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Simple Summary: Specific/targeted therapies have been shown to be effective in the treatment of
certain cancers. Unfortunately, there is currently no targeted therapy for the treatment of triple-
negative breast cancer (TNBC), which is why this subtype of breast cancer is associated with poor
patient prognosis. While there is an immense focus on the development of new therapies, the issue
of cardiotoxicity following chemotherapeutic treatment is commonly overlooked, despite its role
as a leading cause of mortality in cancer survivors. This review aims to discuss the connection of
TGF-β signaling and its role in modulating cardiac fibrosis and remodeling, as well as its role in
TNBC tumor progression, cancer stem cell enrichment, chemoresistance and relapse. Together, we
highlight the modulation of TGF-β as a method to target two of the greatest causes of morbidity and
mortality in breast cancer patients.

Abstract: Triple-negative breast cancer (TNBC) is a subtype of breast cancer that accounts for the
majority of breast cancer-related deaths due to the lack of specific targets for effective treatments.
While there is immense focus on the development of novel therapies for TNBC treatment, a per-
sistent and critical issue is the rate of heart failure and cardiomyopathy, which is a leading cause
of mortality and morbidity amongst cancer survivors. In this review, we highlight mechanisms of
post-chemotherapeutic cardiotoxicity exposure, evaluate how this is assessed clinically and highlight
the transforming growth factor-beta family (TGF-β) pathway and its significance as a mediator of car-
diomyopathy. We also highlight recent findings demonstrating TGF-β inhibition as a potent method
to prevent cardiac remodeling, fibrosis and cardiomyopathy. We describe how dysregulation of the
TGF-β pathway is associated with negative patient outcomes across 32 types of cancer, including
TNBC. We then highlight how TGF-β modulation may be a potent method to target mesenchymal
(CD44+/CD24−) and epithelial (ALDHhigh) cancer stem cell (CSC) populations in TNBC models.
CSCs are associated with tumorigenesis, metastasis, relapse, resistance and diminished patient prog-
nosis; however, due to plasticity and differential regulation, these populations remain difficult to
target and continue to present a major barrier to successful therapy. TGF-β inhibition represents
an intersection of two fields: cardiology and oncology. Through the inhibition of cardiomyopathy,
cardiac damage and heart failure may be prevented, and through CSC targeting, patient prognoses
may be improved. Together, both approaches, if successfully implemented, would target the two
greatest causes of cancer-related morbidity in patients and potentially lead to a breakthrough therapy.
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1. Introduction

Breast cancer is the most frequent cancer affecting women and accounted for over
2 million breast cancer diagnoses and approximately 600,000 related mortalities in 2018 [1].
TNBC only accounts for a minority of breast cancer cases (15–20%); however, it is dispro-
portionately associated with reduced patient prognosis compared to the other breast cancer
subtypes [2,3]. TNBC, in contrast with other breast cancer subtypes, lacks expression of
the estrogen receptor, progesterone receptor and HER-2. The presence of these receptors
is associated with the usage of targeted therapies; thus, non-specific chemotherapies and
radiotherapies are mainstays for the treatment of TNBC, which, overall, is associated with
reduced patient prognosis.

As such, there is immense focus on the development of targeted therapies to treat
TNBC. However, a critical issue garnering increased attention in preclinical research is the
high incidence of cardiotoxicity following therapy, leading to increased rates of heart failure
and cardiomyopathy [4]. CVD and its related complications are leading causes of morbidity
and mortality in cancer survivors [5]. In an observational study, Patnaik et al. demonstrated
in 63,566 breast cancer patients that, while there were increased adjusted relative hazards of
comorbidities, such as cardiovascular disease, COPD and diabetes, cardiovascular disease
was the primary cause of death amongst the patients (15.9%), exceeding mortality due to
breast cancer (15.1%) [6].

Moreover, in a clinical trial carried out by Bardia et al. that applied a 10-year recurrence
risk prediction model to breast cancer patients with early-stage breast cancer (stage I–III,
with 67.5% having stage I) and calculated CVD and breast cancer recurrence risk [7], it was
found that the risk of a CVD event exceeded the risk of breast cancer relapse in 37% of the
patients, while 43% had a risk equal to that of breast cancer recurrence [7]. These studies
highlight that not only is the development of therapeutics for primary tumor management
important for patient prognosis, but that the cardiovascular health of the patient must be
protected due to sensitivity following chemotherapeutic treatment.

To highlight this point, in a recent study by Sturgeon et al., 3,234,256 US cancer sur-
vivors from the period 1973–2012 were assessed and mortality ratios stemming from CVD
(consisting of a grouping of heart disease, hypertension, atherosclerosis, cerebrovascular
disease, aortic aneurysm or aortic dissection) and cancer-related causes were determined [8].
The patients were separated by cancer type, and CVD mortality was found to be highly ele-
vated in patients diagnosed with breast, prostate or bladder cancer (together accounting for
61% of all CVD mortality) and also in patients diagnosed at an earlier age (<35 years old) [8].
Importantly, this study identified that CVD was highly prevalent in breast cancer cases and
that the risk of CVD mortality was continually elevated upon clinical follow-up [8].

Due to the essential inclusion of cardiotoxic agents, such as anthracyclines, taxanes and
antimetabolites, for the treatment of breast cancer combined with the CVD issues plaguing
patients post-chemotherapeutically, there is a drastic need for cardio-oncology research
into the mechanisms promoting chemotherapy-induced cardiotoxicity and for methods
to alleviate this process. This review will discuss mechanisms of chemotherapy-induced
cardiomyopathy in TNBC patients and also highlight TGF-β signaling as an emerging
pathway of therapeutic interest for the prevention of chemotherapy-induced cardiotoxic
effects. Additionally, this review will highlight the anti-tumorigenic properties of TGF-
β modulation in targeting the TNBC bulk tumor and its CSC populations. Clinically
translatable mediators of TGF-β signaling involved in breast cancer and cardiac disease-
related clinical trials will be described and listed for future investigation.

2. Post-Chemotherapeutic Cardiomyopathy

Due to the aforementioned lack of specific cellular targeting in TNBC treatment, there
is a strong reliance on standard cytotoxic chemotherapeutic agents in clinical practice [9].
These regimens often involve the use of anthracycline or taxane class chemotherapeutic
agents [10]. Unfortunately, chemotherapy often induces very severe side effects, with
cardiotoxicity at the forefront of dose-limiting toxicity [11].
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Cardiotoxicity is a broad term which includes both early- and late-onset forms, as well
as effects ranging from subclinical impairment of cardiac function to cardiac death [12].
Early-onset, also called “acute”/”subacute”, cardiotoxicity develops immediately after
chemotherapeutic infusion or up to 2–4 weeks after completion and is typically character-
ized by reversible arrhythmias, abnormalities in ventricular repolarization, prolongation
of the QT interval, acute coronary syndrome, pericarditis/myocarditis-like syndromes
or altered myocardial function [13]. Late-onset cardiotoxicity can be divided into either
early-chronic or late-chronic subtypes. Early-chronic cardiotoxicity occurs within 1 year
after termination of chemotherapy, while late-chronic cardiotoxicity occurs more than 1 year
after termination [14]. Late-onset cardiotoxicity can result in systolic/diastolic left ventric-
ular dysfunction that leads to congestive cardiomyopathy which can transition towards
cardiac death [14]. Additionally, cardiomyopathy can be classified into two subtypes: type
I (caused by cardiomyocyte death and irreversible) and type II (caused by cardiomyocyte
impairment of cardiac function and reversible) [15]. This concept was originally proposed
by Ewer et al., and these subtypes can differentiate the effects of various chemotherapeutic
agents; for example, doxorubicin (an anthracycline chemotherapeutic agent) induces type
I cardiotoxicity and thus directly destroys cardiac myocytes, resulting in a diminished
number of functioning contractile elements within the heart, which leads to an initial phase
of asymptomatic cardiac compensation but may progress to symptomatic decompensation.
The biological agent trastuzumab (an anti-HER-2 chemotherapeutic agent) induces type II
reversible cardiotoxicity [15].

3. Anthracycline and Taxane Mechanisms of Cardiotoxicity

Doxorubicin, an anthracycline, is one of the most frequently prescribed chemothera-
peutic agents for the treatment of breast cancer. In a study by Giodano et al., 4458 patients
from Medicare and 30,422 patients with private insurance who were treated for breast
cancer were assessed [16]. By the year 2000, it was found that over 80% of these patients
under 70 with node-positive breast cancer and 70% of the patients under 70 with node-
negative breast cancer were treated with anthracyclines. This number has since dropped
down to 40–50% of individuals being treated with anthracyclines, with an increased shift
in treatment towards taxanes due to fears of potential cardiotoxicity [16].

The toxicity of doxorubicin on cardiac tissue is mediated through multifactorial
mechanisms. One commonly proposed mechanism is that anthracycline agents, such
as doxorubicin, are prone to the generation of reactive oxygen species (ROS) during their
metabolism [11]. Specifically, the univalent reduction of the anthracycline class quinone
moiety by mitochondrial complex I in the electron transport chain (ETC) results in the
formation of semiquinone radicals which rapidly undergo auto-oxidation to form super-
oxide anions (O2

−), thereby also regenerating the quinone moiety [17,18]. This cycle can
then continue under aerobic conditions, producing additional ROS. This process may shed
light on the correlation between anthracycline chemotherapeutics and the induction of car-
diotoxicity, as the cardiomyocytes experience a large demand for ATP produced by the ETC
and therefore have a greater density of mitochondria (and hence complexes I) than other
cell types [19]. The high rate of ROS production in the mitochondria of a cardiomyocyte
can then interfere with iron reduction and damage the cell via ROS-mediated reactions
that result in the formation of reactive nitrogen species and mitochondrial/cardiomyocyte
dysfunction, which ultimately promotes apoptosis [20–22].

