
R E S E A R CH A R T I C L E

Activity flow mapping over probabilistic functional
connectivity

Hengcheng Zhu1 | Ziyi Huang1 | Yifeixue Yang1 | Kaiqiang Su1 |

Mingxia Fan2 | Yong Zou3 | Ting Li4 | Dazhi Yin1,4

1Shanghai Key Laboratory of Brain Functional

Genomics (Ministry of Education), School of

Psychology and Cognitive Science, East China

Normal University, Shanghai, China

2Shanghai Key Laboratory of Magnetic

Resonance, School of Physics and Electronic

Science, East China Normal University,

Shanghai, China

3Institute of Theoretical Physics, School of

Physics and Electronic Science, East China

Normal University, Shanghai, China

4Shanghai Changning Mental Health Center,

Shanghai, China

Correspondence

Dazhi Yin, School of Psychology and Cognitive

Science, East China Normal University, 3663

North Zhong-Shan Road, 200062 Shanghai,

China.

Email: dzyin@psy.ecnu.edu.cn

Funding information

“Technology Innovation 2030-Major Projects”
on brain science and brain-like computing of

the Ministry of Science and Technology of

China, Grant/Award Number:

2021ZD0202600; National Natural Science

Foundation of China, Grant/Award Numbers:

11835003, 31600869, 81471651; McDonnell

Center for Systems Neuroscience; NIH

Blueprint for Neuroscience Research

Abstract

Emerging evidence indicates that activity flow over resting-state network topology allows

the prediction of task activations. However, previous studies have mainly adopted static,

linear functional connectivity (FC) estimates as activity flow routes. It is unclear whether

an intrinsic network topology that captures the dynamic nature of FC can be a better rep-

resentation of activity flow routes. Moreover, the effects of between- versus within-

network connections and tight versus loose (using rest baseline) task contrasts on the pre-

diction of task-evoked activity across brain systems remain largely unknown. In this study,

we first propose a probabilistic FC estimation derived from a dynamic framework as a new

activity flow route. Subsequently, activity flow mapping was tested using between- and

within-network connections separately for each region as well as using a set of tight task

contrasts. Our results showed that probabilistic FC routes substantially improved

individual-level activity flow prediction. Although it provided better group-level prediction,

the multiple regression approach was more dependent on the length of data points at the

individual-level prediction. Regardless of FC type, we consistently observed that between-

network connections showed a relatively higher prediction performance in higher-order

cognitive control than in primary sensorimotor systems. Furthermore, cognitive control

systems exhibit a remarkable increase in prediction accuracy with tight task contrasts and

a decrease in sensorimotor systems. This work demonstrates that probabilistic FC esti-

mates are promising routes for activity flow mapping and also uncovers divergent influ-

ences of connectional topology and task contrasts on activity flow prediction across brain

systems with different functional hierarchies.
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1 | INTRODUCTION

An important challenge in neuroscience is to link the two forms of

brain activity: task-evoked and spontaneous/intrinsic activities

(Raichle, 2010). Earlier brain imaging (e.g., functional magnetic reso-

nance imaging, fMRI) research-related specific cognitive processes to

task-evoked activations and considered spontaneous brain activity as

baseline or noise. Owing to the pioneering work of resting-state fMRI
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(Biswal et al., 1995), an increasing number of studies have focused on

spontaneous brain activity and have demonstrated that it has mean-

ingful organizational architecture and functional relevance (Buckner &

DiNicola, 2019; Deco et al., 2013; Power et al., 2014; Uddin, 2020). In

particular, previous studies have shown high similarity in network

structure during rest and the performance of different cognitive tasks

(Cole et al., 2014; Smith et al., 2009). A plausible inference is that

task-dependent reconfigurations of functional networks are shaped

primarily by an intrinsic network architecture (Davison et al., 2015;

Krienen et al., 2014). However, these studies cannot provide a mecha-

nistic understanding of the relationship between task-evoked and

intrinsic brain activities.

By training a mathematical model, Tavor et al. demonstrated that

resting-state functional connectivity (FC) can predict individual vari-

ability in task activation maps (Tavor et al., 2016; Tik et al., 2021).

More explicitly, recent studies have proposed a large-scale activity

flow model that allows us to predict a variety of cognitive task activa-

tions via resting-state network connectivity (Cole et al., 2016; Ito

et al., 2017). Briefly, the activation of a given region was predicted by

the linear summation of the activations of all other regions weighted

by their resting-state FC with the target region. This model can also

be extended to predict dysfunctional task activations from disrupted

resting-state FC in older adults (Mill et al., 2020) and patients with

schizophrenia (Hearne et al., 2021). The activity flow mapping

approach offers mechanistic insight into the relationship between

resting-state network topology and task-evoked activation patterns

and opens a new window into the large-scale information processing

architecture of the human brain.

However, prior studies have mainly employed static, linear FC

estimates (i.e., standard Pearson correlation and multiple regression

approaches) as activity flow routes, assuming temporal stationarity

across all resting-state scans. The Pearson correlation is the simplest

and most frequently adopted method for estimating FC (Sanchez-

Romero & Cole, 2021; Smith et al., 2013). The main disadvantage of

this method is that it cannot distinguish between direct and indirect

functional connections in the brain, thereby generating false positives.

The work of Cole et al. has shown that multiple regression FC is supe-

rior to Pearson correlation estimation in activity flow prediction (Cole

et al., 2016). This is because the multiple regression approach reflects

more direct FC between regions by controlling signals from other

regions. However, it should be noted that there are two potential

drawbacks to the multiple regression approach. First, controlling all

other regions when calculating a functional connection between two

regions results in a reduction in the temporal degrees of freedom.

Consequently, the length of fMRI scans (i.e., time series) limits the

number of regions included in the multiple regression analysis. Sec-

ond, multiple regression may lead to false negatives if a brain region is

accidentally oversplit into two separate nodes (i.e., having collinear

nodes; Bijsterbosch et al., 2017). Therefore, it is necessary to examine

the influence of the length of fMRI scans on activity flow prediction.

Moreover, a growing number of studies emphasize that the brain

is a dynamic system (Bassett & Sporns, 2017; Breakspear, 2017; Deco

et al., 2011) and embodies time-varying reconfiguration of functional

networks both at rest (Allen et al., 2014; Baker et al., 2014; Chang &

Glover, 2010; de Pasquale et al., 2016; Vidaurre et al., 2017; Wang

et al., 2021; Zalesky et al., 2014) and across different task contexts

(Braun et al., 2015; Gonzalez-Castillo et al., 2015; Kucyi et al., 2018;

Shine et al., 2016; Vatansever et al., 2015). Accumulating evidence

suggests that time-resolved FC analysis (e.g., sliding window

approach) may help extract more information about brain function

than traditional static FC analysis, although challenges concerning

analysis and interpretation remain (Hutchison et al., 2013; Keilholz

et al., 2017). Specifically, resting-state FC dynamics are thought to

reflect the brain's exploration of a rich and flexible repertoire of func-

tional network configurations (Deco et al., 2013). Previous studies

also indicated that both the strength and spatial distribution of intrin-

sic FC change dynamically and contribute to behavioral variability

(Sadaghiani et al., 2015; Vidaurre et al., 2021). Therefore, it is plausible

that an intrinsic network topology derived from a dynamic FC frame-

work could serve as a promising representation of activity flow routes.

