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Implanted medical devices often trigger immunological and inflammatory reactions from surrounding tissues. The foreign body-
mediated tissue responses may result in varying degrees of fibrotic tissue formation. There is an intensive research interest in the
area of wound healing modeling, and quantitative methods are proposed to systematically study the behavior of this complex
system of multiple cells, proteins, and enzymes. This paper introduces a kinetics-based model for analyzing reactions of various
cells/proteins and biochemical processes as well as their transient behavior during the implant healing in 2-dimensional space. In
particular, we provide a detailed modeling study of different roles of macrophages (MΦ) and their effects on fibrotic reactions.
The main mathematical result indicates that the stability of the inflamed steady state depends primarily on the reaction dynamics
of the system. However, if the said equilibrium is unstable by its reaction-only system, the spatial diffusion and chemotactic effects
can help to stabilize when the model is dominated by classical and regulatory macrophages over the inflammatory macrophages.
The mathematical proof and counter examples are given for these conclusions.

1. Introduction

Recently, intensive research efforts have been focusing on
developing mechanistic computational models for wound
healing related processes. Wound healing is a very com-
plicated biochemical and biophysical phenomenon, with
many facets and subprocesses, including the inflammatory
response process, angiogenesis as well associated fibrotic
reactions. Many cells, enzyme, growth factors, and proteins
participate at different stages of the wound healing reactions,
and they form a network of signaling pathways that in turn
leads to inflammatory, angiogenesis, and fibrotic reactions.
We refer to the review by Diegelmann and Diegelmann and
Evans 2004 [1] for a brief review of the recent scientific work.

As a subarea of general wound healing research, healing
processes involved in medical implantations are of significant
application for modern medicine [2–4]. It is commonly
accepted that implants may cause foreign body reactions that
are initiated with implant-mediated fibrin clot formation,
followed by acute inflammatory responses [4, 5]. The
inflammatory chemokines released by adherent immune
cells serve as strong signals for triggering the migration of

macrophages and fibroblasts from the surrounding tissues
and circulation toward the implant surface [5]. The implant-
recruited fibroblasts consequently synthesize chains of amino
acids called procollagen, a process that is activated by
growth factors, including in particular type-β transforming
growth factor (TGF-β) [6, 7] to become collagen, the
dominant ingredient of the extracellular matrix (ECM) [8].
These processes may, however, differ slightly between dermal
wound healing and implantation when it comes to specific
activation and inhibition loops of reactions.

Among inflammatory cells, macrophages (MΦ) are
found to reside in the wound [9]. The roles of macrophages
are multiple and stand prominent in the activations and
inflammations during implantation. MΦ are known to
remove damaged tissue and foreign debris via phagocytosis.
In addition, MΦ often release a variety of chemokines to
recruit other cell types, such as fibroblasts, which participate
in the remodeling of ECM. The specific roles of MΦ vary
significantly at different stages of healing process. Work
by Mosser and Edwards 2008 [10] has shown there to be
at least 3 phenotypes of MΦ, each of which displays a
different functionality. Classically activated MΦ represent
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the effector MΦ that are produced during cell-mediated
immune responses. Two signals, interferon-γ and tumor-
necrosis factor-α, give rise to these effector MΦ which
have enhanced microbicidal or tumoricidal capacity and
secrete high levels of proinflammatory cytokines and medi-
ators. Assisted in part by the production of transforming
growth factor type β (TGF-β), the clearance of apoptotic
inflammatory, as well as noninflammatory cells by classical
MΦ, can lead to an inhibition of inflammation [11, 12].
Wound healing MΦ (or inflammatory MΦ) can develop in
response to innate or adaptive signals through interleukin-
4. In turn, interleukin-4 stimulates arginase activity in MΦ,
allowing them to convert arginine to ornithine, a precursor
of polyamine and collagen, thereby contributing to the
production of extracellular matrix (ECM) [13]. Regulatory
MΦ can also arise during the later stages of adaptive immune
responses, the primary role of which dampen, the immune
response and limits inflammation through production of
interleukin-10 [14]. Although all three phenotypes were
observed experimentally within the dermal wound healing
context, the phagocyte biomaterial interactions are known to
be similar here for foreign body reactions.

While experiments are still the main stay in the studying
of wound healing related process, significant progress has
also been made in detail predictive modeling based on
biochemical and biophysics principles. For dermal wound
healing, basic reactions were first considered in studies by
Dale et al. 1996 [15], 1997 [16]; Dallon et al. 2001 [17] and
many others. Their models incorporated the key features
of kinetics which are essential to dermal wound healing.
Their results have successfully described the dynamics and
compare favorably with experiments, in terms of healed
ECM fiber ratio, spatial orientation, and other features.
Recently, the work of Schugart et al. 2008 [18] and Xue
et al. 2009 [19] further included angiogenesis equations to
the healing process and examined the positive effects of
increased oxygen level in accelerating the healing and closure
of open wound, suggesting new insights for the healing.
Furthermore, a wound healing model based more on cell
migration was considered in Arciero et al. 2011 [20].

Inflammatory reactions are important to wound healing
as they activate many key agents for the healing pro-
cess, however, prolonged inflammation may cause excessive
scars and chronic wounds. Through interactions between
immune mediators, phagocytes in the blood and tissue, the
acute inflammatory response was modeled and analyzed by
reduced compartmental models in Reynolds et al. 2006 [21]
and Day et al. 2006 [22]. Closely related to dermal wound
healing and implantation, atherogenesis in blood vessels was
modeled by continuum equations in Ibragimov et al. [23].
The concept of debris and phagocytosis in [21, 22, 24]
is analogous to our current model, which assumes that
the digestion of dead cells (or tissues) initiates the entire
healing process. Further, addition of stem cells can create a
new dimension to the healing and implantation process; we
mention Lemon et al. 2009 [24] for their new mathematical
tool in providing quantitative analysis for this growing field.