Another proposed mechanism for the cardiotoxicity of anthracyclines is its intended
anti-tumor mechanism of DNA–topioisomerase2 (Top2) intercalation, wherein the anthra-
cycline forms a Top2–doxorubicin–DNA ternary complex. In humans, Top2 is expressed as
the isoenzymes Top2α and Top2β, with the former expressed in proliferative cells (includ-
ing cancer cells) and the latter in quiescent cells [23]. Top2α-positive malignancy promotes
ternary complex formation and results in an inhibition of DNA replication, leading to
G1/G2 arrest and apoptosis in cancerous cells. Unfortunately, Top2β is also the primary
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form expressed in adult cardiac tissue, promoting anthracycline binding and cardiotoxicity,
resulting in mitochondrial and cellular dysfunction [24,25].

Paclitaxel (a taxane) is a commonly used chemotherapeutic agent and amongst the
most active drugs used in the treatment of breast cancer, especially anthracycline-resistant
breast cancer [26]. Although it was thought that taxanes have negligible cardiotoxicity when
compared to anthracyclines, phase I and II clinical trials revealed acute cardiac reactions
upon paclitaxel infusion, such as cardiac rhythm disturbances, atrioventricular conduction
abnormalities, sinus bradycardia and ventricular tachycardia [27,28]. Importantly, the ma-
jority of cardiac disturbances were not associated with clinical symptoms and were found
incidentally during cardiac monitoring. Moreover, these cardiac issues were common in
taxane-treated patients, with 29% of patients having asymptomatic bradycardia at maximal
tolerable doses (110–250 mg/m2) [29]. One proposed mechanism for taxane cardiotoxicity
is mediated not by the taxane but rather by the formulation vehicle Cremophor EL (a
vehicle used to enhance the solubility of taxanes). It has been proposed that Cremophor
EL induces massive histamine release, causing acute cardiovascular reactions [30]. Inter-
estingly, taxanes, such as paclitaxel, are often used in combination with anthracyclines;
however, it was found in clinical trials that the combination produced unacceptably high
rates of heart failure (18% of patients) [31]. This is thought to be because of pharmacokinetic
interference, where paclitaxel interferes with the clearance of doxorubicin, possibly through
competition for biliary clearance, promoting cardiotoxicity [32].

Clinically translatable human models are required for the investigation into
chemotherapy-induced cardiac toxicity. In this regard, Burridge et al. developed a model
using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from
individuals with breast cancer who were treated with doxorubicin [33]. HiPSCs were
derived from skin fibroblasts of individuals treated with doxorubicin and individuals
who were not and were further tested for genomic stability and subsequently differenti-
ated into cardiomyocytes. It was found that the cardiomyocytes obtained from patients
demonstrating clinical signs of cardiac toxicity exhibited increased sarcomere disarray,
arrhythmic beating, sensitivity towards apoptosis, DNA damage and increased ROS levels
when exposed to doxorubicin [33]. Such a model may be used to reveal additional details
regarding chemotherapy-induced cardiac toxicity, identify potential targets to alleviate
these effects and even identify at-risk patients, reducing risks and increasing benefits.

4. Clinical Assessment of Cardiotoxicity

The severity of cardiomyopathy is important not only for determining therapeutic
courses but also for manifestations of CVD later in life, especially in the context of childhood
administration of chemotherapeutic agents. The gold standard for anthracycline cardiotoxi-
city determination is a cardiac biopsy; however, due to the impracticality of this as a clinical
assessment, it is not typically considered. Rather, cardiac imaging can be used to monitor
cardiac deterioration, where the left ventricle ejection fraction (LVEF) is used to track pro-
gression. LVEF can be determined via TC-99 multiple-gated acquisition scan (MUGA), also
called radionuclide ventriculography [34,35]. Current guidelines define cardiotoxicity as
one or more of the following: (1) a reduction in LVEF, either globally or within the septum;
(2) the onset of symptoms associated with heart failure; (3) an EF reduction of greater than
5 percentage points to a level below 50% with regard to the ejection fraction (EF) alongside
symptoms of heart failure, or a drop of 10 percentage points to a level below 50% decline
in EF without symptoms of heart failure (clinical trials use an EF of 50% as a cutoff, as
opposed to 55%, to decrease the frequency of false-positive indications of cardiotoxicity and
minimize the frequency of subclinical detections, as the monitoring/treatment of mildly
decreased contractility is without proven efficacy) [36–38]. Thus, through patient monitor-
ing, cardiotoxic effects of anthracycline therapy can be mitigated. Research by Swain et al.,
however, challenges this notion by demonstrating that doxorubicin-related CHF may occur
at a lower dosage, at a greater frequency (26% compared to the 7%, at a cumulative dose
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of 550 mg/m2) and outside guideline parameters [39]. These findings challenge LVEF
tracking and highlight the importance of mitigating chemotherapy-induced cardiotoxicity.

In contrast, an echocardiogram is a radiation-free, cheap and readily available al-
ternative for measurements of LVEF as compared to MUGA; however, it was found by
Hoffmann et al. that unenhanced echocardiography resulted in a slight underestimation
of EF as compared to radionuclide ventriculography or MRI assessment [40]. This disap-
pointing result was, however, improved upon with the use of contrast. Contrast-enhanced
echocardiography was found to be comparable to MRI and even exceeded the capabilities
of radionuclide ventriculography [40]. Additionally, echocardiography can evaluate for
adverse structural effects, such as valvular disease or pericardial constriction [41,42].

Cardiovascular magnetic resonance imaging (CMR) is another imaging technique
for the evaluation of cardiomyopathies induced by cardiotoxic therapies which has the
advantage of being radiation-free [43]. CMR has the ability to detect subclinical cardiac
dysfunction prior to detectable LVEF changes, in addition to the ability to detect myocardial
edema (a marker of myocardial injury). The high cost and low availability of CMR in
contrast to echocardiography make it less widely utilized as a screening tool [41].

The utilization of electrocardiograms (ECGs) for cardiac monitoring circumvents the
above problems associated with imaging and has the added benefit of being inexpensive
and readily available. Horacek et al. found a statistically significant correlation between
corrected QT interval (QTc) prolongation and left ventricular dysfunction as visualized
by echocardiography [44]. ECG also has the added benefit of being amenable to corre-
lation with malignant ventricular arrhythmias via QTc, an important indicator of acute
cardiotoxicity [44]. Additionally, Fukumi et al. found that signal-averaged ECG was able
to detect acute and chronic cardiotoxicity from anthracycline chemotherapeutics at lower
cumulative doses than echocardiography-based imaging. Such a finding could allow for
earlier insight into cardiac dysfunction [45].

Many well-established biomarkers are used to investigate cardiomyocyte damage. Not
only can troponins serve as an indicator of damage, their levels correlate with the clinical
severity of the damage that occurs from insult [46]. This allows for risk stratification during
an infarct or other cardiac insults [47]. A study by Cardinale et al. found that elevation in
troponin I levels in patients undergoing high-dose chemotherapy (anthracyclines) preceded
and could be used to accurately predict the development of future cardiac dysfunction (via
lowered LVEF) [48]. As the elevation of cardiac troponin I is a very specific and sensitive
marker for cardiac damage and is one that many hospitals utilize in their practice, its
adoption in chemotherapy-related cardiac monitoring remains a popular proposition [49].
Other markers of interest include natriuretic peptides, such as brain natriuretic peptide
(BNP), its preprohormone + cleavage product (NT-proBNP) and atrial natriuretic peptide
(ANP). These substances serve to regulate blood pressure and circulating blood volume and
are released from cardiomyocytes in response to atrial stretching/volume overload [50].
Similar to troponins, natriuretic peptides may allow for the early detection of cardiotoxicity,
although they may have the added advantage of being detectable for longer periods of
time. While troponin was detectable within 4–15 h until 10–14 days, natriuretic peptides
were detectable within 24 h and for as long as 2 years [51–55].

5. TGF-β Overview

Extensive studies have shown that transforming growth factor beta (TGF-β) is a
major mediator that modulates multiple cellular steps that promote cardiovascular dis-
ease, cardiac hypertrophy, arrhythmia, fibrosis and cardiac failure [56]. In brief, various
proteins/conditions have been found to activate TGF-β secretion [57]. Initially, TGF-β
is bound by the TGF-β binding protein, which is activated via binding of αv integrin
to the prodomain of TGF-β1/2 and through myofibroblast-induced contraction [58–60].
Activated TGF-β signaling is primarily mediated via two distinctive downstream effectors:
the SMAD pathway and the non-canonical pathway. SMAD signaling is mediated by
activated TGF-β interaction with type I (TβRI) and type II receptors (TβRII) via trans-
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phosphorylation of multiple serine/threonine residues of the TβRI GS domain [61]. The
activated TGF-β type I receptor then activates SMAD2 and SMAD3 via phosphorylation.
Following SMAD2/3 activation, the complex trimerizes with SMAD4, forming the acti-
vated SMAD complex which translocates into the nucleus to regulate transcription for
a variety of downstream effectors, including the COL1A1/COL3A1 genes that facilitate
production/deposition of collagens [62], plasminogen activator inhibitor-1 that builds ma-
trixes [63] and connective tissue growth factor that upregulates the expression of fibronectin
or heparan sulfate proteoglycans (HSPGs) (Figure 1) [62,64].
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Figure 1. Overview of Conventional TGF-β Signaling. A schematic overview of conventional (SMAD-
mediated) TGF-β signaling occurring after TGF-β ligand binding which leads to the activation of TGF-
β type I and TGF-β type II receptor heteromeric complexes which can induce the phosphorylation
of SMAD2 and 3, promoting complex formation with co-SMAD (SMAD4). This trimeric complex
can translocate into the nucleus and induce the transcription of numerous genes, including those
involved in cardiac remodeling and fibrosis, as well as cellular differentiation, survival, invasion
and apoptosis.