This would advance our understanding of how distributed cognitive

activations are coordinated by an intrinsic network topology that cap-

tures the dynamic nature of FC.

A potential assumption of the activity flow model is that neural

activity propagates over distributed functional pathways. Previous

studies have suggested that the function of each region is largely

determined by its unique set of connections with the rest of the brain

(Mars et al., 2018). For example, brain regions with connections dis-

tributed across multiple networks are defined as connector hubs,

mainly included in higher-order cognitive control systems, such as the

frontoparietal network (FPN). In contrast, regions with numerous

within-network connections are considered provincial hubs that are

primarily involved in primary sensorimotor systems (Bertolero

et al., 2017). Further evidence indicates that the connectional topol-

ogy of brain areas at rest is related to the functional activities of these

regions during tasks (Bertolero et al., 2015; Chan et al., 2017). It is

therefore important to test whether the between- and within-

network connections of a region make an unbalanced contribution to

activity flow prediction, which may provide mechanistic insight into

the relationship between intrinsic connectional topology and func-

tional roles of brain regions.

In addition, previous studies have indicated that correspondences

between intrinsic and task-related functional architectures seem to

vary across different task contrasts; that is, weak correspondence has

been found for tight task contrasts (Mennes et al., 2013). Compared

to loose task contrasts (i.e., using rest as the baseline), tight task con-

trasts refer to adopting appropriate control conditions and usually

reflect higher-order cognitive processes more purely, such as in classic

flanker attention task, incongruent versus congruent trials (tight task

contrast), and incongruent/congruent trials versus rest baseline (loose

task contrast). Accordingly, tight task contrasts may primarily be

involved in higher-order cognitive control regions because primary

sensorimotor processes are often well controlled. In contrast, both

the sensorimotor and cognitive control regions were activated for

loose task contrasts. Thus, examining the effect of task contrasts

(tight vs. loose) on the performance of activity flow prediction across
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different brain systems may help parse the mechanistic relationship

between higher-order cognitive processes and functional systems.

In this study, we first proposed a new activity flow route derived

from a dynamic brain network framework and tested it on the publicly

available Human Connectome Project dataset (Van Essen et al., 2013).

In contrast to the standard Pearson correlation and multiple regres-

sion FC approaches, we adopted our recently established probabilistic

FC estimates as active flow routes (Yin et al., 2016, 2021; Yin, Zhang,

et al., 2019), which refer to the occurrence frequency of the intrinsic

functional connection between two regions across all temporal win-

dows during rest. Although the representational form is also a single

and fixed network connectivity matrix, probabilistic FC estimates have

captured and carried dynamic brain connectivity information. For

instance, while a functional connection between two regions is absent

when using Pearson correlation across the whole scanning session, it

may exist in certain temporal windows. Moreover, this probabilistic

FC estimation is compatible with the perspective that the intrinsic

function of a region is uncertain and is expressed in a probabilistic

manner; its apparent function is detectable and deterministic only

when specific cognitive tasks or stimuli are performed (Yin &

Kaiser, 2021). Therefore, we hypothesized that probabilistic FC esti-

mates derived from a dynamic framework may provide promising

routes for transferring activity flows across a variety of distinct cogni-

tive tasks.

To further test the effects of between- and within-network con-

nections and tight versus loose task contrasts on the prediction of

task-evoked activations across different functional systems, we subse-

quently performed activity flow mapping using between- and within-

network connections separately for each brain region, as well as using

a set of tight task contrasts. This can reveal the imbalance of distrib-

uted versus local information processing across different functional

systems. We expected that between-network connections would

show relatively high prediction performance in higher-order cognitive

control systems compared to primary sensorimotor systems. Further-

more, for tight task contrasts, prediction accuracy would be improved

in cognitive control systems, particularly in the FPN, because they

play a dominant role in flexible cognitive control with global and dis-

tributed FC (Cole et al., 2013; Yin & Kaiser, 2021).

2 | MATERIALS AND METHODS

2.1 | The MRI dataset

The data we tested were part of the Washington University-

Minnesota Consortium Human Connectome Project (HCP), that is,

the commonly used “100 Unrelated Subjects” subset (main dataset),

which excludes family relations and represents a sample of the general

population (Van Essen et al., 2013). Consistently, this subset of data

was selected for the seminal study of activity flow mapping (Cole

et al., 2016). To further validate our main findings, another 100 unre-

lated subjects were also tested (replication dataset). Data collection

was approved by the institutional review board of the individual site,

and informed consent was obtained from each subject. Participants'

average age was 29 years (ranging from 22 to 36), and 54% of them

were female (for the validation dataset: average age was 28 years,

ranging from 22 to 35, and 50% of them were female). This study was

approved by the ethics committee of East China Normal University.

2.2 | Image acquisition

For the HCP dataset, the fMRI scans were acquired with a whole-

brain multiband echo-planar imaging sequence and a 32-channel head

coil on a modified 3 T Siemens Skyra MRI scanner. The sequence

parameters are as follows: repetition time (TR) = 720 ms, echo time

(TE) = 33.1 ms, flip angle = 52�, bandwidth = 2290 Hz/Px, in-plane

field of view (FOV) = 208 � 180 mm2, 72 slices, and 2.0 mm isotropic

voxels, with a multiband acceleration factor of 8 (Ugurbil et al., 2013).

Data were collected over 2 days. Each day, 28 min of rest (two runs,

eyes open with fixation) fMRI data were collected, followed by 30 min

of task fMRI (one run for each task) data collection. The seven tasks

consisted of an emotion cognition task, a gambling reward task, a lan-

guage task, a motor task, a relational reasoning task, a social cognition

task, and a working memory task. The details of resting-state data col-

lection can be found in previous study (Smith et al., 2013), as well as

task data details (Barch et al., 2013).

2.3 | Data preprocessing

We used the minimally preprocessed volume version of the data.

Standard procedures including spatial normalization to a standard

template, motion correction, and intensity normalization had already

been implemented (Glasser et al., 2013). One subject was excluded

due to poor image quality in the orbitofrontal cortex. We performed

further preprocessing using SPM (SPM12; http://www.fil.ion.ucl.ac.

uk/spm) and REST software (Song et al., 2011). The specific steps for

resting-state and task-state data preprocessing were as described

below.