Our primary goal in this paper is to use computational
modeling to study the fibrotic reaction process following

implantation with specific attention given to the effects
caused by varying the mix of different phenotypes of MΦ.
Our modeling results indicate trends for these variations,
serving as a plausible clue for developing new experiments.

The main mathematical contribution of this paper is as
follows. The nonzero equilibrium of our model represents
an inflamed state. If it is linearly stable in terms of the
corresponding ODE system (the reactions network of the
model), then it is also stable for the full system (which
includes spatial diffusion and chemotaxis). In other words,
spatial effects cannot destabilize the equilibrium if it is stable
in its pure reactions. However, even if the equilibrium is
unstable by its reaction system, the spatial diffusion and
chemotactic effects can help to stabilize the equilibrium
under several conditions. These conditions suggest the need
for the model to be dominated by classical and regulatory
macrophages over the inflammatory macrophages. The
mathematical proof and counter examples are given for these
results.

We organize the paper as follows. In Section 2, we
introduce the model and the modeling considerations. In
Section 3, we discuss the spatially uniform equilibria and
their stability in relation to the ODE system representing
the reaction system without spatial variations. In Section 4,
we prove that if the equilibrium is stable in ODE sense,
then it is stable for the full system with respect to any
small spatial perturbation measured in L2. In Section 5, we
provide a set of sufficient conditions for the equilibrium to
be stable for the full system, which allows us to explicitly give
a counter example where PDE solutions can be conditionally
stable without requiring stability in the ODE system. A brief
summary and discussion are presented in Section 6.

2. Modeling Based on Chemical
Kinetics Equations

Our foreign body reaction model is partially from the
mass-action kinetics framework developed by Schugart
et al. 2008 [18], which modeled wound healing under
oxygen pressure. In medical implantation processes, new
kinetics of MΦ reactions were added in the framework. The
main biological question that we hope to address is the
variance between tissue responses at different percentages
of classical, inflammatory, and regulatory MΦ cells during
foreign body fibrotic reaction processes. We model the
following:

∂D

∂t
= Dd∇2D − f0λ1MD + ˜f0λ3M, (1)

∂C

∂t
= Dc∇2C + f1D + f2λ3M − f3λ2MC − f4C, (2)

∂F

∂t
= Df∇2F − χ0∇ · (F∇C) + a1λ1M

+ a2F
(

a2 − a3

a2
− F

F0

)

+ a12CFH(F0 − F),

(3)
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∂M

∂t
= Dm∇2M − χ1∇ · (MH(M0 −M)∇C)

− a0M + a11CMH(M0 −M),

(4)

∂E

∂t
= De∇2E −∇ ·Φ + a16F

(

1− E

E0

)

, (5)

where∇2 = ∇ ·∇, and the vector field

Φ = BDf

F0
E∇F +

Bχj
F0

(EFH(F0 − F)∇C), (6)

and all coefficients are positive. The form of the logistic
terms in (3) is for representing biological meanings of the
coefficients.

In the system (1)–(5), the debris cell population D rep-
resents dead tissue cells following implantation. Abnormal
white blood cells and molecules caused by the surgery are
also included in this debris term, which is assumed to be
the initiation point of reactions. We assume that they are
digested by M1-classical MΦ and that M3-inflammatory MΦ
contribute to the accumulation of debris during the healing
process (as modeled in (1)).

The chemoattractant consists mainly of various forms of
growth factors including tissue growth factors type β (TGFβ)
released during the tissue injury. The chemoattractant field C
is enhanced by the presence of debris and M3-inflammatory
MΦ cell, but is inhibited by M2-regulatory MΦ cells. In
(2), we assume that cell spatial migration occurs through
diffusion and chemotactic migration based on the gradient
field of C.

Fibroblast density F represents a main cell type in
secreting collagen (a major component of ECM). Fibroblast
proliferation and collagen synthesis are upregulated by the
chemoattractant gradient field C. Thus fibroblast population
F (shown in (3)) can be approximated by a chemically
enhanced logistic growth F(1 − (F/F0)) with a threshold
F0, along with its diffusion in space modeled by Df∇2F,
chemotactic migration by −χ0∇ · (F∇C) and its natural
decay according to time as shown in (3). New experimental
data also shows autocrine upregulation of fibroblast by TGFβ
without chemotaxis [25]; this effect is also included in the
modeling. The term a3F is the decaying factor.

Macrophage density, M, is the summation of M1-classical
MΦ, M2-regulatory MΦ, and M3-inflammatory MΦ. We
assume that they each take on a proportion λ1, λ2, and λ3

of MΦ, respectively. Each phenotype Mj , j = 1, 2, 3, may
take a different share of MΦ at different stages of foreign
body fibrotic reactions. However, our model simplifies the
situation in that (a) the proportions λ1, λ2, and λ3 for
different phenotypes of MΦ are fixed, and (b) the total
MΦ population is set to share one common biochemical
reaction equation (4), since its basic biochemical properties
are similar. The proliferation of MΦ at the field is through
diffusion and migration upregulated by the chemotactic
gradient field C, but the production does reach a limiting
value once the MΦ population reaches its saturation of M0.
MΦ cell apoptosis and proliferation caused by the direct
interaction with chemoattractants are also assumed.

