (Fair et al., 2018).
Recent advancements in biotechnology have further improved
the isolation efficiency as well as culture of single intestinal stem
cells in manners amenable for high-throughput applications
(Gracz et al., 2015). Additionally, Williamson et al. (2018)
have developed and validated a high-throughput organoid
microinjection system for the study of GI microbiota and
luminal physiology. In their study, a microinjection system
was used to introduce 0.2 nL of bacterial inoculate into the
luminal space of each organoid at a rate of approximately 90
organoids/h, with approximately 500 organoids retaining the
bacterial inoculum after an 18 h period. Further, this study
showed that even mixed bacterial populations in the inoculate

were able to grow within the organoid lumen, that bacterial
composition remained stable over a four-day period, and that
organoids were unaffected by antibiotics placed in culture media
to prevent the contamination of cultures. However, the authors
reported that the efficiency of microinjections was highly variable
between organoids of different sizes, shapes, or luminal volumes;
and, as such, should be optimized further (Williamson et al.,
2018). Regardless, this technique holds promise in facilitating the
investigation of luminal-microbiota interactions in intestinal
organoid cultures. Technology to allow co-culture of organoids
and intestinal microbiome is under development. Overall,
continued development and optimization of high-throughput
methodologies for intestinal organoid culture will be
fundamental for utilization in large-scale, clinical studies for
IBD or other related chronic intestinal diseases.

As previously mentioned, intestinal permeability appears to
play an integral role in the multifactorial nature of IBD.
Unfortunately, in vivo assessment of intestinal permeability
presents several logistical and functional difficulties from both
an experimental and clinical standpoint. These difficulties include
the inability to discern region-specific alternations in
permeability and confounding effects from variations in gastric
emptying, intestinal transit time, microbiota-epithelial
interactions, epithelial perfusion, and patient/participant non-
compliance with required fasting (Galipeau and Verdu, 2016;
González-González et al., 2018; Schoultz and Keita, 2020). In
contrast, in vitro and ex vivo permeability assays are often better

FIGURE 2 | Value of the combined in vitro–in vivo approach using 3D intestinal organoids and clinical trials in canine IBD patients to streamline drug research and
development. Using canines with spontaneously occurring cIBD allows for minimally invasive acquisition of endoscopic biopsies to generate in vitro organoid cell culture.
Organoids can be used to screen candidate treatments which then can be further evaluated in live canine patients before moving forward with human clinical trials to
expedite and improve research efficiency.
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suited for mechanistic studies but may require comparatively
more invasive methods (e.g., Ussing chambers), or may be limited
in translatability (e.g., Caco-2 monocultures) (Galipaeu and
Verdu, 2016). Importantly, intestinal barrier function, broadly,
can be affected by a multitude of factors in addition to intestinal
barrier permeability (or epithelial barrier permeability, more
specifically) including the luminal microenvironment,
mucosal-associated microbiota, and alterations in tight
junction proteins (Pastorelli et al., 2013; Michielan and D’Incá,
2015). As such, mechanistic studies are crucial to tease out the
individual effects of each of these contributing factors for
understanding disease pathogenesis, conducting drug transport
studies, and assessing preclinical efficacy and safety of novel
therapeutics. Organoids are an attractive solution which
overcome many of the translation barriers with traditional
in vitro methods.

Recent application of intestinal organoid cultures includes the
in vitro evaluation of intestinal epithelial permeability. In these
studies, paracellular macromolecule (e.g., FITC-dextran)
permeability is appraised following either 1) direct
microinjection (Hill et al., 2017; Williamson et al., 2018); or 2)
creation of a serosal-luminal concentration gradient to
concentrate macromolecule in the luminal space of each
organoid (Pearce et al., 2018; Bardenbacher et al., 2019; Xu
et al., 2021a; Xu et al., 2021b). Due to the mechanistic nature
of these evaluations, researchers have been able to link changes in
epithelial permeability with causative cellular factors under
controlled conditions. For example, Rallabandi et al. (2020)
showed that after initial absorption of FITC-dextran into the
luminal space, luminal FITC-dextran concentration decreased
only marginally over the next 30 min interval due to recapitulated
in vivo GI absorption properties, thus accurately mimicking an in
vivomodel. Further, separate studies from Xu et al. (2021a) using
CD patient-derived organoids linked patient clinical measures
with organoid inflammatory status and epithelial permeability.
Although no differences in baseline epithelial permeability were
seen between organoids from CD patients and healthy controls,
the addition of proinflammatory cytokines (i.e., TNF-α, IFN-γ,
and IL-1β at 20 ng/ml) to culture media caused markedly
increased epithelial permeability in CD-organoids compared to
respective, unchallenged controls. Conversely, addition of
corticosteroid (i.e., 10 μM prednisolone) to the culture media
attenuated this response to near baseline levels (Xu et al., 2021b).
These findings are consistent with results obtained by d’Aldebert
et al. (2020). Further, IFN-γ exposure stimulated increased
expression of IL-28A in CD-organoid cultures, mimicking
elevations in IL-28A seen in both plasma and biopsy samples
from paired patient controls (Xu et al., 2021a). Collectively, these
studies demonstrate physiological- and pharmacological-
responsiveness reflective of in vivo, patient-specific, IBD-
associated pathology.