For the resting-state fMRI data, the first 10 volumes for each run

were discarded for signal equilibrium and to allow participants' adap-

tation to the scanning environment. We also removed nuisance time

series (motion estimates, cerebrospinal fluid and white matter signals)

using linear regression. Note that we did not conduct global signal

regression (GSR) in the main analysis, given the ongoing debate on

this preprocessing step (Fox et al., 2009; Murphy et al., 2009). In par-

ticular, previous studies have suggested that the GSR may distort cor-

relation matrices, especially for the dynamic FC analysis (Saad

et al., 2012; Shen et al., 2015). However, a recent study has shown

that motion artifacts is most strongly controlled with the GSR for

dynamic FC analysis (Lydon-Staley et al., 2019). Therefore, we also

performed a validation analysis with the inclusion of GSR in the pre-

processing step. The linear trend was removed, and the data were

temporally bandpass filtered (0.01–0.08 Hz) and spatially smoothed

(full width at half maximum = 4 mm). For the task-state fMRI data,
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motion estimates were removed from the time series using linear

regression. The data were then spatially smoothed using a Gaussian

filter at 4 mm.

2.4 | Resting-state network connectivity derived
from static and dynamic frameworks

To construct network connectivity, we used a parcellation scheme

composed of N = 264 putative functional areas (i.e., spherical regions

of interest [ROIs] with a radius of 5 mm) (Power et al., 2011) to allow

a direct comparison with the findings of seminal work (Cole

et al., 2016). Importantly, this parcellation scheme provided explicit

functional network assignments for all ROIs. Using the static frame-

work, we consistently conducted two different FC estimates as activ-

ity flow routes, including standard Pearson correlation and multiple

linear regression approaches (Cole et al., 2016; Ito et al., 2017).

Briefly, the time series of each region was obtained by averaging the

signals of all the voxels within the ROI. The Pearson correlation

between each pair of time series across the whole resting scanning

session was calculated, and Fisher's z-transformation was performed

to allow the correlation values to be more normal. Therefore, a sym-

metric N � N FC matrix was generated for each participant. Notably,

to maintain consistency with seminal work (Cole et al., 2016), we used

both positive and negative correlations for activity flow mapping.

Considering that the functional significance of negative correlations

remains unclear, we also performed a validation analysis using only

positive correlations.

In contrast, a multiple linear regression model was created to fit

the time series of each to-be-predicted region separately by consider-

ing the time series of all other regions as covariates. The resulting

betas (βij), a measure of the effect of the given source j contributing to

target region i, are represented as alternative static FC estimates.

Note that the multiple regression approach produced an asymmetric

N � N FC matrix, which reflects the optimal linear scaling of the

source time series to best match the target time series, instead of

reflecting direction information.

We propose probabilistic FC estimates derived from a dynamic

framework as new activity flow routes. Specifically, we first employed

a popular sliding window method to construct dynamic FC matrices.

Following previous studies (Liao et al., 2017; Yin et al., 2016), we used

a tapered window (window length [WL] = 139 TRs ≈ 100 s) and slides

in steps of one TR. However, to date, there is no universally accepted

criterion for WL selection. Therefore, shorter and longer WLs

(i.e., WL = 44 s and 150 s) (Allen et al., 2014; Liao et al., 2017) were

also applied to validate our main findings. For each temporal window,

the Pearson correlation between the mean time series of any pair of

regions was computed, and a symmetric N � N connectivity matrix

was obtained.

Subsequently, based on the dynamic FC matrices of each partici-

pant, we calculated the normalized probabilistic connectivity distribu-

tion PCi( j) for a given brain region i as follows (Yin et al., 2016, 2021;

Yin, Zhang, et al., 2019):

PCi jð Þ¼
n cij
� �

k�w
, j¼1, 2,…N, and j≠ i,

where n(cij) denotes the number of times the connection between

i and j emerged across the temporal windows, k is a predefined

threshold indicating the number of the strongest connections (NSC)

reserved for region i in each time window (because positive and nega-

tive correlations would imply a different flow in information, here we

consider only positive correlations in our main analysis while taking

absolute values only for a validation analysis), and w denotes the num-

ber of temporal windows. PCi( j) denotes the probability of occurrence

of the connection between regions i and j across all temporal windows

and ranges from 0 to 1. The greater the value of PCi( j), the more fre-

quent the interaction between regions i and j across temporal win-

dows, and vice versa.

Regarding the k threshold, we justified the choice of k = 3 for

both human and monkey datasets in our previous studies (Yin

et al., 2016; Yin, Zhang, et al., 2019). Therefore, we selected the same

threshold, k = 3, for the main analysis and further validated our main

findings with k = 4 and k = 5. In addition, it should be noted that the

probabilistic FC matrices were asymmetric, which resulted from the

local thresholding scheme (Alexander-Bloch et al., 2010) and not nec-

essarily from the direction of the activity flow. This local thresholding

scheme may allow the reduction of spurious connections owing to a

short time window and enables the preservation of some important

weak connections (compared with hard thresholding across the whole

brain).

2.5 | Activity flow mapping over different resting-
state network connectivity routes

In the current study, we performed activity flow mapping based on con-

nectivity routes from both the static and dynamic frameworks. The basic

idea of this model is that the cognitive task activation of a given region

can be predicted by the linear summation of the activations of all other

regions weighted by their resting-state FC with the target region. The

formal mathematical formula is as follows (Cole et al., 2016):

Pj ¼
X

i≠ jϵV

Ai �Fij,

where Pj is the predicted activation of region j in a given task contrast

and Ai is the actual activation of region i in a given task contrast. Fij is

the FC estimate between regions i and j (here, FC represents the stan-

dard Pearson correlation, multiple regression FC estimate, or probabi-

listic FC estimate). Here, a total of 24 loose task contrasts (Table S1)

were used following a recent study (Cole et al., 2021) and brain activa-

tion was estimated using a standard general linear model in SPM.

Figure 1 illustrates the activity flow model with different connectivity

routes.

To eliminate the scale effects of different task contrasts and sub-

jects, the single-subject activation amplitudes for each task contrast
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were z-normalized (subtracting the mean and dividing the standard

deviation of the activation amplitude). The prediction accuracy was

assessed based on the similarity between the predicted and actual

activation values. Following a previous study (Cole et al., 2016), the

predicted-to-actual correlation was computed across regions (within

the entire brain or network) for each task contrast and then averaged

across task contrasts. Considering that each network has a different

number of regions, this may lead to a potential bias in the comparison

of prediction accuracy across individual functional networks. To vali-

date our main findings, we also computed the predicted-to-actual cor-

relation across task contrasts for each region separately and then

averaged across regions within the entire brain or network. However,

this analytic strategy is inappropriate for examining the effect of tight

versus loose task contrasts on the activity flow prediction for each

network (or across the whole brain).