Finally in (5), fibroblasts secrete procollagen which is
then activated by the chemoattractant TGFβs into collagen
(or ECM) represented by the quantity E. We also incorporate
the effects of ECM diffusion, fibroblast movement, chemo-
tactic migration, and ECM saturation in mass-action law. In
all discussions, H is the Heaviside function, and M0 is the
MΦ saturation level.

We assume in our implant model that the computational
domain is large enough and also the cell changes are slow
enough (measured in days) that there is no significant
boundary flux, allowing us to take homogeneous Neumann
boundary conditions as a reasonable approximation.

Definition 1. Let us define inflammatory equilibrium as a
strictly nonzero constant vector Ue in 5-dimensional space
Ue = (de, ce, fe,me, ee) with de > 0, ce > 0,Fo ≥ fe > 0,Mo ≥
me > 0, ee = E0 > 0, which solves system of the equations
(1)–(5).

Remark 2. In the case of a no-flux boundary condition, the
spatially uniform steady state is often used when modeling
inflammatory response in tissue (see e.g., [23, 26] and
reference therein). A physically realistic, nonnegative set of
equilibriums can easily be obtained by letting the RHS of the
original system (1)–(5) equal to zero. It is natural to define
the trivial (zero) equilibrium as ground or healthy state and
study its stability. Instability of the ground state is usually
interpreted as unfavorable development of the disease. In
this paper we take a different approach and are interested
in analyzing the stability of the abnormal/inflammatory
equilibrium which is nonzero for all five components of
the unknown. This equilibrium can be stable or unstable
depending on the parameters of the model. In this case,
instability of the equilibrium does not necessarily mean an
unhealthy response of the immune system. An instability of
a nonzero equilibrium can lead to a ground healthy state
(best case scenario), to another steady state (uncertain devel-
opments), or to infinity (acute development). If in contrary,
the perturbation of Ue is linearly stable and vanishes at time
infinity, then Ue can be interpreted as sustainable. All these
make linear stability analysis very appealing from both a
theoretical and applied point of view. It is worth mentioning
that from a biological point of view, a strictly positive steady
state Ue can be transitioned from some other nonstrictly
positive state. We believe that this type of interpretation of
the inflammatory equilibrium stability conditions is logical
and presents an example of a sustainable wound which does
not heal over the course of a long time period (see [19–21]).
An indirect analogy of such an inflammatory (chronically)
stable equilibrium has been introduced and applied for
studying biological dynamic system in virology for some
years (see e.g., [27]). At this stage of the research, we are
studying stability of the strictly positive state Ue mostly as
a model of inflammatory equilibrium, without analysis of
its genesis. As commonly occurs in biomedical research,
the mathematical model can often provide nonintuitive
insights into dynamics of inflammatory responses in the
wound healing processes and can suggest new avenues for
experimentation. In the forthcoming sections, sufficient
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conditions on the parameters of the system of the equation
guarantee stability of nonzero equilibrium.

2.1. Linearized System. Let perturbation near this equilib-
rium be as following:

d = D − de, c = C − ce, f = F − fe,

m =M −me, e = E − ee.
(7)

Denote vector field of the perturbation by v(x, t) =
(d, c, f ,m, e). Then the linearized system for v(x, t) will take
the following form:

∂d

∂t
= Dd∇2d − b11d − b14m

∂c

∂t
= Dc∇2c − b21d − b22c − b24m,

∂ f

∂t
= Df∇2 f − χ f∇2c − b32c − b33 f − b34m,

∂m

∂t
= Dm∇2m− χm∇2c − b42c − b44m,

∂e

∂t
= De∇2e − χe1∇2 f − χe2∇2c − b53 f − b55e.

(8)

Here,

χ f = feχ0, χm = χ1me, χe1 =
BDf e0

F0
, χe2 =

Bχje0 fe
F0

,

b11 = f0λ1me, b12 = 0, b13 = 0,

b14 = −
(

˜f0λ3 − f0λ1de
)

, b15 = 0,

b21 = − f1, b22 = f3λ2me + f4,

b24 = −
(

f2λ3 − f3λ2ce
)

, b23 = b25 = 0,

b31 = 0, b32 = −a12 fe,

b33 = −
[

a2

(

1− 2
fe
F0

)

+ a12ce − a3

]

,

b34 = −a1λ1, b35 = 0,

b41 = 0, b42 = −a11me, b43 = 0,

b44 = a0 − a11me, b45 = 0,

b51 = 0, b52 = 0, b53 = −a16

(

1− ee
E0

)

,

b54 = 0, b55 = a16
fe
E0

.

(9)

3. Spatially Uniform Equilibrium States and
Linear Stability in ODE System

We now focus on equilibrium states that are uniform in
space for this Neumann problem. By removing the spatial
variations, (1)–(5) reduce to the following ODE system:

dD

dt
= − f0λ1MD + ˜f0λ3M,

dC

dt
= f1D + f2λ3M − f3λ2MC − f4C,

dF

dt
= a1λ1M + a2F

(

1− F

F0

)

− a3F + a12CFH(F0 − F),

dM

dt
= −a0M + a11CMH(M0 −M),

dE

dt
= a16F

(

1− E

E0

)

.

(10)

In looking for the equilibrium of the simplified system,
(10), we assume that our values are taken to be below
threshold and therefore we ignore the Heaviside functions.
There are several possible equilibrium states, but as it was
pointed out earlier, we focus on what one can call the interior
equilibrium, one in which none of the components of the
equilibrium are zero. We let the right-hand side of (10)
to be zero. After some algebraic work, one can obtain the
following explicit formula for a unique, nonzero solution
Ue = (de, ce, ee,me, fe):

de =
˜f0λ3

f0λ1
,

ce = a0

a11
,

ee = E0,

me = f4 f0λ1a0 − a11 f1 ˜f0λ3

f0λ1
(

f2λ3a11 − f3a0λ2
) ,

fe =
[

F0

2a2

][(

a2 − a3 + a12

(

a0

a11

))

+ L1

]

.