SMAD-independent pathways are broadly referenced as non-canonical pathways
and can mediate TGF-β signaling independently or work in conjunction with SMAD-
dependent pathways to facilitate/repress the TGF-β pathway [65,66]. Amongst the various
non-canonical mediated intercellular signals, mitogen activated protein (MAP) kinase is
one of the mechanistic pathways that has shown increasing evidence of its roles in mediat-
ing TGF-β-induced cardiac fibrosis [67]. Activated TGF-β receptors can interact with TNF
receptor-associated factor 6 (TRAF-6) to induce ubiquitination [65]. Subsequently, ubiq-
uitinated TRAF-6 recruits TGF-β activated kinase (TAK-1). In order to become activated
TAK-1, the kinase domain of TAK-1 forms a complex with TAK1-binding protein (TAB1).
The active TAK1–TAB1 heterometric complex can then upregulate non-canonical mediat-
ing effectors, such as MKK4/7 and MKK3/6, via phosphorylation [68]. Phosphorylated
MMK4/7 upregulates the expression of JNK, which, in turn, recruits the transcription factor
c-jun. Similarly, phosphorylated MMK3/6 can upregulate the expression of p38, which, in
turn, increases the expression of ATF-2 [65,66]. These non-canonical pathways induce c-jun,
and ATF-2 co-transcription factors can regulate the expression of SMAD-dependent fibrosis
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via phosphorylation, signifying the intricate cellular interplays between SMAD-dependent
and non-canonical induced fibrosis [65,66,69].

6. The Role of TGFB in Cardiac Fibrosis, Remodeling and Regulation of
Cardiac Fibrocytes

Cardiac fibrosis is a hallmark response to injuries of the heart and its onset has
been associated with myocardial infarction, ventricular remodeling, arrhythmia, dilated
cardiomyopathy and heart failure [70–72]. Cardiac fibrosis is characterized by the differ-
entiation of cardiac fibroblasts into myofibroblasts [73,74]. TGF-β is a crucial mediator
in the differentiation of myofibroblasts and resistance to apoptosis via activation of the
SMAD3 pathway which promotes α-SMA (alpha-smooth muscle actin) transcription in
fibroblasts and induces extracellular matrix protein deposition and myofibroblast differen-
tiation [75–78].

Dobaczewski et al. demonstrated via a closed-chest model of coronary occlusion/
reperfusion to induce reperfused myocardial infarction in SMAD3 null mice that ablation
of SMAD-mediated signaling was associated with a reduction of α-SMA transcription in
fibroblasts. Furthermore, upon TGFβ1 stimulation, while wild-type mice demonstrated
increased α-SMA and fibrosis, Smad3 null mice did not, highlighting the association
between TGFβ/SMAD signaling and cardiac fibrosis [76]. In another similar study, a closed-
chest model of reperfused myocardial infarction in SMAD3 null mice demonstrated that
TGF-β1 stimulation was associated with upregulation of procollagen III but not in Smad3
null mice, which indicates that TGF-β-mediated SMAD3 signaling plays an important role
in extracellular matrix protein synthesis [79]. Using mice subjected to cardiac pressure
overload stimulation via transverse aortic constriction surgery, Khalil et al. showed that
TGF-β-treated Smad3- and SMAD2/3-deleted fibroblasts had a significant reduction in
fibroblast marker genes (POSTN, COLLAL and COL3AL) in primary cardiac fibroblasts,
indicating that deletion of SMAD3 from newly activated fibroblasts may significantly
attenuate cardiac fibrosis response [80].

Additionally, angiotensin II, of the renin–angiotensin–aldosterone system (RAAS),
has been associated with the onset of cardiac fibrosis. Research has demonstrated the
correlation between angiotensin II expression and TGF-β expression in cardiac fibrob-
lasts [81–83]. Wang et al. stimulated mouse primary aorta vascular smooth muscle cells
(VSMCs) with angiotensin II in vitro and demonstrated that angiotensin II can mediate the
Smad2/3 signaling pathway in a TGF-β-dependent manner [84]. Furthermore, Zhang et al.
demonstrated that chronic angiotensin II infusion upregulates human c-reactive protein
(CRP) in CRP transgenic mice, leading to a five-fold increase in serum CRP, a biomarker
associated with cardiovascular diseases and events. As angiotensin II-induced cardiac
TGF-β1 expression and activation of the SMAD signaling pathway were enhanced in CRP
transgenic mice as well, this highlights that angiotensin II-mediated activation of TGF-β
plays a pathogenic role in cardiac remodeling [85].

TGF-β can also mediate non-canonical signaling to promote pathological cardiac
remodeling via activation of TGF-β-activated kinase 1 (TAK1) as a delayed response to
mechanical stress. Transgenic mice that expressed TAK1DN (constitutive active form)
under the control of the cardiac-specific aMHC promoter (aMHC-TAK1DN) exhibited a
46% increase in cardiac mass at 9–11 days after aortic banding and selective activation
of p38 in myocardia at 9 days (up to 400%). Hearts of mice 9–10 days old showed hy-
pertrophied myocytes with hyperchromatic nuclei, interstitial fibrosis and other signs
seen in load-induced hypertrophy and heart failure [86]. Constitutive overexpression
of the human tumor suppressor A20 suppressed TAK-1-induced collagen synthesis and
TAK-1-dependent Smad2/3/4 activation in murine hearts, protecting against cardiac hy-
pertrophy and fibrosis [87]. Thus, TGF-β-mediated TAK-1 activity plays an important role
in myocardial hypertrophy and heart failure.

Thus, TGF-β, through SMAD-dependent and -independent signaling, is associated
with the onset of adverse cardiac pathologies and negative clinical outcomes, making
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preclinical research into this pathway for the treatment of cardiac disease an unmet medical
need. This is highlighted in a study by Laviades et al. which demonstrated that hyperten-
sion and microalbuminuria in patients was associated with left ventricular hypertrophy
and higher levels of serum TGF-β1 compared to normotensive participants. In the same
hypertensive patient group, treatment with losartan (a clinically approved angiotensin
II receptor antagonist with TGF-β inhibitory activity) decreased TGF-β1 levels in some
of the patients, which correlated with a reduction of microalbuminuria and left ventric-
ular hypertrophy [88]. To further highlight the importance of TGFB in cardiac function,
using sequence-specific oligonucleotide probing (SSOP), Holweg et al. studied genomic
DNA samples from heart transplant recipients and found that Leu > Pro (codon 10) poly-
morphism in the TGFB1 gene is associated with end-stage heart failure caused by dilated
cardiomyopathy [72]. Thus, TGF-β, through SMAD-dependent and -independent signaling,
is associated with the onset of adverse cardiac pathologies and negative clinical outcomes,
making preclinical research into this pathway for the treatment of cardiac disease an unmet
medical need.

TGF-β is also a major regulator of cardiac fibroblasts. Cardiac fibroblasts are a critical
component regulating the structural integrity of the heart, comprising a significant pro-
portion of the cardiac tissue in terms of both volume and cell number [89,90]. Fibroblasts
express an array of ECM proteins, with type 1 collagen being among the most plentiful [91].
TGF-β serves to promote the proliferation of cardiac fibroblasts and mediates collagen and
fibronectin secretion while mitigating the degradation of these proteins [92]. There are
two different phenotypes of cardiac fibroblasts, which are identified via gene expression
profiles: “mature fibroblasts” are described as more quiescent and “myofibroblasts” are
associated with aggressive fibrotic deposition [93–95]. TGF-β has been found to regulate
the phenotypic conversion of fibroblasts into myofibroblasts, thereby promoting a state of
pro-fibrosis [96]. Although fibrosis is advantageous in events such as MI, as the death of
cardiomyocytes necessitates the short-term integrity of the wall to prevent rupture, this
need supersedes long-term function and promotes chronic interstitial fibrosis, leading to
stiffening and progressive worsening of cardiac function (cardiomyopathy) [97,98].

Doxorubicin is an effective antitumor agent but also a potent cardiotoxin [99]. It
has been found that doxorubicin-induced cardiomyopathy is mediated, in part, through
the production of reactive oxygen species (ROS), which is one method through which
TGF-β is activated and which leads to the increased proliferation of fibroblasts [100].
Kuwahara et al. found that the blockage of pro-fibrotic TGF-β signalling via anti-TGF-
β neutralizing antibodies inhibited fibroblast activation/proliferation, collagen mRNA
induction and myocardial fibrosis [101]. This highlights the role of TGF-β in stimulation
of cardiac fibroblasts and demonstrates the potential clinical application of an anti-TGF-β
therapy to prevent pro-fibrotic cardiac states.