In addition, we conducted two assessment measures for the

predicted-to-actual activation similarity: average-then-compare (r*)

and compare-then-average (r). The average-then-compare assess-

ment, which had a better signal-to-noise ratio (SNR) but blurred

single-subject information, was performed by calculating the similarity

after averaging the predicted and actual activations across all subjects

(i.e., group-level prediction). In contrast, the compare-then-average

assessment, which focused on a single subject's distinctive prediction

but with a low SNR, was performed by computing the Pearson corre-

lation between predicted and actual activations for each subject sepa-

rately, and these similarity estimates were then averaged across all

subjects as the final prediction accuracy (i.e., individual-level predic-

tion). Unless otherwise noted, all subsequent statistical analyses used

the compare-then-average approach, enabling us to identify valid p-

values (instead of focusing on average-then-compare assessment and

using a permutation test).

2.6 | Effect of the length of resting-state scans on
activity flow prediction with different FC approaches

In the main analysis, we used all four resting-state fMRI runs to esti-

mate FC, following seminal work (Cole et al., 2016). Cole et al. found

that multiple regression FC is superior to standard FC estimation in

activity flow prediction. However, the multiple regression approach

F IGURE 1 Standard, multiple regression, and currently proposed probabilistic FC routes for the activity flow model. (a) An illustration of the
activity flow model. (b) Activity flow routes are estimated from the static framework using standard Pearson correlation and multiple regression
FC approaches. Si indicates the fMRI signal of region i. (c) Activity flow routes are estimated from the dynamic framework using probabilistic FC
approach. N(cij) denotes the number of times the connection between regions i and j emerged across all temporal windows. K indicates the
number of strongest connections reserved at each temporal window. W refers to the number of temporal windows. FC, functional connectivity;
MultiReg, multiple regression; Prob, probabilistic; R, region
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would result in a reduction in the temporal degrees of freedom, and

thus, might be more sensitive to the length of time points. Considering

this, we further tested the effect of the length of resting-state scans

on activity flow prediction using different FC approaches. For each FC

approach, we first evaluated the consistency (or similarity) of the FC

maps estimated using the main (four resting-state fMRI runs) and

reduced (one resting-state fMRI run) datasets. We then performed

activity flow prediction based on the FC routes estimated using the

main and reduced datasets.

2.7 | Effect of applying a threshold to standard FC
estimation on activity flow prediction

For probabilistic FC estimation, a threshold was applied, which may

reduce the number of false connections (Yin et al., 2016). Similarly,

although not using a threshold directly, multiple regression FC estima-

tion may implicitly remove false connections by controlling for signals

in all other regions (Cole et al., 2016). It would be helpful to determine

whether activity flow prediction using the standard FC method

improves when a threshold is applied. Therefore, we applied two rep-

resentative thresholds (network sparsity S = 0.15 and 0.02) commonly

used in brain network analyses (Liao et al., 2017; Power et al., 2011;

Yin, Chen, et al., 2019) to the standard FC estimation for activity flow

prediction.

2.8 | Identifying inter-subject specificity of activity
flow prediction

To test the specificity of the model, we performed activity flow map-

ping for each participant by randomly selecting the FC routes of

another participant in the group. The resulting predicted-to-actual

correlations were considered null similarity estimates. The reason for

not using the averaged FC across all subjects is that it may signifi-

cantly increase the SNR. Because our goal was to identify the subject-

specific effect of activity flow routes, the comparison between using

an individual's own FC and another subject's FC was more reasonable.

2.9 | Effect of between- versus within-network
connections on the activity flow prediction

Considering that the function of each region is largely determined by its

unique connectional profiles, we performed activity flow mapping using

between- and within-network connections separately for each brain

region. The separate activity flow models are expressed as follows:

PBj ¼
X

j =2 Vi

Ai �Fij,

PWj ¼
X

i≠ j � Vi

Ai �Fij,

where PBj and PWj denote the predicted activation of region j using

between- and within-network connections, respectively; Vi denotes

the functional network to which region i belongs; Fij is the FC estimate

between regions i and j. Similar to the main analysis with between-

and within-network connections, PBj and PWj were calculated for

each subject and for each task contrast using the three types of con-

nectivity routes separately.

To further quantify the relative contribution of between- and

within-network connections to activity flow prediction across differ-

ent functional systems, the net rank (NRi) of the prediction perfor-

mance of between-network connections for functional system i is

defined as follows:

NRi ¼ BiP
Bið Þ=s�

WiP
Wið Þ=s , i¼1, 2, 3,…, s,

where s represents the number of functional systems, and Bi and Wi

denote the prediction accuracy of the functional system i using

between- and within-network connections, respectively. An NRi

greater than zero indicates that between-network connections play a

dominant role in activity flow prediction for functional system i. In

contrast, an NRi lower than zero indicates that within-network con-

nections play a dominant role in the activity flow prediction for func-

tional system i.

Considering that most of the seven tasks are primarily cognitive,

we further tested whether there is a double dissociation effect, in

which the sensorimotor system would show greater between-

network connectivity contributing to the primary motor task. Specifi-

cally, for the primary motor task, we performed activity flow predic-

tion using between- and within-network connections, separately for

each brain region.

2.10 | Effect of tight versus loose task contrasts
on the activity flow prediction

In the main analysis, all task contrasts were loose with rest as the

baseline. To test how distinct types of task contrasts affect prediction

accuracy across different functional systems, we additionally per-

formed activity flow mapping for the six tight task contrasts (because

no proper tight task contrast can be defined); here, we excluded the

primary motor task from the seven tasks in the HCP dataset

(Table S2). These tight task contrasts may reflect higher-order cogni-

tive processes more purely with controlled primary sensorimotor pro-

cesses, such as using the 2-back versus 0-back contrast for the

working memory task. The analytical procedure for activity flow map-

ping was the same as that used in the main analysis.

2.11 | Statistical analysis

To investigate the prediction performance effects, we first conducted

a two-way analysis of variance (ANOVA) with an FC type factor
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(standard FC vs. multiple regression FC vs. probabilistic FC) and a

dataset type factor (4 vs. 1 resting-state fMRI run) at both whole-

brain and individual-network levels. In the current study, we focused

on 10 well-known functional systems (Figure 2a) for statistical analysis

following previous studies (Cole et al., 2013; Cole et al., 2016; Yin,

Chen, et al., 2019). Considering the effect of multiple comparisons,

p < .05 with Bonferroni correction (i.e., p < .05/11 = .0045) was set

as statistically significant. Post hoc analyses were performed to iden-

tify significant differences in prediction accuracy between FC types

and between datasets.