(11)

Here, L1 =
√

(a2 − a3 + a12(a0/a11))2 + 4(a2/F0)a1λ1me.

Remark 3. In order for the inflammatory equilibrium to
exist, it is necessary and sufficient that macrophage percent-
ages satisfy the following:

f4 f0λ1a0 − a11 f1 ˜f0λ3
(

f2λ3a11 − f3a0λ2
) > 0, (12)

requiring either

f2λ3a11 > f3a0λ2, f4 f0λ1a0 > a11 f1 ˜f0λ3, (13)

or

f2λ3a11 < f3a0λ2, f4 f0λ1a0 < a11 f1 ˜f0λ3. (14)
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λ1

1

P1
λ2

1P2

me > 0

P1 = a11 f1 f̃0
f4 f0a0+a11 f1 f̃0

P2 = a11 f2
f3a0+a11 f2

Figure 1: Illustration of the parameter range to ensure that me > 0.

Condition on the parameters in (12) says that inflam-
matory macrophages dominate over either regulatory or
classical macrophages and are guaranteeing existence of the
inflamed steady state. This point will be expounded on
further in the analysis of the conditions for stability of the
nonzero equilibrium state. The illustration (Figure 1) pro-
vides a visualization of the necessary macrophage phenotype
parameter ranges. “Hereafter we assume that the parameters
of the original model satisfy condition (12).”

Turning now to satisfy the stability of the system at the
equilibrium, we find the linearized system to be as follows:

dd

dt
=− b11d − b14m,

dc

dt
=− b21d − b22c − b24m,

df

dt
=− b32c − b33 f − b34m,

dm

dt
=− b42c − b44m,

de

dt
=− b53 f − b55e,

(15)

where

b11 = f0λ1me, b14 = −
(

˜f0λ3 − f0λ1de
)

,

b21 = − f1, b22 = f3λ2me + f4,

b24 = −
(

f2λ3 − f3λ2ce
)

,

b32 = −a12 fe, b33 = −
[

a2

(

1− 2
fe
F0

)

+ a12ce − a3

]

,

b34 = −a1λ1,

b42 = −a11me, b44 = a0 − a11ce,

b53 = −a16

(

1− ee
E0

)

, b55 = a16
f0
E0

.

(16)

Equations (32)–(39) in matrix form yields as follows:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

d
c
f
m
e

⎤

⎥

⎥

⎥

⎥

⎥

⎦

′

= −B

⎡

⎢

⎢

⎢

⎢

⎢

⎣

d
c
f
m
e

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (17)

where B is:

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

b11 0 0 b14 0
b21 b22 0 b24 0
0 b32 b33 b34 0
0 b42 0 b44 0
0 0 b53 0 b55

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (18)

For stability analysis, we look at the eigenvalues of matrix−B;
for convenience, we rearrange our equations in the following
form:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

m
d
c
f
e

⎤

⎥

⎥

⎥

⎥

⎥

⎦

′

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−b44 0 −b42 0 0
−b14 −b11 0 0 0
−b24 −b21 −b22 0 0
−b34 0 −b32 −b33 0

0 0 0 −b53 −b55

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

m
d
c
f
e

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (19)

We break −B into a 3-block and a 2-block as follows:

−B1 =
⎡

⎢

⎣

−b44 0 −b42

−b14 −b11 0
−b24 −b21 −b22

⎤

⎥

⎦, −B2 =
[

−b33 0
−b53 −b55

]

.

(20)

Since det(−B − σI)= det(−B1 − σI) det(−B2 − σI), we find
the eigenvalues by looking at the eigenvalues of the 3-block,
−B1, and the two block, −B2, separately. We also simplify by
noting that with the equilibrium values found above, b44 = 0
and b14 = 0 s.t.

det[−B1 − σI] =
⎡

⎢

⎣

−σ 0 −b42

0 −b11 − σ 0
−b24 −b21 −b22 − σ

⎤

⎥

⎦

= −σ(b11 + σ)(b22 + σ) + b24(b42(b11 + σ))

= −(b11 + σ)
(

σ2 + b22σ − b24b42
)

,
(21)

solving for the roots we get the following eigenvalues:

σ1 = −b11, (22)

σ2 =
−b22 −

√

(b22)2 + 4b42b24

2
, (23)

σ3 =
−b22 +

√

(b22)2 + 4b42b24

2
. (24)
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The lower triangular −B2 gives us our final two eigenval-
ues:

σ4 = −b33, (25)

σ5 = −b55. (26)

ODE stability requires real parts of the σ1, . . . , σ5 to be
negative. In the next remark, stability criteria are formulated
in terms of the parameters of the model.

Remark 4. Under the model assumptions we have

−b11 < 0 − b22 < 0, b42 < 0, −b55 < 0. (27)

Therefore, σ1 < 0, σ2 < 0, and σ5 < 0. Next, if

b33 = a2

(

1− 2
fe
F0

)

+ a12ce − a3 > 0, (28)

then σ4 < 0. Finally, because b42 < 0, real part of σ3 is negative
if and only if

b24 = −
(

f2λ3 − f3λ2ce
)

> 0. (29)

Assumptions in (28) and (29) have clear biological interpre-
tation.