As the context of TGF-β signalling in this review relates to cardiac fibrosis/myopathy,
chemotherapy and cancer it would be remiss not to discuss the tumor microenvironment,
ECM and cancer-associated fibroblasts (CAFs) [102]. CAFs are the most prominent cell type
within the ECM in TNBC but remain difficult to define due to the lack of clear markers
by means of which to separate them from other cell types [103,104]. As a result, they
are defined through their morphology, tissue position within the microenvironment and
lack of epithelial, endothelial and leukocytic lineage markers [104]. CAF generation is
multifactorial and complex; however, it is well established that TGF-β family ligands
through SMAD transcription factors result in the activation and expression of the activated
fibroblast marker αSMA [105–107]. CAF populations within tumors are heterogeneous in
phenotype and in function, with subsets defined through their distinct gene signatures
found to act in both pro-tumor and anti-tumor capacities [104,108]. In the context of TNBC,
Surowiak et al. found that a higher proportion of αSMA-positive myofibroblasts were
associated with greater tumor cell proliferation and decreased relapse-free survival [109].
This pro-tumorigenesis effect of CAFs is mediated by direct interaction with malignant
cells through the production of growth factors, chemokines, cytokines and via stromal
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deposition of collagen and fibronectin, which promote angiogenesis [110,111]. Additionally,
the CAF-supported ECM and its dense collagen network impede drug delivery, thereby
worsening outcomes [112]. Interestingly, Lotti et al. reported that when CAFs were pre-
treated with 5-flurouracil, oxaliplatin and leucovorin, viability and tumorigenicity were
enhanced [113]. In the context of TNBC, it has been found that depletion of CAFs by
targeted therapy decreases tumor growth and metastasis, [103].

As both fibroblast and CAFs demonstrate dependence on TGF-β signalling and stim-
ulation by chemotherapy, modulation of TGF-β signalling in post-chemotherapy-treated
cancer patients is an attractive notion and may lead to increased patient benefit while
reducing co-morbidities [96,106].

7. TGF-β Inhibition to Prevent Cardiomyopathy

It has been demonstrated that TGF-β exerts physiological effects on embryonic devel-
opment, cardiac development and cellular growth; however, dysregulated TGF-β signaling
is associated with a host of unwanted pathologic conditions, such as fibrosis, cardiac hyper-
trophy and inflammation [71,114–116]. Thus, inhibition of TGF-β through pharmacological
agents may be of therapeutic benefit for patients with post-chemotherapy fibrosis, heart
failure and cardiomyopathy.

For example, Oliveira et al., demonstrated that GW788388 (a TGF-β inhibitor spe-
cific to TβRI/ALK5) can treat cardiac fibrosis [117]. This was demonstrated by injecting
Swiss mice with Trypanosoma cruzi parasites to induce Chagas disease and cardiac fibrosis,
which was assessed via fibronectin and collagen type I deposition [117]. It was found that
this model induced substantial indications of cardiac fibrosis; however, upon treatment
with GW788388, deposition of fibronectin and collagen type I was reduced in cardiomy-
ocytes and cardiac electrical conduction was improved [117]. In a separate study by
Ferreira et al., these results were repeated in a chronic Chagas in vivo mouse model con-
sisting of C57BL/6 mice injected with Trypanosoma cruzi and treated with GW788388 [118].
Mice receiving treatment demonstrated reduced fibrosis of cardiac tissue, as indicated by
reduced levels of collagen type I and fibronectin deposition in cardiac tissue. Moreover,
GW788388 inhibited TGF-β/pSmad2/3 expression and activity that was correlated with
reduced CD3+ inflammatory lymphocyte cell migration into cardiac tissue [118]. Interest-
ingly, these effects were correlated with increased stem cell antigen-1 (Sac-1+) cardiac cells
following treatment. As Sca-1+ is a marker for cardiac stem cells, it was suggested that
TGF-β inhibition can not only inhibit fibrosis but also promote the enrichment of cardiac
stem cells, promoting cardiac recovery [118].

TGF-β has also demonstrated translatability in the treatment of myocardial infarction
(MI). Myocardial infarctions lead to cardiomyocyte death through ischemia, fibrosis and
eventual heart failure. In MI, there is a well-documented upregulation of TGF-β isoforms,
which facilitate healing and repair [71,119,120]. This process, however, also leads to fi-
broblastic extracellular matrix protein deposition and an upregulation of TIMPs (tissue
inhibitors of metalloproteinases), which inhibits matrix degeneration and, ultimately, stim-
ulates fibrosis [121]. Khalil et al. highlighted the importance of TGF-β signaling in the
fibrotic response via deletion of TGF-β receptors Tgfbr1/2 and Smad3 in cardiac fibroblasts,
which reduced TGF-β-induced gel contraction, indicating a disruption in myofibroblast
differentiation. Moreover, a novel in vivo mouse model was used with periostin–GFP
reporter tracking of myofibroblasts of the heart in combination with Tgfbr1/2, Smad2, Smad3
and Smad2/3 knockouts [80]. This model then induced cardiac pressure overload via aortic
constriction (an in vivo methodology to induce cardiac hypertrophy and heart failure) and
it was found that deletion of Smad3, Smad2/3 or Tgfbr1/2 was able to inhibit cardiac fibrosis
following aortic constriction [80]. Moreover, 12 weeks after aortic constriction, Tgfbr1/2
knockout mice demonstrated reduced ventricular fractional shortening, preserved diastolic
function and reduced cardiac hypertrophy, highlighting the targeting of the TGF-β pathway
as a viable strategy to reduce cardiac fibrosis [80]. Importantly, it was also found that the
inhibition of Smad2/3 led to reduced fibroblast proliferation, differentiation and activity,
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which correlated with a reduction of cardiac fibrosis, although it did not lead to altered hy-
pertrophy [80]. Thus, this study demonstrated differential effects upon targeting different
parts of the TGF-β pathway and suggests that inhibition of Smad2/3 can inhibit fibrosis,
while Tgfbr1/2 inhibition can affect fibrosis as well as hypertrophy and other aspects of
cardiac signaling.

TGF-β1 has also been shown to induce cardiomyocyte hypertrophy and post-MI
remodeling through the activation of TGF-β1/TAK/p38MAPK signaling within non-
infarcted myocardia after acute MI [122]. Thus, inhibition of the TGF-β signaling cas-
cade is an attractive target for the prevention of cardiac remodeling and cardiomyopathy
post-MI. In this regard, a study by Ellmers et al. demonstrated, using SD-208 (a TGF-β
receptor kinase 1 inhibitor), that deleterious cardiac remodeling post-infarction could be
inhibited [123]. MI was induced in mice via left coronary artery ligation and the mice were
treated with SD-208 for 30 days. While there was no difference recorded in ventricular
TGFβ gene expression, there was increased TAK-1 (a downstream effector of TGFβ) in the
control, which was inhibited upon treatment with SD-208. The blockade of TGF-β signaling
after MI resulted in reduced ventricular expression of TGF-β-activated kinase 1, decreased
collagen 1 and decreased cardiac mass, highlighting TGF-β inhibition as a potent method
to reduce cardiac remodeling post-MI [123].

As diabetic mortality is primarily due to cardiovascular complications, recent studies
have sought to investigate whether TGF-β inhibition can affect diabetic cardiomyopa-
thy [124]. A study by Zhang et al. demonstrated in Sprague-Dawley rats that were induced
to become diabetic through the injection of streptozotocin [125] that matrine (an inhibitor of
the TGF-β/Smad pathway) administration in rats could prevent diabetic cardiomyopathy,
as indicated through reduced fibrosis, recovery of LV function and heart compliance [125].

Together, these reports demonstrate that inhibition of TGF-β signaling via pharma-
cological modulation may reduce cardiac fibrosis, improve heart function and decrease
cardiomyopathy in a wide variety of preclinical models. Importantly, a significant pro-
portion of studies assessing the effects of cardiotoxicity are employing murine models or
purely in vitro models using exaggerated concentrations of anthracyclines, which may lead
to discrepant findings regarding the mechanism of anthracycline-induced cardiotoxicity.
Thus, further work to create clinically translatable models for clinically translatable find-
ings is required. The ultimate goal is to translate these findings to the clinic and improve
patient prognosis; however, much work remains to be done to identify effective TGF-β
inhibitors that can be translated for effective patient therapy. As such, we have identified
potential TGF-β inhibitors for this purpose that are currently in active and interventional
clinical trials for the treatment of cardiotoxicity or heart disease (including heart failure,
cardiovascular disease, ischemic heart disease, coronary heart disease, arrhythmia, etc.)
from the Clinicaltrials.gov database, summarized in Table 1. Identified potential TGF-β
inhibitors seem to be safe for usage in clinic and have been demonstrated to suppress the
TGF-β signaling pathway in preclinical studies; however, further studies will be needed
to determine clinical efficacy in combination with chemotherapy as well as the underly-
ing mechanism. Supplementary Figure S1 illustrates the TGF-β pathway and highlights
druggable targets.

Some notable examples from Table 1 include carvedilol, which has been studied for
its cardioprotective effects in patients receiving chemotherapy. Sumantra et al. assessed
81 women with breast cancer treated with fluorouracil, doxorubicin, and cyclophosphamide
chemotherapies in combination with adjuvant carvedilol. Cardiac function was assessed
using left ventricular global longitudinal strain (GLS) and subclinical left ventricular ejec-
tion fraction (SVLEF). The IG group had a smaller drop in GLS and LVEF compared to the
control group, suggesting a cardioprotective effect of carvedilol [126].

The aldosterone antagonist spironolactone has also demonstrated cardioprotective
effects in patients undergoing chemotherapy. Akpek et al. assessed the effects of spirono-
lactone on 83 women with breast cancer undergoing anthracycline-mediated chemother-
apy [127]. The intervention group, with a daily regimen of 25 mg of spironolactone,
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displayed a significantly lower drop in LVEF compared to the control group. In addition,
diastolic functional gradient was protected while there was observable deterioration in the
patients not receiving spironolactone [127].

The use of statins to prevent CAD and ASCVD is well accepted in modern medicine.
Calvillo-Argüelles et al. conducted a retrospective study of 129 patients with breast cancer
who were treated with trastuzumab with or without anthracycline chemotherapy [128].
Forty-three patients in the investigational group received statins and after 11 months it was
found that patients who received statins in addition to chemotherapy had maintained their
LVEF while the control group showed significant deterioration [128].