To evaluate the effect of applying a threshold to standard FC esti-

mation on activity flow prediction, we performed two-tailed two-

sample t-tests between the prediction accuracy of applying a threshold

of S = 0.15 (or 0.02) and that of using raw full connections. We consid-

ered p < .05 with Bonferroni correction (i.e., p < .05/11 = .0045) as

statistically significant. To assess the specificity of activity flow map-

ping, we performed two-tailed two-sample t-tests for prediction accu-

racy using an individual's own and another subject's connectivity

routes. We used p < .05 as statistical significance.

To examine the interaction effect between connectivity type and

network type, we performed a two-way ANOVA with a connectivity

type factor (between- vs. within-network connectivity) and a network

type factor (10 different functional networks). We used p < .05 as sta-

tistical significance. To examine the separate contribution of

between- and within-network connections to activity flow prediction

for each functional system, we performed two-tailed two-sample t-

tests between the prediction accuracy of using the between-net-

work/within-network connections and that of using both. Further-

more, the net rank values of the prediction performance of between-

network connections were contrasted with zero for each functional

system using two-tailed one-sample t-tests. We considered p < .05

with Bonferroni correction (i.e., p < .05/10 = .005) as statistically

significant.

To examine the interaction effect between contrast type and net-

work type, we performed a two-way ANOVA with a contrast type fac-

tor (tight vs. loose) and a network type factor (10 different functional

networks). We used p < .05 as statistical significance. To further com-

pare the prediction accuracy of each functional network and whole-

brain between tight and loose task contrasts, two-tailed two-sample t-

tests were conducted. We considered p < .05 with Bonferroni correc-

tion (i.e., p < .05/11 = .0045) as statistically significant. To evaluate

the effects of different NSC and WL thresholds, we first conducted a

one-way ANOVA analysis for prediction accuracy at the levels of both

the whole brain and individual functional networks. A threshold of

p < .05 with Bonferroni correction (i.e., p < .05/11 = .0045) was set as

statistically significant. Post hoc two-tailed two-sample t-tests were

then carried out to compare the prediction accuracy using different

thresholds.

F IGURE 2 Brain parcellation and averaged network connectivity for each approach. (a) A commonly used functional parcellation
(264 spherical regions of interest) with 10 well-known functional network assignments labeled with different colors. Based on this parcellation,
averaged network connectivity was obtained with standard FC (b), multiple regression FC (c), and probabilistic FC (d) approaches. Aud, auditory
network; CON, cingulo-opercular network; DAN, dorsal attention network; DMN, default mode network; FC, functional connectivity; FPN,
frontoparietal network; MultiReg, multiple regression; Prob, probabilistic; SM, sensorimotor network; SN, salience network; Sub, subcortical
network; VAN, ventral attention network; Vis, visual network
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3 | RESULTS

3.1 | Averaged network connectivity matrices of
different activity flow routes

From the static and dynamic frameworks, we obtained three averaged

network connectivity matrices representing the different types of

activity flow routes (Figure 2b-d). The brain network constructed by

standard FC showed strong within- and between-network connec-

tions, whereas the community structure was not very sharp (modular-

ity Q = 0.09). In contrast, multiple regression FC and our currently

proposed probabilistic FC networks presented a clearer community

structure (modularity Q = 0.27 and 0.28 respectively) with relatively

strong within-network connections and weak cross-network

connections.

In addition, we found that similarity of the FC maps between

using four and one resting state fMRI runs was as follows: r* = 0.99

(average-then-compare) and r = 0.83 (compare-then-average) for

standard FC estimation; r* = 0.76 (average-then-compare) and

r = 0.25 (compare-then-average) for multiple regression FC estima-

tion; and r* = 0.99 (average-then-compare) and r = 0.76 (compare-

then-average) for probabilistic FC estimation (Figure S1). This result

suggests that standard FC and probabilistic FC estimates are more

robust to the lengths of fMRI scans than multiple regression FC

estimates.

3.2 | Mean prediction accuracy estimated by
average-then-compare and compare-then-average

Following the average-then-compare assessment, we found that using

multiple regression FC routes led to higher prediction accuracy (mean

r* = 0.93) than using probabilistic (mean r* = 0.81) and standard FC

(mean r* = 0.71) routes. In contrast, using probabilistic FC routes

exhibited higher prediction accuracy (mean r = 0.63) than using multi-

ple regression FC (mean r = 0.58) and standard FC (mean r = 0.53)

routes based on compare-then-average assessment (Figure 3). Consis-

tent findings were observed for individual task contrasts (Table S3).

As suggested by previous studies (Cole et al., 2016, 2021), the overall

increase in prediction accuracy for the average-then-compare assess-

ment compared with the compare-then-average assessment likely

benefits from its better SNR by averaging individual activations before

prediction.

In addition, these findings have been consistently demonstrated

in the replication dataset (for the average-then-compare assessment:

mean r* = 0.93 for multiple regression FC routes > mean r* = 0.82 for

probabilistic FC routes > mean r* = 0.71 for standard FC routes; for

the compare-then-average assessment: mean r = 0.65 for probabilis-

tic FC routes > mean r = 0.60 for multiple regression FC

routes > mean r = 0.55 for standard FC routes).

For the reduced dataset (using one resting-state fMRI run), we

found that the multiple regression approach resulted in the lowest

prediction accuracy with the compare-then-average assessment

(mean r = 0.57 for probabilistic FC routes > mean r = 0.48 for stan-

dard FC routes > mean r = 0.46 for multiple regression FC routes),

although it showed the highest prediction accuracy with the average-

then-compare assessment (mean r* = 0.88 for multiple regression FC

routes > mean r* = 0.81 for probabilistic FC routes > mean r* = 0.70

for standard FC routes). The mean prediction accuracies estimated by

both average-then-compare and compare-then-average methods are

summarized in Table 1.

3.3 | Probabilistic FC routes significantly improved
individual-level activity flow prediction compared with
standard FC and multiple regression FC routes

Statistically, through two-way ANOVA, we found that both main

(FC type, dataset type) and interaction (FC type � dataset type)

effects were significant (p < .05, Bonferroni-corrected) at the levels of

both the whole-brain and individual functional networks, except for

the interaction effect of the subcortical network (p < .05, uncorrected)

(Table S4). Post hoc analyses further revealed that probabilistic FC

routes resulted in the highest prediction accuracy for the whole-brain

network. At the level of individual functional networks, probabilistic

FC routes produced the highest prediction accuracy for the SN

(salience network), DMN (default mode network), and auditory net-

works. In contrast, multiple regression FC routes led to the highest

prediction accuracy for the DAN (dorsal attention network) network.