Adult stem cells within intestinal crypts undergo
differentiation along the crypt-villus axis into different cell
lineages including enterocytes, Paneth cells (enteroids only),
goblet cells, and enteroendocrine cells. (Mariadason et al.,
2005; Stegmann et al., 2006); The relative populations of these
cell types differ in a regional-specific manner, reflective of the

functional specialization of each individual intestinal segment
(e.g., duodenum, jejunum, ileum, etc.), or due to disease-related
alterations (e.g., CD and UC) (Comelli et al., 2009). Likewise,
retention of these location- or disease-specific gene expression
profiles within long-term intestinal epithelial organoid cultures
were first characterized by Middendorp et al. (2014) and Dekkers
et al. (2013), respectively. In humans, IBD-patient derived
organoids retained several inflammatory features in culture
including epithelial pseudo-stratification, slow growth, reduced
viability/metabolic activity status, and alterations in tight-
junction proteins. Similarly, incubation of control (IBD-
unaffected) organoids with a proinflammatory cocktail
(i.e., TNF-α, IL-1, IL-6) induced a similar phenotype to
affected organoids; including proinflammatory chemokine
overexpression, decreased expression of TJ proteins, reduced
cell viability, and alterations in cell populations reflective of a
highly proliferative state (d’Aldebert et al., 2020). Similarly,
preliminary comparison of canine patient-derived organoids
showed stratification between IBD-affected and control groups
for Lgr5+, ALP, PAS, NeuroG3, Zo-1, and Ki-67, phenotype
markers of intestinal stem cells, enterocytes, goblet cells,
enteroendocrine cells, zonulin-1 tight junction protein, and
cell proliferation, respectively (Kurr et al., 2020). In contrast,
significant exogenous and/or genetic measures are required to
induce a simplified, IBD-like disease in mice that fails to model
the chronic, multifaceted nature of IBD pathophysiology (DeVoss
and Diehl, 2014).

Organoids also provide an opportunity to further evaluate the
effect of genetics on intestinal health. As genetic mechanisms
contributing to the development of cIBD are identified, they can
be edited or removed from the cell lineage via adenoviral
transduction, as has been previously demonstrated using the
organoid technology (Stewart et al., 2021). This will allow for
assessment of the organoid function with and without genetic
influence. Furthermore, the interplay between intestinal epithelial
cells and the immune system can be evaluated using co-cultures
of organoids and immune components, such as innate immune
cells (Ihara et al., 2018; Staab et al., 2020) and dendritic cells
(Sebrell et al., 2019).