Table 1. Potential TGF-β inhibitors in active cardiotoxicity and cardiac disease-related clinical trials.
The Clinicaltrials.gov database was used to assess active interventional clinical trials for the treatment
of heart disease and cardiotoxicity within phase 1, 2, 3, or 4 of development. Following inhibitor
identification, the literature was consulted to determine any hypoxia-modulating effects. Clinical
trial search link (accessed on 1 August 2021): https://clinicaltrials.gov/ct2/results?cond=Cardio
toxicity&term=&type=Intr&rslt=&recrs=d&age_v=&gndr=&intr=&titles=&outc=&spons=&lead=
&id=&cntry=&state=&city=&dist=&locn=&phase=0&phase=1&phase=2&phase=3&rsub=&strd_
s=&strd_e=&prcd_s=&prcd_e=&sfpd_s=&sfpd_e=&rfpd_s=&rfpd_e=&lupd_s=&lupd_e=&sort=;
https://clinicaltrials.gov/ct2/results?cond=Cardiac+Disease&term=&type=Intr&rslt=&recrs=d&
age_v=&gndr=&intr=&titles=&outc=&spons=&lead=&id=&cntry=&state=&city=&dist=&locn=&
phase=0&phase=1&phase=2&phase=3&rsub=&strd_s=&strd_e=&prcd_s=&prcd_e=&sfpd_s=&sf
pd_e=&rfpd_s=&rfpd_e=&lupd_s=&lupd_e=&sort=.

Inhibitor Clinical Trial Number Mechanism References

Enalapril NCT01968200 ACEI with antifibrotic activity via inhibition of TGFB1 and
p-SMAD2/3 expression [129,130]

Carvedilol NCT02177175
NCT01347970

Suppression of myocardial fibrosis by inhibiting TGFB1
mRNA expression [131,132]

Simvastatin NCT02096588
Downregulates TGFb1-mediated phosphorylation of
Smad2/3 via activation of PP2A and PP2C/PPM1A
phosphatases

[133,134]

Rivaroxaban
NCT02303795
NCT01776424
NCT02066662

Downregulates mRNA expression of TGFB in the infarcted
area following an MI, potentially via suppression of PAR-1
and PAR-2 pathways

[135]

Clopidogrel NCT02044250
NCT02317198

Platelet blocker that inhibits the expression of TGFB mRNA
and the protein levels preventing cardiac fibrosis [136]

Rituximab NCT03072199 Monoclonal antibody against CD20 inhibits fibrotic signaling
of TGF-β1 and p-Smad2/3 [137]

LCZ696

NCT02816736
NCT03190304
NCT02468232
NCT02924727

Angiotensin receptor–neprilysin inhibitor that improves
cardiac function by downregulating cardiac fibrosis via
suppression of TGF-β expression, primarily through its
specific inhibition of neprilysin

[138,139]

Spironolactone NCT03409627
NCT02673463

SP prevents cardiac fibrosis by inhibiting the production of
TGFβ1 and phosphorylation of Smad2/3 [140,141]

Macitentan NCT03153111
Dual endothelin receptor antagonist (ETA and ETB) that
suppresses expression of TGFβ, especially in DM patients in
whom TGFβ is upregulated

[142,143]

Ivabradine NCT04448899
NCT04308031

Hyperpolarization-activated pacemaker current (If) channel
inhibitor ivabradine inhibits the expression of TGFb1 and
Smad2 post-MI, suppressing collagen synthesis and
pro-fibrotic activity

[144,145]

Clinicaltrials.gov
https://clinicaltrials.gov/ct2/results?cond=Cardiotoxicity&term=&type=Intr&rslt=&recrs=d&age_v=&gndr=&intr=&titles=&outc=&spons=&lead=&id=&cntry=&state=&city=&dist=&locn=&phase=0&phase=1&phase=2&phase=3&rsub=&strd_s=&strd_e=&prcd_s=&prcd_e=&sfpd_s=&sfpd_e=&rfpd_s=&rfpd_e=&lupd_s=&lupd_e=&sort=
https://clinicaltrials.gov/ct2/results?cond=Cardiotoxicity&term=&type=Intr&rslt=&recrs=d&age_v=&gndr=&intr=&titles=&outc=&spons=&lead=&id=&cntry=&state=&city=&dist=&locn=&phase=0&phase=1&phase=2&phase=3&rsub=&strd_s=&strd_e=&prcd_s=&prcd_e=&sfpd_s=&sfpd_e=&rfpd_s=&rfpd_e=&lupd_s=&lupd_e=&sort=
https://clinicaltrials.gov/ct2/results?cond=Cardiotoxicity&term=&type=Intr&rslt=&recrs=d&age_v=&gndr=&intr=&titles=&outc=&spons=&lead=&id=&cntry=&state=&city=&dist=&locn=&phase=0&phase=1&phase=2&phase=3&rsub=&strd_s=&strd_e=&prcd_s=&prcd_e=&sfpd_s=&sfpd_e=&rfpd_s=&rfpd_e=&lupd_s=&lupd_e=&sort=
https://clinicaltrials.gov/ct2/results?cond=Cardiotoxicity&term=&type=Intr&rslt=&recrs=d&age_v=&gndr=&intr=&titles=&outc=&spons=&lead=&id=&cntry=&state=&city=&dist=&locn=&phase=0&phase=1&phase=2&phase=3&rsub=&strd_s=&strd_e=&prcd_s=&prcd_e=&sfpd_s=&sfpd_e=&rfpd_s=&rfpd_e=&lupd_s=&lupd_e=&sort=
https://clinicaltrials.gov/ct2/results?cond=Cardiac+Disease&term=&type=Intr&rslt=&recrs=d&age_v=&gndr=&intr=&titles=&outc=&spons=&lead=&id=&cntry=&state=&city=&dist=&locn=&phase=0&phase=1&phase=2&phase=3&rsub=&strd_s=&strd_e=&prcd_s=&prcd_e=&sfpd_s=&sfpd_e=&rfpd_s=&rfpd_e=&lupd_s=&lupd_e=&sort=
https://clinicaltrials.gov/ct2/results?cond=Cardiac+Disease&term=&type=Intr&rslt=&recrs=d&age_v=&gndr=&intr=&titles=&outc=&spons=&lead=&id=&cntry=&state=&city=&dist=&locn=&phase=0&phase=1&phase=2&phase=3&rsub=&strd_s=&strd_e=&prcd_s=&prcd_e=&sfpd_s=&sfpd_e=&rfpd_s=&rfpd_e=&lupd_s=&lupd_e=&sort=
https://clinicaltrials.gov/ct2/results?cond=Cardiac+Disease&term=&type=Intr&rslt=&recrs=d&age_v=&gndr=&intr=&titles=&outc=&spons=&lead=&id=&cntry=&state=&city=&dist=&locn=&phase=0&phase=1&phase=2&phase=3&rsub=&strd_s=&strd_e=&prcd_s=&prcd_e=&sfpd_s=&sfpd_e=&rfpd_s=&rfpd_e=&lupd_s=&lupd_e=&sort=
https://clinicaltrials.gov/ct2/results?cond=Cardiac+Disease&term=&type=Intr&rslt=&recrs=d&age_v=&gndr=&intr=&titles=&outc=&spons=&lead=&id=&cntry=&state=&city=&dist=&locn=&phase=0&phase=1&phase=2&phase=3&rsub=&strd_s=&strd_e=&prcd_s=&prcd_e=&sfpd_s=&sfpd_e=&rfpd_s=&rfpd_e=&lupd_s=&lupd_e=&sort=


Cancers 2022, 14, 1577 12 of 27

Table 1. Cont.

Inhibitor Clinical Trial Number Mechanism References

Empagliflozin

NCT03128528
NCT03030222
NCT03057977
NCT03057951
NCT03485092
NCT02998970

Inhibits the fibrotic activity of TGFb in the heart by
suppressing the expression of TGFb1, p-Smad2/3 and
upregulating TGFb inhibitor Smad7, further resulting in
decreased expression of collagen I and II mediated by the
TGFb/Smad pathway

[146,147]

Pirfenidone NCT02932566 Inhibits Ang II-induced expression of TGFb1 and suppresses
myocardial interstitial fibrosis [148,149]

Atorvastatin NCT02679261
Suppresses cardiac fibrosis by attenuating TGFb1-mediated
phosphorylation of Smad3, PI-3 kinase, Akt, collagen I and
endoglin expression

[150]

Eplerenone NCT01857856
Inhibits the expression of TGFb1 and collagen I, resulting in
downregulation of cardiac remodeling induced by
cardiomyopathy

[151]

Olmesartan NCT04174456
Angiotensin II type 1 receptor blocker which reduces the
expression of TGFb in pressure-overloaded, diabetic, obese
patients, preventing cardiovascular injury

[152,153]

Tadalafil NCT03049540 cGMP-mediated inhibition of TGFb1 expression [154]

Berberine NCT04434365
Antifibrotic activity by inhibition of TGFb1 secretion,
potentially by upregulation of AMPK phosphorylation and
downregulation of mTOR and p70S6K phosphorylation

[155]

Melatonin NCT02099331 Antifibrotic activity via suppression of TGFb1 expression [156]

N-Acetylcysteine
(NAC)

NCT02750319
w/Amiodarone
NCT01878669
NCT01878344

Antioxidant that inhibits the TGFb1-mediated signaling
involved in fibrosis, potentially by suppressing its interaction
with TGB1R, downregulating phosphorylation of Smad2/3
and upregulating Smad7 mRNA

[157,158]

Colchicine

NCT02594111
NCT01709981
NCT02624180
NCT04382443

Antifibrotic via inhibition of expression of TGFb1 mRNA [159]