For the FPN, VAN (ventral attention network), CON (cingulo-

opercular network), SM (sensorimotor network), and visual networks,

the probabilistic FC and multiple regression FC routes showed compa-

rable prediction performance, and both were better than the standard

FC routes (Figure 4a). Notably, the subcortical network exhibited sub-

stantially low prediction accuracy for all three types of connectivity

routes. These findings were consistent in the replication dataset

(Figure S2). Compared with the main dataset (four resting-state fMRI

runs), the reduced dataset (one resting-state fMRI run) resulted in a

general reduction in the prediction accuracy for all three FC types

(Figure S3). However, the reduction in prediction performance was

more pronounced for the multiple regression FC approach, which

showed the lowest prediction accuracy at the whole-brain network

level (Figure 4b). This result suggests that the multiple regression FC

approach is more sensitive to the reduction in data points in activity

flow prediction.

3.4 | Effect of applying a threshold to standard FC
estimation on activity flow prediction

When comparing full (raw) connections, we found that using the

threshold of S = 0.15 did not lead to significant changes in prediction

performance at either whole-brain or individual network levels. This

result implies that weak connections play a trivial role in activity flow
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prediction. However, a significant reduction in prediction performance

was observed at the whole-brain network level when using the

threshold of S = 0.02, but showed opposite changes for the higher-

order cognitive control (decreased) and primary sensory-motor

(increased) networks (Figure 5). This finding suggests that using a very

sparse threshold could improve the prediction performance of primary

sensory-motor systems but reduce the prediction performance of

higher-order cognitive control systems more prominently.

3.5 | Activity flow prediction dependent on
individual-specific FC routes

To test inter-subject specificity, we conducted activity flow mapping

for each subject using the connectivity routes of another subject in

the group. For all three types of connectivity routes, we found that

prediction accuracy using an individual's connectivity routes was sig-

nificantly better (all p values <.001) than that using other connectivity

F IGURE 3 Mean similarity between actual activations (a) of 24 task contrasts and predicted activations (b-d) using different types of
connectivity routes. r and r* values denote compare-then-average and average-then-compare assessments, respectively. Aud, auditory network;
CON, cingulo-opercular network; DAN, dorsal attention network; DMN, default mode network; FC, functional connectivity; FPN, frontoparietal
network; MultiReg, multiple regression; Prob, probabilistic; SM, sensorimotor network; SN, salience network; Sub, subcortical network; VAN,
ventral attention network; Vis, visual network

TABLE 1 Mean prediction accuracy for the three FC types with different datasets

Main dataset Replication dataset Reduced dataset

r (r*) r (r*) r (r*)

Standard FC 0.53 0.71 0.55 0.71 0.48 0.70

MultiReg FC 0.58 0.93 0.60 0.93 0.46 0.88

Prob FC 0.63 0.81 0.65 0.82 0.57 0.81

Notes: r and r* values denote compare-then-average and average-then-compare assessments, respectively. The replication dataset indicates the inclusion

of another 100 unrelated subjects. The reduced dataset denotes that only one resting-state fMRI run is included, while the main and replication datasets

include all four resting-state fMRI runs.

Abbreviations: FC, functional connectivity; MultiReg, multiple regression; Prob, probabilistic.
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routes (Figure 6). This finding demonstrates that activity flow depends

on individual-specific FC routes, suggesting the specificity of the

activity flow mapping approach.

3.6 | The separate contribution of between- and
within-network connections to activity flow prediction
differs across functional systems

Through two-way ANOVA, we found that both main (connectivity

type, network type) and interaction (connectivity type � network

type) effects were significant (p < .001) for each FC approach

(Table S5). For all three types of connectivity routes, we further

observed that higher-order cognitive control networks (i.e., FPN, SN,

VAN/DAN, and CON) showed a consistent reduction in prediction

accuracy using either between- or within-network connections com-

pared to using both (p < .05, Bonferroni-corrected). For the primary

sensorimotor networks (i.e., SM, auditory, and visual), using between-

network connections resulted in a remarkable decrease in prediction

accuracy (p < .05, Bonferroni-corrected), whereas using within-

network connections led to comparable or even enhanced prediction

performance (Figure 7). This finding implies that both between- and

within-network connections play a crucial role in activity flow predic-

tion in higher-order cognitive control systems, whereas primary sen-

sorimotor systems are largely dependent on within-network

connections.

In addition, we found that between-network connectivity of the

sensorimotor system consistently showed a lower contribution to activ-

ity flow prediction even for the motor task, while between-network con-

nectivity of higher-order cognitive control networks remained more

prominent (Table S6 and Figure S4). This result suggests that the effect

of between- and within-network connections on the prediction of task-

evoked activations across functional systems is largely dependent on

intrinsic connectional profiles, rather than task types.

Quantitative assessment of the relative contribution of

between- and within-network connections to activity flow

F IGURE 4 Statistical comparisons of prediction accuracy among using the three types of connectivity routes at the levels of both the whole-
brain (All) and individual functional systems for the main (a, four resting-state fMRI runs) and reduced datasets (b, one resting-state fMRI run).
Notably, while the predicted activation of each region is based on all other regions in the brain, the predicted-to-actual comparisons are only for
each network. *p < .05; **p < .01; ***p < .001 (p < .05, Bonferroni-corrected); Aud, auditory network; CON, cingulo-opercular network; DAN,
dorsal attention network; DMN, default mode network; FC, functional connectivity; FPN, frontoparietal network; MultiReg, multiple regression;
ns, nonsignificant; Prob, probabilistic; SM, sensorimotor network; SN, salience network; Sub, subcortical network; VAN, ventral attention
network; Vis, visual network
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prediction across different functional systems revealed that the net

rank of the prediction performance of between-network connec-

tions was consistently and significantly (p < .05, Bonferroni-cor-

rected) greater than 0 for higher-order cognitive control networks

(e.g., SN, DAN/VAN, and FPN) for all three types of FC routes.

Conversely, the net rank of the prediction performance of between-

network connectivity was significantly (p < .05, Bonferroni-cor-

rected) lower than zero for the SM and visual networks (Figure 8).

This result indicates that between-network connections play a more

dominant role in activity flow prediction for higher-order cognitive

control than primary sensorimotor systems. Instead, within-network

connections have a relatively higher contribution to activity flow

prediction for primary sensorimotor than higher-order cognitive con-

trol systems.