Canine intestinal organoids are well-developed, characterized
and used for translational research (Mochel et al., 2017; Chandra
et al., 2019; Ambrosini et al., 2020b; Kramer et al., 2020). Canine
organoids have been shown to present relevant cell differentiation
and structure, as assessed by light and Transmission Electron
Microscopy and RNA in situ hybridization (Chandra et al 2019).
Of particular relevance, canine organoids were noted to harbor
tight junction proteins, Paneth cells, enteroendocrine cells, adult
intestinal stem cells, stem cell progenitors and Tuft cells (Chandra
et al., 2019). Furthermore, expression of pro-inflammatory
cytokines and antimicrobial peptides produced by Paneth cells
were also identified. In addition to structural and compositional
relevance, functionality was also demonstrated by these authors
(Mochel et al., 2017; Chandra et al., 2019; Ambrosini et al.,
2020a). In this same study, canine organoids demonstrated
metabolic activity during differentiation, functional cystic
fibrosis transmembrane conductive regulator (CFTR) chloride
channels and uptake of exosome-like vesicles secreted by the
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parasite Ascaris suum (Chandra et al., 2019). Canine intestinal
organoids from dogs with cIBD present a unique opportunity to
further utilize a large animal model of spontaneously occurring
IBD while still reducing and refining the use of terminal or
invasive live animal studies. Use of organoids will expedite
screening of drugs that target the epithelial components of
intestinal diseases which will promote safer and more
efficacious therapies in an accelerated timeframe (Foulke-Abel
et al., 2014). Continued development and utilization of a
bioarchive of intestinal organoids from dogs with cIBD
(Chandra et al., 2019) enhances the ability for translational
scientists to capitalize on the multifactorial nature of this
spontaneous model of IBD, while retaining the efficiency of an
ex vivo model. The ability to use canine organoids from a
spontaneously occurring model of disease (i.e., dogs with
cIBD) presents a unique opportunity for “dual screening” of
treatments in a spontaneous animal model prior to formal testing
in human clinical trials.

CURRENT RESEARCH DIRECTIONS FOR
OPTIMIZATION OF ORGANOIDS
TECHNOLOGY
Although organoid systems allow for accurate recapitulation of
the host biology, they may have limited applicability in studies
evaluating nutrient and drug transport or host-microbiome
interactions. In fact, polarization of the intestinal epithelium
means that nutrient and/or drug transporters on the apical
membrane are enclosed within the organoid lumen and
difficult to access (Zietek et al., 2015). To tackle this issue,
organoid-derived epithelial monolayers (e.g., in Transwell
culture) have garnered recent attention as clinically relevant
in vitromodels of the intestinal barrier function (Kozuka et al.,
2017; van Dooremalen et al., 2021). Compared to traditional
culture systems, preliminary studies show that monolayer
cultures do not induce any significant changes in gene
expression profiles or activation of transcription factors of
the intestinal organoids (Takahashi et al., 2021),
demonstrating the expected suitability of this model.
Further, these applied systems may have added applicability
for nutrient and drug transport studies (Zietek et al., 2015; Xu
et al., 2018; Zietek et al., 2020) with validated methodology
published for both canine (Ambrosini et al., 2020b) and
human (Kozuka et al., 2017) cultures. However, use of
monolayers derived from organoids requires further
evaluation and careful monitoring to ensure that the same
desirable characteristics obtained in organoids (cell

differentiation, structure and function) are preserved.
Microfluidics-based models (i.e., organoid-on-a-chip) have
further advanced the physiological relevance on these
techniques by replicating spatiotemporal changes in
chemical and mechanical cues within the intestinal lumen
(Kim et al., 2017; Velasco et al., 2020), increase throughput
of culturing techniques, and have facilitated organoid use in
co-cultures with cellular (e.g., immune) or bacterial
populations (Min et al., 2020). This represents a unique
opportunity for continued development and exploration of
candidate treatments for this debilitating life-long disease.

CONCLUSION

In summary, IBD is a serious debilitating disease that has
remained challenging to effectively study due to its
multifactorial nature. The prevalence of IBD is rapidly
increasing and likely to continue given its association with
Westernized modern lifestyles. Demonstration of drug efficacy
and safety in animals has been and remains the best way to gain
sufficient experience to initiate ethically designed human trials.
While studies in mice have been pivotal in advancing genetic
and cellular discoveries, murine models often lack key clinical
signs or temporal pathological changes representative of IBD.
Specifically, some limitations of mouse models are associated
with the use of genetic knockouts to induce immune deficiency
and disease. This is vastly different from the natural course of
IBD developing in immunologically competent organisms, as is
the case in humans and dogs. This was recently exemplified by
the failures of the anti-IL17/IL13/IL10 candidate drugs in IBD
clinical trials. The success of therapeutic approaches based on
stem cells requires an improvement of animal disease models to
recapitulate human phenotypes more faithfully, including the
use of animals that have organs comparable in size and
physiology to those of humans. The utilization of canine
intestinal organoids, an ex vivo model, to improve the study
of IBD/cIBD will improve efficiency and welfare concerns
commonly associated with in vivo models of disease.
Together, this presents a pathway forward for improved
pharmaceutical discovery and treatment options for patients
with IBD and cIBD.
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