Condition b33 > 0 requires

[

a2

(

1− 2
fe
F0

)

+ a12ce < a3

]

, (30)

suggesting the need for the logistic growth of fibroblasts
combined with the direct proliferation resulting from the
presence of chemoattractants to be overcome by the death
rate of fibroblasts.

Condition b24 > 0 requires

f3λ2ce > f2λ3, (31)

suggesting that stability is aided when the percentage
of regulatory macrophages out-weighs the percentage of
inflammatory macrophages.

Note that from a mathematical point of view, conditions
in the form of a strict inequalities imply a stronger property
of the solution, namely asymptotic stability of the equilib-
rium. Lyapunov stability follows from the less restrictive
condition with nonstrict inequalities.

4. ODE Linear Stability Implies PDE
Linear Stability

Since the interior equilibrium solution represents the inflam-
matory state, one of the more biologically relevant questions
is whether some modifications of conditions can cause
the reactions to be away from the ill state and return to
healthy state. Typically, the competition between diffusion

and chemotaxis can aid the instability by creating spatial
disturbance. One of the surprising findings for this system,
however, is that if the equilibrium is stable by pure reactions,
then it is stable for the whole reaction-diffusion-chemotactic
system.

To start, we let

v(x, t) = eσtφμn(x)(u1, . . . ,u5) (32)

to be a vector with unknown five components and function
φn(x) to be the nth eigenfunction for Laplace equation with
respect to Neumann boundary conditions:

Δφn(x) = −μnφμn inside domain, (33)

∂φμn
∂n

= 0 on the boundary of the domain. (34)

Let us for simplicity assume that the domain is convex such
that μn ≥ 0 for any n ∈ N is an eigenvalue for the eigenvalue
problem, and φμn is its corresponding eigenfunction. We will
drop the subscripts n in the text below. Substituting the
function v(x, t) into equation one can get

σu1 =−Ddμu1 − b11u1 − b14u4,

σu2 =−Dcμu2 − b21u1 − b22u2 − b24u4,

σu3 =−Df μu3 + χ f μu2 − b32u2 − b33u3 − b34u4,

σu4 =−Dmμu4 + χmμu2 − b42u2 − b44u4,

σu5 =−Deμu5 + χe1μu3 + χe2μu2 − b53u3 − b55u5,

(35)

or

(

σ + Ddμ + b11
)

u1 + b14u4 = 0,

b21u1 +
(

σ + Dcμ + b22
)

u2 + b24u4 = 0,

(

σ + Df μ + b33

)

u3 −
(

χ f μ− b32

)

u2 + b34u4 = 0,

−
(

χmμ− b42

)

u2 +
(

σ + Dmμ + b44
)

u4 = 0,

−χe2μu2 −
(

χe1μ− b53

)

u3 +
(

σ + Deμ + b55
)

u5 = 0.

(36)

Then in matrix form it takes a form

A(σ)u = 0, (37)

with matrix A defined as follows:
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⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

σ + Ddμ + b11
)

0 0 b14 0
b21

(

σ + Dcμ + b22
)

0 b24 0

0 −
(

χ f μ− b32

) (

σ + Df μ + b33

)

b34 0

0 −
(

χmμ− b42

)

0
(

σ + Dmμ + b44
)

0

0 −χe2μ −
(

χe1μ− b53

)

0
(

σ + Deμ + b55
)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (38)

Below, we will show that if the real part of all eigenvalues
of matrix B is negative (corresponding ODE system is stable),
then nontrivial solutions of (37) with parameter σ having
negative real part exist. It is not difficult to see that the
determinant of the matrix A has aform as follows:

P(σ) = ( σ + Deμ + b55
)

(

σ + Df μ + b33

)

det(B1). (39)

Here, B1 is a matrix associated to debris u1, chemotaxis
u2, and macrophages u4 parameters only:
⎛

⎜

⎝

(

σ + Ddμ + b11
)

0 b14

b21
(

σ + Dcμ + b22
)

b24

0 −
(

χmμ− b42

)

(

σ + Dmμ + b44
)

⎞

⎟

⎠.

(40)

Under the assumptions that the ODE part without
diffusion is asymptotically stable, coefficients b55 and b33

should satisfy inequalities b44 = b14 = 0, b55 > 0 and b33 < 0.
We rearrange the matrix into a u4,u1,u2 order so that it is

similar to the one addressed previously in the ODE stability
analysis. Now,

det[B1 + σI] =
⎡

⎢

⎣

σ + Dmμ 0 b42 − χmμ
0 b11 + Ddμ + σ 0
b24 b21 b22 + Dcμ + σ

⎤

⎥

⎦

= (σ + Dmμ
)(

b11 + Ddμ + σ
)(

b22 + Dcμ + σ
)

− b24

(

b42 − χmμ
)

(

b11 + Ddμ + σ
)

= (b11 + Ddμ + σ
)(

σ2 +
(

b22 + Dcμ + Dmμ
)

σ

+Dmμ
(

b22 + Dcμ
)− b24

(

b42 − χmμ
))

,

(41)

solving for the roots we get the following eigenvalues:

σ1 = −b11 −Ddμ,

σ2 =
−(b22 + Dcμ + Dmμ

)−
√

(

b22 + Dcμ + Dmμ
)2 + 4ε

2
,

(42)

σ3 =
−
(

b22 + Dcμ + Dmμ

)

+
√

(

b22Dcμ + Dmμ
)2 + 4ε

2
,

(43)

here

ε =
(

b42 − χmμ
)

b24 −Dmμ
(

b22 + Dcμ
)

. (44)

The other two eigenvalues are

σ4 = −b33 − μDf ,

σ5 = −b55 − μDe.
(45)

In the forthcoming remark, explicit representations for
all possible σ ’s are explored for direct comparison between
conditions of the stability of the linearized PDE (8) and ODE
(15) systems.