3.7 | Performance of distinct functional systems in
activity flow prediction differs across tight and loose
task contrasts

In addition to our main findings with 24 loose task contrasts, we

applied an activity flow model to six tight task contrasts. For the aver-

aged prediction accuracy, similar results were observed using the two

sets of task contrasts, despite a slight overall decrease when using six

tight task contrasts. Specifically, following the average-then-compare

assessment, we found that multiple regression FC routes showed

higher prediction accuracy (mean r* = 0.89) than probabilistic FC

(mean r* = 0.80) and standard FC (mean r* = 0.71) routes. In contrast,

the probabilistic FC routes led to higher prediction accuracy (mean

r = 0.58) than the multiple regression FC (mean r = 0.52) and

F IGURE 5 The effect of applying a threshold to standard FC estimation on activity flow prediction. Two representative thresholds (network
sparsity S = 0.15 and 0.02) were selected to remove weak (false) connections, which are commonly used in brain network analyses. (a) Shows
averaged network connectivity with different sparsity thresholds (left panel: Raw; middle panel: S = 0.15; right panel: S = 0.02). (b) Shows
differences in prediction accuracy at the levels of both the whole-brain (All) and individual functional systems between using sparse and raw full
network connections. Statistical significance with and without parentheses denote the differences for S = 0.15 versus raw and S = 0.02 versus
raw, respectively. *p < .05; **p < .01; ***p < .001 (p < .05, Bonferroni-corrected); Aud, auditory network; CON, cingulo-opercular network; DAN,
dorsal attention network; DMN, default mode network; FC, functional connectivity; FPN, frontoparietal network; MultiReg, multiple regression;
ns, nonsignificant; Prob, probabilistic; SM, sensorimotor network; SN, salience network; Sub, subcortical network; VAN, ventral attention
network; Vis, visual network
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standard FC (mean r = 0.50) routes based on the compare-then-

average assessment, which was consistent with the findings for indi-

vidual task contrasts (Table S7). Statistically, we consistently found

that probabilistic FC routes significantly improved individual-level

activity flow prediction for the six tight task contrasts (Figure 9).

Through two-way ANOVA, we found that both main (contrast

type, network type) and interaction (contrast type � network type)

effects were significant (p < .001) for each FC approach, except for

the main effect of contrast type using standard FC routes (Table S8).

For all three types of connectivity routes, post hoc analyses showed

that prediction accuracy at the whole-brain network level significantly

(p < .05, Bonferroni-corrected) decreased for the tight task contrasts

compared with the loose task contrasts. However, the prediction per-

formance is substantially distinct across individual functional systems.

Specifically, the higher-order cognitive control systems (i.e., FPN and

SN) showed a significant increase in prediction accuracy for tight task

contrasts compared with loose task contrasts; instead, a significant

decrease was seen in the primary sensory systems (i.e., visual and

auditory networks) (Figure 10). This result suggests that task contrasts

(i.e., tight versus loose) have opposite effects on prediction accuracy

across higher-order cognitive control and primary sensorimotor

systems.

3.8 | Validation analyses

To test the effect of the GSR, we also performed activity flow predic-

tion using all three FC types after applying the GSR. The average net-

work connectivity obtained with the inclusion of GSR in the

preprocessing step is shown in Figure S5. For standard FC, we found

that prediction performance was slightly enhanced after GSR (with

GSR: individual-level r = 0.56, group-level r* = 0.73; without GSR:

individual-level r = 0.53, group-level r* = 0.71), which was consistent

with a previous study (Cole et al., 2016). For multiple regression FC,

we found that prediction performance remained the same after GSR

(individual-level r = 0.58, group-level r* = 0.93). Consistently, a previ-

ous study (Cole et al., 2016) claimed that multiple regression FC

already implicitly removes the global signal by controlling for signals in

all other regions. For probabilistic FC, we found that prediction per-

formance was also slightly enhanced after GSR (with GSR: individual-

level r = 0.64, group-level r* = 0.81; without GSR: individual-level

r = 0.63, group-level r* = 0.81) (Figure S6). These findings indicate

that our main conclusions are unchanged when GSR is included in the

preprocessing step.

For the probabilistic FC approach, we also adopted the absolute

values for activity flow prediction. Our results showed that prediction

performance was slightly reduced using absolute values (individual-

level r = 0.62, group-level r* = 0.81) compared to using only positive

correlations (individual-level r = 0.63, group-level r* = 0.81)

(Figure S7). For the standard FC approach, we consistently found that

prediction performance was slightly enhanced using only positive cor-

relations (individual-level r = 0.54, group-level r* = 0.71) compared to

using both positive and negative correlations (individual-level

r = 0.53, group-level r* = 0.71) (Figure S8). These findings suggest

that negative correlations play a weak and negative role in activity

flow prediction.

To test the potential influence of network size on cross-

network comparisons, we conducted predicted-to-actual correlations

across task contrasts for each region. We found that the differences

in prediction accuracy when using different connectivity routes

were consistent with our main findings, although the mean predic-

tion accuracy slightly decreased (Figure S9). In addition, the effects

F IGURE 6 Specificity of the activity flow mapping approach. For all three types of connectivity routes (standard FC; MultiReg FC; and prob
FC), prediction accuracy using individual connectivity routes was significantly better than that using other connectivity routes. ***p < .001; FC,
functional connectivity; MultiReg, multiple regression; Prob, probabilistic
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of between- and within-network connections on activity flow pre-

diction across different functional systems were consistently

observed (Figure S10). Although it was not significant for standard

FC routes, the net rank of the prediction accuracy of between-

network connections across functional systems was also consistently

found using different connectivity routes (Figure S11). These results

suggest that our main findings are robust to a predicted-to-actual

correlation approach.

Using different NSC thresholds, ANOVA showed no significant

differences in prediction accuracy at the levels of both the whole

brain and individual functional systems (Figure S12 and Table S9). This

result indicates that activity flow mapping with probabilistic FC routes

is robust to different NSC thresholds. Using different WL thresholds,

ANOVA revealed no significant difference in prediction accuracy at

the levels of both the whole brain and individual functional systems

(Figure S13 and Table S9). This result indicates that the activity-flow

F IGURE 7 The effect of between- versus within-network connections on activity flow prediction across different functional systems for all
three types of connectivity routes (a, standard FC; b, MultiReg FC; and c, prob FC). Activity flow prediction was performed using between- and
within-network connections separately for each brain region and compared with using both (ALL). *p < .05; **p < .01; ***p < .001 (p < .05,
Bonferroni-corrected); Aud, auditory network; BNC, between-network connections; CON, cingulo-opercular network; DAN, dorsal attention
network; DMN, default mode network; FC, functional connectivity; FPN, frontoparietal network; MultiReg, multiple regression; ns, nonsignificant;
Prob, probabilistic; SM, sensorimotor network; SN, salience network; Sub, subcortical network; VAN, ventral attention network; Vis, visual
network; WNC, within-network connections
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model with probabilistic FC routes is robust to different WL

thresholds.

4 | DISCUSSION

Noninvasive brain imaging has provided a unique opportunity to

investigate the functional organization of large-scale neural activity

that underpins a variety of human cognitive processes. To uncover a

mechanistic relationship between the two kinds of basic functional

brain activities (i.e., intrinsic and evoked), recent studies have demon-

strated a large-scale activity flow mapping approach to predict cogni-

tive task activations by using resting-state network connectivity as

routes (Cole et al., 2016; Ito et al., 2017). Considering that prior work

mainly adopted static and linear network connectivity as activity flow

routes, in this study, we presented a novel probabilistic FC route

derived from a dynamic brain network framework. Moreover, we

tested the effects of between- versus within-network connectivity

routes and tight versus loose task contrasts on activity flow predic-

tion, which can probe the imbalance in distributed versus local infor-

mation processing across different functional systems. This study not

only offered a new representation of activity flow routes but also fur-

ther explored the influencing mechanisms of connectional topology

and task contrasts on activity flow prediction across different func-

tional systems.