Ticagrelor
NCT02539160
NCT03437044
NCT01944800

Antifibrotic activity via inhibition of the expression of TGFb [160]

Valsartan NCT01912534
Inhibition of Ang II type I (AT 1) receptors, resulting in
suppression of AT 1-mediated action of the
TGFb/Smad pathway

[161]

Metformin NCT03629340 Suppression of cardiac fibrosis via inhibition of TGFb1
production and phosphorylation of Smad3 [162]

Nitrite NCT03015402
NCT02980068

Downregulation of cardiac remodeling via suppression of AT
II and AT 1R, inhibiting TGFb1 [163]

Nebivolol NCT02053246
NCT01648634

Attenuated profibrotic activity and prevention of vascular
remodeling by downregulating the expression of TGFb1and
MMP-2/9

[164]

Riociguat NCT01065454 Guyanalate cyclase stimulant with antifibrotic activity via
inhibition of TGFb1-mediated collagen synthesis [165]

8. TGF-β as a Therapeutic Target in TNBC

TGF-β signalling has been associated with disease progression and negative patient
prognosis in a wide number of cancer models, including breast, colon and small-cell lung
cancers [166–168]. To highlight the clinical importance of TGF-β dysregulation, using the
cBioPortal clinical database in our own analysis, we assessed the impact of genomic TGF-β
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alterations (alterations defined as TGF-β genomic mutations, structural variants and copy
number variations; see Materials and Methods for the specific genes assessed) in relation to
overall patient survival across 32 TCGA, PanCancer Atlas datasets which included 32 types
of cancer and 10,953 patients [169,170]. Thirty-eight percent of patients were found to
have an alteration in at least one TGF-β gene, and patients with an alteration in TGF-β
signalling demonstrated a dramatic reduction in progression-free survival compared to
patients without TGF-β signalling alterations (Figure 2, TGF-β-altered patients: 4047 cases,
1619 progressions and 47.60 median month progression-free survival; TGF-β-unaltered
patients: 6563 cases, 2274 progressions and 75.48 median month progression-free survival).
Thus, our findings demonstrate the importance of TGF-β in patient outcomes across a
broad spectrum of tumor types and datasets (see Supplementary Table S1 for a detailed
list of the studies consulted) and in over 10,000 patients. Notably, this analysis does not
take into account treatment, age, disease sub-type or other critical factors influencing
patient prognosis.
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n = 10,610, *** p = 9.99 × 10−10, log-rank test.

While TGF-β alterations are significant in a wide variety of cancer models, it has been
found in a study by Ding et al. that 52.5% of TNBC patients were found to have elevated
TGF-β expression, which was associated with increased rates of metastasis, increased tumor
grade and negative disease-free survival [166]. Moreover, our own previous database
analysis revealed similar findings using cBioPortal to assess a cohort of 1082 breast cancer
patients. It was found that increased TGF-β signalling was correlated with diminished
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overall prognosis and median month survival (122.83 median month survival in patients
with TGF-β high gene expression versus 140.28 median month survival in patients without
increased TGF-β gene expression) [171]. Moreover, our assessment found that TNBC
patients possessed increased levels of TGFBRA mRNA expression and reduced disease-free
survival compared to other breast cancer subtypes, as well as highlighting the importance
of TGF-β modulation for prospective treatment [171]. As dysregulated TGF-β signalling is
associated with increased CSC enrichment, chemoresistance and decreased patient survival
in TNBC, TGFB modulation presents a potential therapeutic target [172–175].

It has been demonstrated that within breast cancer tumors the cellular hierarchy is not
uniform and that a small population of cells, known as cancer stem cells (CSCs), maintain
self-renewal and differentiation capabilities that regulate tumor composition and hetero-
geneity. In contrast to differentiated tumor cells, CSCs have demonstrated robust resistance
to conventional chemotherapy and are thought to persist following therapy/intervention
and to be a major cause of relapse [176–178]. A wide number of breast cancer models
currently support two distinct sub-populations of CSCs: a mesenchymal CSC population
defined by CD44+/CD24− markers and an epithelial CSC population with ALDH+ mark-
ers [179]. Famously, Al Hajj et al. demonstrated through fractionation experiments on
breast tumors that CD44+/CD24− populations were capable of forming tumors with as
few as 100 cells in comparison with the tens of thousands of cells within the different
populations required to achieve a similar tumorigenicity [179]. Further characterization
experiments demonstrated that CD44+/CD24− mesenchymal CSCs reside at the tumor
edge, have diminished E-cadherin and increased vimentin, N-cadherin, YAP signalling
and EMT-related migratory pathway enrichment [180–183]. Importantly, this population
was found to be associated with increased migration away from the original tumor and
markedly increased resistance and quiescence upon exposure to chemotherapy [184]. Con-
versely, the ALDH+ epithelial CSC population is localized within the tumor core and is
characterized by E-cadherin expression, low EMT-related signal enrichment and increased
Wnt, HIF1α, glycolytic and proliferative pathway enrichment [180,183]. ALDH+ CSCs also
demonstrate increased tumorigenicity, with as few as 1500 cells being required to form a
tumor [185].

It has also been demonstrated that these CSC populations are able to interconvert, mak-
ing therapeutic approaches difficult, as simply targeting one population would just lead to
reconstitution by the surviving CSCs [183]. Unfortunately, due to the non-specific, toxic na-
ture of conventionally used chemotherapeutic agents, such as paclitaxel, doxorubicin, 5-FU
or a plethora of other conventional chemotherapeutic agents, administration is associated
with resistance and CSC enrichment, which leads to increased tumorigenicity [147,166,186].
Overcoming this obstacle represents a currently unmet medical need and recent findings
highlighting TGF-β as a mediator of CSC enrichment and resistance are providing valuable
insights into how this process may be inhibited. It was found that even short term exposure
of TNBC cells to epirubicin (a cytotoxic chemotherapy used for the treatment of TNBC)
promoted robust TGF-β protein expression, which, in turn, enriched the CD44+/CD24−

mesenchymal CSC population and increased apoptotic resistance and malignancy [187].
Consistent with this, Asiedu et al. demonstrated, using mouse mammary carcinoma cells
(an epithelial tumor cell line), that exposure to TGF-β/TNF-α promoted a mesenchymal
phenotype and increased EMT signature as well as enrichment of CD44+/CD24− CSCs and
mammosphere formation. To determine whether TGF-β/TNF-α could transform normal
mammary human epithelial cells, MCF10a cells were exposed to TGF-β/TNF-α and a
similar transformation was observed alongside increased migration and tumorigenicity.
These transformed cells were then treated with oxaliplatin, paclitaxel and etoposide. It
was found that mammary cells post-TGF-β/TNF-α exposure were found to be resistant
to chemotherapy [188]. These studies may partially explain the findings of Zhang et al.,
who reported that amongst 180 TNBC patients, TGFβ1 expression was elevated by 37.2%
and associated with a higher histologic tumor grade, lymph node status and reduced
disease-free survival (hazard ratio 1.796, 95% CI 0.995–3.242, p = 0.052) [189]. Together,
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these studies highlight TGF-β signaling as a potent mediator of chemotherapy-induced
chemoresistance and tumorigenicity via CSC enrichment. Thus, the development of novel
therapies to target TGF-β may provide a tangible approach towards patient treatment.

Interestingly, TGF-β signalling has been found to regulate the secretion of IL8 cy-
tokines, although the exact mechanism remains convoluted [174,190,191]. Jia et al. found,
using TNBC cell lines in vitro, that upon treatment with paclitaxel, doxorubicin or 5-FU,
there was robust enrichment in CD44+/CD24− CSCs, mammospheres and cytokine se-
cretion, such as IL6 and IL8, through enrichment of NF-κB and STAT3 signalling [192].
These effects were reproduced in a TNBC mouse xenograft model which demonstrated
increased tumorigenicity following treatment via serial dilution analysis; however, through
NF-κB/STAT3 inhibition in conjunction with chemotherapy, these effects along with
chemotherapy-induced cytokine-mediated CSC enrichment were alleviated [192]. Inter-
estingly, other reports have also demonstrated that paclitaxel induces TGF-β, IL6 and IL8
transcription in TNBC, which, in turn, promotes increased CSC proliferation and tumori-
genicity. Moreover, further experiments demonstrated that, through siRNA knockdown of
SMAD4 by means of small molecule inhibition of TGF-β, chemotherapy-induced enrich-
ment of IL8 and concomitant tumorigenicity could be inhibited [174,193]. This association
was found to be maintained in breast cancer patients, correlating the expression of IL8
and TGF-β with diminished patient prognosis, making these findings of great clinical
importance and highlighting the potential benefit of TGF-β inhibitors in combination with
conventional chemotherapy [194]. Importantly, when compared to other breast cancer
subtypes, TNBC has been found to express increased levels of proinflammatory chemokines
(CXCL1,2,3 and 8) compared to other breast cancer subtypes, highlighting the potential
sensitivity of TNBC towards anti-TGF-β/IL6/IL8 targeted therapy, although more work is
required to delineate the mechanisms and clinically relevant effects of this phenomena [195].