Remark 5. Similarly to criteria for ODE the stability for PDE,
requires that real parts of the all σ ’s to be negative. Under the
natural constraints on the parameters of our original model
b11, b55, b22, and b42 (see Remark 4) we already have σ1 < 0,
σ4 < 0 and σ5 < 0. Therefore, our criteria for PDE stability
reduce to conditions as follows:

b22 + Dcμ + Dmμ > 0, ε < 0. (46)

It is obvious to see that if both inequalities hold, then
σ2 and σ3 are negative. Since stability of the ODE system
forces b24 > 0 and b42 < 0, these two inequalities for PDE
stability hold for any χm > 0, Dm > 0,Dc > 0, μ > 0.

From the above arguments it follows that if the ODE
system is stable, then v(x, t) are converging to zero as time
goes to infinity for any eigenfunction φn. Therefore, since
the φn(x) is complete in L2 space, one can conclude that the
stability of the linearized PDE system (8) in L2 space follows
from the stability of the ODE system (15).

As expected, the ODE stability and PDE stability are
different. Let Dm = Dcχm = 0, then the first 5 eigenvalues
of the PDE and ODE have the same sign. By definition of
our original model σ1, σ2, and σ5 are all negative. Assume
b33 > 0 (in some sense reactive terms has stabilizing effect,
with respect to Ue), then σ4 < 0. However, now if one lets
f2λ3 > f3λ2ce, which means that inflammatory macrophages
dominate the regulatory macrophages, then b24 < 0 causing
σ3 > 0, and consequently the ODE system (15) is unstable.
For the same set of the coefficients b’s and given μ > 0, it is
not difficult to find sufficient condition on Dm, Dc, and χm
such that σ3 < 0, which guarantee stability of the equilibrium
state Ue. For example, any set with the same coefficients b’s
with

DmDc >
(

b42 − χμ
)

b24/μ (47)

will have a real part of the σ3 < 0 and consequently the
solution of the corresponding IBVP with initial function
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to be φμ(x)(u1, . . . ,u5) will be vanishing at time infinity.
Condition (47) contains the following pattern in the biolog-
ical interpretation. Assume that inflammatory macrophages
dominate the regulatory macrophages and are characterized
by the coefficient b24 = −( f2λ3 − f3λ2ce) < 0. Then
for any given value b24 if mobility of the macrophages
and diffusion of the chemoattractant is high enough in
comparison to the coefficient b24, then Ue is stable for the
class of perturbation which corresponds to eigenfunction φμ.
In less strict wording, the system can be cleaned from dead cells
by high “mobility/diffusivity” of the macrophages with respect
to chemoattractant. This indicates vital impact of the key
parameters Dm, Dc, and χm on “inflammatory” behavior
both in space and in time of the system perturbed from
equilibrium.

Obtained conclusion depends on μ and can be applied
only if initial data is proportional to φμ. If in the Fourier
extension of the initial data all coefficients are nonzero, then
the sufficient condition for stability is the same as for ODE
system.

In the next section, we will analyze conditional stability
of the IBVP for (8) under assumption that v(x, t0) has zero
average:

∫

v(x, t0)dx = 0. We will derive conditions on the
coefficient of the system (8) such that the L2 norm of the
solution is bounded by the L2 norm of the initial data,
or it converges to zero at time infinity depending on the
conditions on coefficients. Those conditions will depend
only on coefficients of the model and Poincare constant
(Cp), which in turn depends only on the geometry of the
domain. We will also show that there exists a specific initial
distribution such that the corresponding IBVP solution is
vanishing at time infinity while the corresponding solution
of the ODE is unbounded at time infinity.

5. Stability of Equilibrium in the Linearized
PDE System without ODE Stability

Let us rewrite the linearized system (8) as follows:

∂d

∂t
= Dd∇2d − f0λ1med − b14m, (48)

λ1∂c

∂t
= λ1Dc∇2c − b21λ1d − b22λ1c − b24λ1m, (49)

λ1∂ f

∂t
= Df λ1∇2 f − χ f λ1∇2c

− b32λ1c − b33λ1 f − b34λ1m,

(50)

λ1∂m

∂t
= Dmλ1∇2m− χmλ1∇2c

− b42λ1c − b44λ1m,

(51)

λ1∂e

∂t
= Deλ1∇2e − χe1λ1∇2 f

− χe2λ1∇2c − b53λ1 f − b55λ1e.

(52)

Next multiplying equations (48) by d, (49) by c, (50) by
f , (51) by m, and (52) by e correspondingly and integrating
by parts, one can easily get

1
2
∂

∂t

∫

d2 =−
∫

Dd(∇d)2 − f0λ1med
2 − b14md, (53)

λ1

2
∂

∂t

∫

c2 =−
∫

λ1Dc(∇c)2 − b21λ1dc − b22λ1c
2 − b24λ1mc,

(54)

λ1

2
∂

∂t

∫

f 2 = −
∫

Df λ1
(∇ f

)2 + Φ
(

c, f
)

− b32λ1c f − b33λ1 f
2 − b34λ1m f ,

(55)

λ1

2
∂

∂t

∫

m2 = −
∫

Dmλ1(∇m)2 + Φ(c,m)

− b42λ1cm− b44λ1m
2,

(56)

λ1

2
∂

∂t

∫

e2 = −
∫

Deλ1(∇e)2 + Φ
(

f , e
)

+ Φ(c, e)− b53λ1 f e − b55λ1e
2.