A recent study highlighting the potential clinical application of targeting TGF-β-
regulated cytokine secretion in TNBC demonstrated that comparison of TNBC breast
cancer biopsies before and after chemotherapy revealed a marked increase in TGF-β sig-
nalling. Moreover, this TGF-β expression, in turn, enriched mammosphere formation
and CSC markers (CD44+/CD24− and ALDH+ markers for mesenchymal and epithelial
CSCs, respectively), which were associated with increased tumorigenicity [174]. Mechanis-
tic analysis in paclitaxel-treated tumors revealed that subsequent TGF-β-mediated CSC
enrichment occurred through the upregulation and secretion of IL-8 and its binding to
CXCR1/2 receptors. Moreover, the addition of a TGF-βR1 serine/threonine kinase small
molecule inhibitor (LY2157299) in combination with paclitaxel inhibited IL8 expression,
which correlated with a reduction in both CSC populations following co-therapy. This
was highlighted using the gold-standard for tumorigenicity—an in vivo serial dilution
assay—compared to the vehicle, which formed tumors at a frequency of 4 tumors after
5 injections (4/5) at a concentration of 1 × 104, 3/5 at a concentration of 1 × 103 cells and
2/5 at a concentration of 1 × 102 cells; co-therapy of LY2157299 and paclitaxel only formed
tumors at a frequency of 2/5 with a concentration of 10 × 104 cells, 2/5 with 1 × 103 cells
and 0/5 with 10 × 102 cells. This is remarkable, considering that paclitaxel-alone treatment
resulted in a tumorigenicity rate exceeding that of the control (4/5 with 1 × 103 cells).
Together this work highlights the therapeutic implications of targeting TGF-β signalling in
the context of anti-tumorigenic and long-term patient prognosis [174].

Downstream effector inhibition of TGF-β signalling has also demonstrated preclinical
efficacy. TGF-β has been classically associated in TNBC with metastasis and tumor invasion
through facilitation of epithelial-to-mesenchymal transition (EMT)—a process which can be
typically characterized via induction of SNAI1/TWIST1/TWIST2/ZEB1 gene expression [196].
These factors, in turn, inhibit E-cadherin and its associated signalling, reduce adhesion
and promote dissemination [197]. Park et al. demonstrated, using TNBC tumor xenograft
in vivo models, that paclitaxel treatment increased TGF-β signalling and increased (by
approximately four times) SNAI1 gene and protein expression following treatment. This
correlated with a marked increase in ALDH+ and CD44+/CD24− CSCs following paclitaxel
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exposure as well as CSC-associated genes (OCT4, NANOG, KLF4, c-MYC and SOX2);
however, these effects were reversed upon combinational treatment with the TGF-β/ALK5
inhibitor EW-7917. siRNA knockdown of SNAI1 also prevented paclitaxel-induced CSC
enrichment, indicating that SNAI1 inhibition via TGF-β targeting may prevent paclitaxel-
mediated CSC enrichment in TNBC [198].

More recently, Wardhani et al. using a TMEPAI KO TNBC cell model (TMEPAI—
Transmembrane prostate androgen-induced protein which involved TGF-β signalling via
Smad-dependent and independent mechanisms and has been found highly expressed in a
wide number of cancer models, including breast cancer) found that upon TMEPAI KNO,
there was a substantial sensitization towards doxorubicin and paclitaxel treatment reducing
the IC50 from approximately 12.5 nM in the control to approximately 4 nM for doxorubicin
and from ~30 nM to ~12 nM for paclitaxel treatments [199]. TMEPAI is a TGF-β target gene
and is highly expressed in TNBC. Moreover, TMEPAI was found to be positively stimulated
upon increased TGF-β signalling and to be sensitive to its inhibition [200]. Knockdown
of TMEPAI in TNBC led to robust inhibition of in vivo tumor growth accompanied by
reduced VEGF and HIF1α tumor promoters and enhanced levels of PTEN and p27 tumor
suppressors [200]. Thus, TMEPAI is thought to affect a wide number of oncogenic pathways
in TNBC and be directly mediated through TGF-β signalling.

Together, these reports highlight the impact of TGF-β signalling in conventional
chemotherapy resistance generation and CSC enrichment in TNBC. Moreover, these reports
highlight TGF-β inhibition as a clinically translatable approach to reduce chemotherapeutic-
induced CSC enrichment following therapy, warranting further investigation. Such a
combination may lead to the development of combinational strategies to improve short- and
long-term efficacy in TNBC patients. In this regard, active and interventional clinical trials
in the Clinicaltrials.gov database for the treatment of patients with TNBC are summarized
in Table 2. These potential TGF-β inhibitors seem to be safe for usage in clinic and have
been demonstrated to suppress the TGF-β signaling pathway in preclinical studies.

Table 2. Potential TGF-β inhibitors in active TNBC clinical trials. The Clinicaltrials.gov database
was used to assess active interventional clinical trials for TNBC treatment within phase 1, 2,
3, or 4 of development. Following inhibitor identification, the literature was consulted to
determine any hypoxia-modulating effects. Clinical Trial Search link (accessed on 1 August 2021):
https://clinicaltrials.gov/ct2/results?cond=Triple+Negative+Breast+Cancer&term=&type=Intr&
rslt=&recrs=d&age_v=&gndr=Female&intr=&titles=&outc=&spons=&lead=&id=&cntry=&state
=&city=&dist=&locn=&phase=0&phase=1&phase=2&phase=3&rsub=&strd_s=&strd_e=&prcd_s
=&prcd_e=&sfpd_s=&sfpd_e=&rfpd_s=&rfpd_e=&lupd_s=&lupd_e=&sort=.

Inhibitor Clinical Trial Number Mechanism References

Sorafenib NCT02624700—w/Pemetrexed

-Suppression of TGFb1-mediated EMT via
epigenetic modification of TGFb1 and

Smad2/3 promoters through loss of active
histone markers (H3K4me3 and/or H3K9ac)

-Has also been shown to disrupt the
phosphorylation of Smad2/3

-Suppression of TGFb signaling in
hepatocellular carcinoma

[201,202]

Halaven
(eribulin mesylate)

NCT01372579—w/Carboplatin
NCT02120469

Suppresses metastasis by inhibiting
TGFb-mediated phosphorylation of Smad2/3

(potentially by altering the interactions
between Smad proteins and microtubules

following erlubin binding)

[203,204]

Clinicaltrials.gov
Clinicaltrials.gov
https://clinicaltrials.gov/ct2/results?cond=Triple+Negative+Breast+Cancer&term=&type=Intr&rslt=&recrs=d&age_v=&gndr=Female&intr=&titles=&outc=&spons=&lead=&id=&cntry=&state=&city=&dist=&locn=&phase=0&phase=1&phase=2&phase=3&rsub=&strd_s=&strd_e=&prcd_s=&prcd_e=&sfpd_s=&sfpd_e=&rfpd_s=&rfpd_e=&lupd_s=&lupd_e=&sort=
https://clinicaltrials.gov/ct2/results?cond=Triple+Negative+Breast+Cancer&term=&type=Intr&rslt=&recrs=d&age_v=&gndr=Female&intr=&titles=&outc=&spons=&lead=&id=&cntry=&state=&city=&dist=&locn=&phase=0&phase=1&phase=2&phase=3&rsub=&strd_s=&strd_e=&prcd_s=&prcd_e=&sfpd_s=&sfpd_e=&rfpd_s=&rfpd_e=&lupd_s=&lupd_e=&sort=
https://clinicaltrials.gov/ct2/results?cond=Triple+Negative+Breast+Cancer&term=&type=Intr&rslt=&recrs=d&age_v=&gndr=Female&intr=&titles=&outc=&spons=&lead=&id=&cntry=&state=&city=&dist=&locn=&phase=0&phase=1&phase=2&phase=3&rsub=&strd_s=&strd_e=&prcd_s=&prcd_e=&sfpd_s=&sfpd_e=&rfpd_s=&rfpd_e=&lupd_s=&lupd_e=&sort=
https://clinicaltrials.gov/ct2/results?cond=Triple+Negative+Breast+Cancer&term=&type=Intr&rslt=&recrs=d&age_v=&gndr=Female&intr=&titles=&outc=&spons=&lead=&id=&cntry=&state=&city=&dist=&locn=&phase=0&phase=1&phase=2&phase=3&rsub=&strd_s=&strd_e=&prcd_s=&prcd_e=&sfpd_s=&sfpd_e=&rfpd_s=&rfpd_e=&lupd_s=&lupd_e=&sort=
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Table 2. Cont.

Inhibitor Clinical Trial Number Mechanism References

Pembrolizumab
(MK-3475)

NCT02644369
NCT02730130
NCT02734290
NCT03036488
NCT02555657
NCT02819518

NCT02981303—w/Imprime PGG
NCT03567720

NCT02657889—w/Niraparib
NCT02971761—w/Enobosarm
NCT01676753—w/Dinaciclib

NCT02178722

Decreased the production of TGFb in the
tumor microenvironment [205,206]

Apatinib NCT03075462
NCT03394287 Downregulates the TGFb1 pathway [207]

9. Conclusions and Future Directions

Heart disease is a leading cause of mortality amongst breast cancer patients due to
the reliance on cardiotoxic, non-specific chemotherapies for treatment [6]. It was found
that 68.7% of TNBC patients had abnormal ECGs after each chemotherapy cycle, and
12.5% of patients demonstrated decreased LVEF [208]. The use of anthracyclines were
also associated with increased incidences of ECG and QRS abnormalities [208]. Moreover,
chemotherapy in TNBC patients with co-morbid cardiac conditions led to worse outcomes
following treatment [209].

While chemotherapy is an essential part of therapy, the development of novel meth-
ods to modulate its cardiotoxic effects are critical. TGF-β has been demonstrated to be
upregulated post-chemotherapeutic exposure in patients, which is, in turn, associated
with increased fibrosis, cardiac hypertrophy and inflammation, impacting both short- and
long-term patient prognosis [71,114–116,210]. Moreover, it has been found that, through
inhibition of TGF-β, these adverse effects can be limited; thus, TGF-β inhibitors combined
with chemotherapy may be a tangible approach to increase patient prognosis and reduce
cardiovascular disease. Importantly, future studies must use clinically translatable human
models for investigation to ensure the translatability of findings.

Additionally, TGF-β has been associated with post-chemotherapeutic enrichment
of CD44+/CD24− mesenchymal and ALDH+ epithelial CSCs, which are a major barrier
against successful long-term patient survival due to the promotion of tumorigenicity,
metastasis and resistance. All of these processes reduce patient prognosis; however, TGF-β
inhibition in preclinical models has demonstrated promising results in regard to inhibition
of both CSC populations and prevention of chemotherapy-induced CSC enrichment fol-
lowing combinational treatment. This is important, as treatment of CSCs is essential for
effective treatment of TNBC, and prevention of chemotherapy-induced CSCs may reduce
the rate of metastasis and relapse and improve patient prognoses. Therefore, investigation
into TGF-β inhibition as a treatment for TNBC CSCs remains of great importance and of
great clinical translational value.

Together, TGF-β inhibition represents an intersection of two fields: cardiology and
oncology. On one side, cardiomyopathy, cardiac damage and heart failure may be prevented
and, on the other side, chemotherapeutically induced CSCs may be inhibited. Together,
both of these approaches, if successfully implemented, would target the two greatest causes
of cancer-related morbidity in patients and potentially lead to a breakthrough therapy.
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10. Materials and Methods
Clinical Database Analysis

Pan-cancer datasets from the Cancer Genome Atlas PanCancer Atlas (TCGA,
https://www.cell.com/pb-assets/consortium/pancanceratlas/pancani3/index.html, ac-
cessed on 12 January 2022) were used and analyzed with cBioportal (http://www.cbioport
al.org/index.do, accessed on 12 January 2022). Altered TGF-β was defined as mutations,
structural variants and/or copy number alterations in one of the following genes com-
posing the TGFB superfamily: TGFB1, TGFB2, TGFB3, TGFBR1, TGFBR2, TGFBR3, BMP2,
BMP3, BMP4, BMP5, BMP6, BMP7, GDF2, BMP10, BMP15, BMPR1A, BMPR1B, BMPR2,
ACVR1, ACVR1B, ACVR1C, ACVR2A, ACVR2B, ACVRL1, NODAL, GDF1, GDF11, INHA,
INHBA, INHBB, INHBC, INHBE, SMAD2, SMAD3, SMAD1, SMAD5, SMAD4, SMAD9,
SMAD6, SMAD7, SPTBN1, TGFBRAP1 and/or ZFYVE9. Kaplan–Meier survival curves
were generated using the datasets compiled by January 2022 from the following database
IDs: https://bit.ly/2BngXkv, accessed on 12 January 2022.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14061577/s1, Figure S1: Summary of the TGF B Pathway,
its Role in Cardiac Fibrosis/TNBC and Pharmacological Targets, Table S1: List of cancer types from
32 studies used for database analysis.

Author Contributions: Conceptualization, A.S. and S.M.; methodology, A.S.; writing—original draft
preparation, A.S., J.C., S.M., R.K., S.C.C., S.K. and V.V.; writing—review and editing, A.S., S.M., R.K.,
J.C., S.C.C., S.K. and V.V.; visualization, A.S. and S.M.; supervision, A.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no specific grant from any funding agency in the public, commercial,
or not-for-profit sectors.

Acknowledgments: The authors would like to thank Eugene Konorev for his help in developing the
concept and Brandon Sulaiman for his help revising the manuscript. The authors would also like
to thank Luk Cox and Idoya Lahortiga from Somersault 18:24 for allowing the use of their Library
of Science and Medical Illustrations (http://www.somersault1824.com/resources/, accessed on
22 January 2022) for the creation of Figure 1 and the Graphical Abstract.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [CrossRef] [PubMed]
2. Anders, C.K.; Carey, L.A. Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin. Breast

Cancer 2009, 9, S73–S81. [CrossRef] [PubMed]
3. Bauer, K.R.; Brown, M.; Cress, R.D.; Parise, C.A.; Caggiano, V. Descriptive analysis of estrogen receptor (ER)-negative, proges-

terone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: A population-
based study from the California cancer Registry. Cancer 2007, 109, 1721–1728. [CrossRef] [PubMed]

4. Chen, J.; Long, J.B.; Hurria, A.; Owusu, C.; Steingart, R.M.; Gross, C.P. Incidence of Heart Failure or Cardiomyopathy After
Adjuvant Trastuzumab Therapy for Breast Cancer. J. Am. Coll. Cardiol. 2012, 60, 2504–2512. [CrossRef]

5. Tan, C.; Denlinger, C. Cardiovascular toxicity in cancer survivors: Current guidelines and future directions. Am. Coll. Cardiol.
Expert Anal. 2018, 29.

6. Patnaik, J.L.; Byers, T.; DiGuiseppi, C.; Dabelea, D.; Denberg, T.D. Cardiovascular disease competes with breast cancer as the
leading cause of death for older females diagnosed with breast cancer: A retrospective cohort study. Breast Cancer Res. 2011, 13,
R64. [CrossRef]

7. Bardia, A.; Arieas, E.T.; Zhang, Z.; DeFilippis, A.; Tarpinian, K.; Jeter, S.; Nguyen, A.; Henry, N.L.; Flockhart, D.A.; Hayes, D.F.;
et al. Comparison of breast cancer recurrence risk and cardiovascular disease incidence risk among postmenopausal women with
breast cancer. Breast Cancer Res. Treat. 2012, 131, 907–914. [CrossRef]

8. Sturgeon, K.M.; Deng, L.; Bluethmann, S.M.; Zhou, S.; Trifiletti, D.M.; Jiang, C.; Kelly, S.P.; Zaorsky, N.G. A population-based
study of cardiovascular disease mortality risk in US cancer patients. Eur. Heart J. 2019, 40, 3889–3897. [CrossRef]

9. Clarke, M.; Coates, A.S.; Darby, S.C.; Davies, C.; Gelber, R.D.; Godwin, J.; Goldhirsch, A.; Gray, R.; Peto, R.; Pritchard, K.I.; et al.
Adjuvant chemotherapy in oestrogen-receptor-poor breast cancer: Patient-level meta-analysis of randomised trials. Lancet 2008,
371, 29–40. [CrossRef]

https://www.cell.com/pb-assets/consortium/pancanceratlas/pancani3/index.html
http://www.cbioportal.org/index.do
http://www.cbioportal.org/index.do
https://bit.ly/2BngXkv
https://www.mdpi.com/article/10.3390/cancers14061577/s1
https://www.mdpi.com/article/10.3390/cancers14061577/s1
http://www.somersault1824.com/resources/
http://doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593
http://doi.org/10.3816/CBC.2009.s.008
http://www.ncbi.nlm.nih.gov/pubmed/19596646
http://doi.org/10.1002/cncr.22618
http://www.ncbi.nlm.nih.gov/pubmed/17387718
http://doi.org/10.1016/j.jacc.2012.07.068
http://doi.org/10.1186/bcr2901
http://doi.org/10.1007/s10549-011-1843-1
http://doi.org/10.1093/eurheartj/ehz766
http://doi.org/10.1016/s0140-6736(08)60069-0


Cancers 2022, 14, 1577 19 of 27

10. Ozkan, M.; Berk, V.; Kaplan, M.A.; Benekli, M.; Coskun, U.; Bilici, A.; Gumus, M.; Alkis, N.; Dane, F.; Ozdemir, N.Y.; et al.
Gemcitabine and cisplatin combination chemotherapy in triple negative metastatic breast cancer previously treated with a
taxane/anthracycline chemotherapy; multicenter experience. Neoplasma 2012, 59, 38–42. [CrossRef]

11. Singal, P.K.; Iliskovic, N. Doxorubicin-Induced Cardiomyopathy. N. Engl. J. Med. 1998, 339, 900–905. [CrossRef] [PubMed]
12. Mercuro, G.; Cadeddu, C.; Piras, A.; Dessì, M.; Madeddu, C.; Deidda, M.; Serpe, R.; Massa, E.; Mantovani, G. Early Epirubicin-

Induced Myocardial Dysfunction Revealed by Serial Tissue Doppler Echocardiography: Correlation with Inflammatory and
Oxidative Stress Markers. Oncologist 2007, 12, 1124–1133. [CrossRef] [PubMed]

13. Albini, A.; Pennesi, G.; Donatelli, F.; Cammarota, R.; De Flora, S.; Noonan, D.M. Cardiotoxicity of Anticancer Drugs: The Need
for Cardio-Oncology and Cardio-Oncological Prevention. JNCI J. Natl. Cancer Inst. 2010, 102, 14–25. [CrossRef] [PubMed]

14. Pai, V.B.; Nahata, M.C. Cardiotoxicity of Chemotherapeutic Agents: Incidence, treatment and prevention. Drug Saf. 2000, 22,
263–302. [CrossRef]

15. Ewer, M.S.; Lippman, S.M. Type II Chemotherapy-Related Cardiac Dysfunction: Time to Recognize a New Entity. J. Clin. Oncol.
2005, 23, 2900–2902. [CrossRef]

16. Giordano, S.H.; Lin, Y.-L.; Kuo, Y.F.; Hortobagyi, G.N.; Goodwin, J.S. Decline in the Use of Anthracyclines for Breast Cancer. J.
Clin. Oncol. 2012, 30, 2232–2239. [CrossRef]

17. Davies, K.J.; Doroshow, J.H. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by
NADH dehydrogenase. J. Biol. Chem. 1986, 261, 3060–3067. [CrossRef]

18. Berthiaume, J.M.; Wallace, K.B. Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol. Toxicol. 2007, 23, 15–25.
[CrossRef]

19. Barth, E.; Stämmler, G.; Speiser, B.; Schaper, J. Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle
from 10 different animal species including man. J. Mol. Cell. Cardiol. 1992, 24, 669–681. [CrossRef]
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