(57)

Here, Φ( f , e) = χe1λ1∇ f∇e, Φ(c, f ) = χ f λ1∇c∇ f ,
Φ(c,m) = χmλ1∇c∇m, Φ(c, e) = χe2λ1∇c∇e.

Adding LHS and RHS of the equations above:
(53)+(54)+(55)+(56)+(57) and applying the Poincare
inequality to the terms

∫

(∇u)2dx such that for
Cp = Cp(Ω) > 0,

Cp

∫

Ω
u2dx ≤

∫

Ω
(∇u)2dx +

(∫

Ω
udx

)2

, (58)

one can easily get

1
2

[∫

d2 + λ1
(

c2 + f 2 + m2 + e2)
]

t

≤ −
∫

[B(d,m) + B(c,d) + B(c,m)

+B
(

c, f
)

+ B
(

f ,m
)

+ B
(

f , e
)]

−
∫

[

B(∇c,∇m) + B
(∇c,∇ f

)

+B(∇e,∇c) + B
(∇e,∇ f

)]

+ C

[

(∫

d
)2

+
(∫

c
)2

+
(∫

f
)2

+
(∫

m
)2

+
(∫

e
)2
]

,

(59)
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where the bilinear forms are

B(d,m) = 0, (60)

B(c,d) = λ1

[(

1
6
DcCp + b22

)

c2 + b21dc +
(

f0 + DdCp

)

d2
]

,

(61)

B(c,m) = λ1

[(

1
6
DcCp + b22

)

c2 + b2,4cm

+
(

1
3
DmCp + b44

)

m2
]

(62)

B
(

f ,m
) = λ1

[(

1
4
Df Cp + b33

)

f 2 + b34c f +
1
3
DmCpm

2
]

,

(63)

B
(

c, f
) = λ1

[

1
6
DcCpc

2 + b32c f +
1
3
Df Cp f

2
]

(64)

B
(

f , e
) = 0, (65)

B(∇c,∇m) = λ1

[

1
6
Dc(∇c)2 − χm∇c∇m +

1
3
Dm(∇m)2

]

,

(66)

B
(∇c,∇ f

) = λ1

[

1
6
Dc(∇c)2 − χ f∇c∇ f +

1
4
Df
(∇ f

)2
]

,

(67)

B
(∇ f ,∇e) = λ1

[

1
4
Df
(∇ f

)2 − χe2∇ f∇e +
1
2
De(∇e)2

]

,

(68)

B(∇c,∇e) = λ1

[

1
6
Dc(∇c)2 − χe1∇c∇e +

1
2
De(∇e)2

]

.

(69)

Imposing assumptions that all bilinear forms above are
positively defined, one can then conclude that the system
is stable. Below, we formulate a sufficient condition for the
solution to be stable in L2 space. The formulation of the
assumptions is presented in terms of the parameters of the
original system where biological meanings are more evident.

Condition 1. If
[(

1
6
DcCp + f3λ2me + f4

)

(

f0 + DdCp

)

]1/2

≥ 1
2
f1, (70)

then B(c,d) ≥ 0.

Condition 2. If
[(

1
4
Df Cp −

[

a2

(

1− 2
fe
F0

)

+ a12ce − a3

])

1
3
DmCp

]1/2

≥ 1
2
a1λ1,

(71)

then B( f ,m) ≥ 0.

Taking into account actual values for equilibriums ce and
fe of the inflammatory equilibrium, one can reduce (71) to
an inequality, which is easy to interpret.

Namely, assume that

[

1
4
Df DmCp +

√
ADm

]1/2

≥ 1
2
a1λ1, (72)

then B( f ,m) ≥ 0. From the previously mentioned,

A =
(

a2 − a3 + a12

(

a0

a11

))2

+ 4
(

a2

F0

)

a1λ1
f4 f0λ1a0 − a11 f1 ˜f0λ3

f0λ1
(

f2λ3a11 − f3a0λ2
) .

(73)

Due to the assumption (12), parameter A is well defined
for all values of the coefficients of the original model.
Biological meaning of constraint (12) was explained in
Remark 3, and it is necessary for the existence of the
inflammatory equilibrium. What we want to point out here
is that for any set of the parameters there exist large enough
diffusive constants Dm and Df that inequality (72) holds, and
consequently bilinear form B( f ,m) ≥ 0.

Condition 3. If
[(

1
6
DcCp +

(

f3λ2me + f4
)

)(

1
3
DmCp + (a11me − a0)

)]2

≥ 1
2

[

f2λ3 − f3λ2ce
]

,

(74)

then B(c,m) ≥ 0. For well posedness of the RHS in inequality
(74), assume that
(

1
3
DmCp + (a11me − a0)

)

= 1
3
DmCp + a11

f4 f0λ1a0 − a11 f1 ˜f0λ3

f0λ1
(

f2λ3a11 − f3a0λ2
) − a0 ≥ 0.

(75)

We rewrite the above inequality in terms of the parameters
of the original model to point out that for any given set
of the parameters, there exists big enough coefficient Dm,
characterizing macrophages mobility, such that inequality
(74) holds.

Condition 4. If
[

1
6
DcCp

1
4
Df Cp

]1/2

≥ 1
2
a12 fe, (76)

then B(c, f ) ≥ 0.

Condition 5. If
[

1
6
Dc

1
3
Dm

]1/2

≥ 1
2
χm, (77)

then B(∇c,∇m) ≥ 0.

Condition 6. If
[

1
6
Dc

1
4
Df

]1/2

≥ 1
2
χ f , (78)

then B(∇c,∇ f ) ≥ 0.
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Condition 7. If

[

1
4
Df

1
2
De

]1/2

≥ 1
2
χe2, (79)

then D(∇ f ,∇e) ≥ 0.

Condition 8. If

[

1
6
Dc

1
2
De

]1/2

≥ 1
2
χe1, (80)

then D(∇c,∇e) ≥ 0.

We now assume that
∫

for all five components
d(x, 0), c(x, 0), f (x, 0),m(x, 0), and f (x, 0) is equal to 0 (ini-
tial data are orthogonal to 1. Then due to no-flux Neumann
condition on the boundary for all times,

∫

U
d =

∫

U
c =

∫

U
f =

∫

U
m =

∫

U
e = 0. (81)

Therefore, the above Conditions (1–8) guarantee Lyapunov
stability of the linearized system. If further for the same class
of initial data we in addition assume strict inequalities in
(70)–(76), then system will be asymptotically stable, and L2

norm of the solution will exponentially converge to zero as
time goes to infinity.

Here, we do not assume the ODE stability conditions of
the equilibrium in this section. It will be easy to construct
a specially inhomogeneous solution of the initial-boundary
value problem (IBVP) so that the solution of corresponding
ODE for V = ∫

v(x, t)dx is identically zero, where the
PDE solutions can be either stable or unstable by adjusting
certain parameters. Indeed, let the domain be a segment
[0,π] and as in (32), with φ = cos x. Then, in as Section 4,
in order for v(x, t) to be a solution of corresponding IBVP
it is necessary and sufficient that σ to be a root of the
characteristic polynomial equation P(σ) = 0 in (39). To see
Conditions (1–8) are essential, we show an example of the
system with: (1) Conditions (1–8) are all met, and (2)P(σ)
has a positive root in (39). For selected domain, assume
Poincare constant Cp = 1. Assume that all coefficients are
such that inequalities in all constraints except inequities in
constraints Conditions 3 and 5 are satisfied. Let b22 ≥ 4/5Dc,
a11me ≥ a0, and 0 > b24 ≥ −(DcDm/20)1/2. Obviously
for these set of the parameter Condition 3 satisfies. Then if
√

DcDm/60 ≥ χm then Condition 5 holds and consequently
v(x, t) → 0 as t → ∞. Furthermore, it is not difficult to see
that if b22 = 4/5Dc, and b24 = −(DcDm/20)1/2 then in (42) is
positive provided

(

χm − b42

)

[

DcDm

20

]1/2

− 9
5
DmDc > 0. (82)

Inequality in (82) holds if

χm >
√

102DcDm (83)

Consequently, Condition (83) holds then ‖v(x, t)‖L2
→ ∞ as

t → ∞. Comparing stability in (77) and instability in (83),

the conditions are optimal unto discrepancy in coefficients.
In the next remark, we want to highlight the impact of
the diffusive parameter and chemotactic coefficients on the
stability of the inflammatory equilibrium Ue.

Remark 6. In all above eight conditions inequalities hold
for big enough values of diffusive coefficients D’s. This
highlights the importance of the spatial distribution of the
perturbation for the equilibrium. The major meaning of
these condition is that for any set of the parameters if
diffusivity coefficients are big enough then Ue is stable.
Another key parameter, which characterizes the behavior
of the spatial distribution of the system is the chemotactic
coefficient. From the example above, one can see that if
the chemotactic sensitivity coefficient χ is relatively bigger
than the diffusivity characteristic of the process, then Ue is
unstable. At the same time if it is relatively smaller, as in
inequalities (77)–(80), then the inflammatory equilibrium is
stable.

6. Conclusion and Discussion

To quantitatively study the processes governing inflamma-
tory and fibrotic reactions against foreign bodies, we have
built a mathematical model with the capability to predict
the trends of macrophage migration, ECM production,
and chemoattractant regulation by macrophages in these
fibrotic reactions. The initiations of reactions are digestions
of debris which are the natural responses of the immune
system to damaged cells and tissues due to the implantation
process. Our model is built based principally on biochemical
mechanisms, and it has served its purpose in providing
trends of reactions. The model is expressed by a system
of partial differential equations with no flux boundary
conditions.

We have considered an equilibrium state of the system
and its stability conditions. We have provided a mathe-
matical proof that when this equilibrium is stable in the
corresponding ODEs, then it is also stable for the full
system in L2(Ω). However, a system with a parameter set
can be conditionally stable in the PDE sense when its ODE
system is not necessarily stable. We provided some exclusive
conditions for this to happen. These conditions correspond
with feasible biological conditions, where the percentage of
regulatory macrophages dominates that of the inflammatory
macrophages.

We mention here that the system has infinitely many
equilibria, all except for one containing at least one free
parameter in it. The one under discussion here is called the
interior equilibrium as it has 5 nonzero components. This
particular equilibrium corresponds to an inflammatory state
of the healing process, whose instability is an indicator of
three possible dynamics: (1) best case scenario, returning
to the healthy state; (2) uncertain development, transition
to another “abnormal” equilibrium; (3) acute inflammatory
response (worst case scenario), perturbations tend to infinity.

Our main mathematical result indicates that the inflam-
matory state’s stability mainly depends on the reaction
dynamics and even that small spatial diffusion and big
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chemotaxis cannot destabilize the equilibrium which is stable
in the reaction-only system. However, if the equilibrium is
unstable by its reaction-only system, then spatial diffusion
over chemotactic effects can help to stabilize the equilibrium
if the initial perturbation is subjected to specific constraints.
We did not discuss other equilibrium states due to the length
of the paper, but there is no mathematical difficultly in
accomplishing these tasks.
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