Although multiple regression FC routes showed the best perfor-

mance in group-level prediction, our proposed probabilistic FC routes

substantially improved individual-level prediction. A previous study

F IGURE 8 Net rank of prediction performance of between-network connections across functional systems using all three types of
connectivity routes (a, standard FC; b, MultiReg FC; and c, prob FC). The net rank values greater than zero indicate that between-network
connections play a more dominant role in activity flow prediction across functional systems. In contrast, net rank values lower than zero denote
that within-network connections have a relatively higher contribution to activity flow prediction across functional systems. *p < .05; **p < .01;
***p < .001 (p < .05, Bonferroni-corrected); Aud, auditory network; CON, cingulo-opercular network; DAN, dorsal attention network; DMN,
default mode network; FC, functional connectivity; FPN, frontoparietal network; MultiReg, multiple regression; ns, nonsignificant; Prob,
probabilistic; SM, sensorimotor network; SN, salience network; Sub, subcortical network; VAN, ventral attention network; Vis, visual network
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has shown that multiple regression is superior to the standard FC

approach for activity flow mapping because the former could reduce

indirect FC between two regions by taking into account the effect of

signals passing through a third region (Cole et al., 2016). Consistently,

probabilistic FC was derived from a statistical measure of several of

the strongest connections at each temporal window, which could

F IGURE 9 Mean similarity between actual activations (a) of the six tight task contrasts and predicted activations (b-d) using different types of
connectivity routes. r and r* values denote compare-then-average and average-then-compare assessments, respectively. (e) Statistical
comparisons of prediction accuracy among using the three types of connectivity routes at the levels of both the whole-brain (All) and individual
functional systems. *p < .05; **p < .01; ***p < .001 (p < .05, Bonferroni-corrected); Aud, auditory network; CON, cingulo-opercular network; DAN,
dorsal attention network; DMN, default mode network; FC, functional connectivity; FPN, frontoparietal network; MultiReg, multiple regression;
ns, nonsignificant; Prob, probabilistic; SM, sensorimotor network; SN, salience network; Sub, subcortical network; VAN, ventral attention
network; Vis, visual network

F IGURE 10 The effect of tight versus loose task contrasts on activity flow prediction across different functional systems. For all three types
of connectivity routes (a, standard FC; b, MultiReg FC; and c, prob FC), prediction accuracy at the whole-brain network (All) level significantly
decreased for the tight task contrasts compared with the loose task contrasts. However, the prediction performance is substantially distinct
across individual functional systems. Specifically, the higher-order cognitive control systems showed a significant increase in prediction accuracy
for tight task contrasts compared with loose task contrasts; instead, a significant decrease was seen in the primary sensory systems. *p < .05;
**p < .01; ***p < .001 (p < .05, Bonferroni-corrected); Aud, auditory network; CON, cingulo-opercular network; DAN, dorsal attention network;

DMN, default mode network; FC, functional connectivity; FPN, frontoparietal network; MultiReg, multiple regression; ns, nonsignificant; Prob,
probabilistic; SM, sensorimotor network; SN, salience network; Sub, subcortical network; VAN, ventral attention network; Vis, visual network
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reduce spurious connections to some extent (Yin et al., 2016). There-

fore, compared to standard FC, we speculate that improved prediction

of cognitive task activations is likely attributable to the fact that many

indirect or artifact connections were removed by multiple regression

and probabilistic FC approaches. Moreover, a recent study indicated

that the time-varying nature of functional brain networks can explain

some aspects of behavioral traits not captured by time-averaged FC

or structural data (Vidaurre et al., 2021). It is possible that the

improvement of individual-level activity flow prediction benefits from

the dynamic nature of network interaction carried by the probabilistic

FC routes. This may provide an important insight to the understanding

of how the brain represents and coordinates information.

In comparison with the probabilistic FC approach, we also tested

whether a threshold applied for the standard FC estimation can

improve activity flow prediction. We found that using the threshold

(network sparsity) of S = 0.15 did not lead to significant changes in

prediction performance at either whole-brain or individual network

levels. This result implies that weak connections play a trivial role in

activity flow prediction. Moreover, it seems that activity flow can be

sufficiently mapped using only 15% of the strongest connections

(a network skeleton) of the brain, which also suggests the reasonabil-

ity of usually taking sparse network connectivity to represent func-

tional organization (Liao et al., 2017; Power et al., 2011; Yin, Chen,

et al., 2019). However, a significant reduction in prediction perfor-

mance was observed at the whole-brain network level when using the

threshold of S = 0.02, but showed opposite changes for the higher-

order cognitive control (decreased) and primary sensory-motor

(increased) networks. This finding indicates that using a very sparse

threshold could improve the prediction performance of primary sen-

sorimotor systems, likely because of the removal of some strong but

indirect within-network connections, but reduces the prediction per-

formance of higher-order cognitive control systems more prominently.

Together, our results indicate that a hard threshold applied to the

standard FC estimation may not contribute to the improvement of

activity flow prediction.

When comparing the main dataset (four resting-state fMRI runs,

�1 h), multiple regression FC routes produced the lowest individual-

level prediction when using a reduced dataset (one resting-state fMRI

run, �15 min). This result suggests that the multiple regression FC

approach is more sensitive to the length of data points. In line with

this finding, a recent study showed that multiple regression FC led to

a lower prediction accuracy than standard FC (r = 0.46 vs. r = 0.51)

with a short time series (Cole et al., 2021). One explanation is that the

multiple regression approach results in a reduction in the temporal

degrees of freedom, which may result in a salient effect for a short

time series. Furthermore, compared with the standard Pearson corre-

lation, multiple regression FC estimations, considering a set of nodes,

can amplify noise, particularly using noisy and few data points

(Bijsterbosch et al., 2017). This is probably why the multiple regression

approach shows a higher group-level prediction (improved SNR). In

addition, most of the studies (especially for patients) are merely

allowed to collect about 10-min resting-state fMRI scans, not as much

as the HCP data (i.e., four resting-state fMRI runs, �1 h). Therefore,

our work is likely helpful in selecting proper FC methods according to

the length of the fMRI scans.

By testing the effect of areal connectivity profiles on activity flow

mapping, our findings indicate that both between- and within-

network connections make a crucial contribution to activity flow pre-

diction in higher-order cognitive control systems, whereas primary

sensorimotor systems are primarily dependent on within-network

connections. Both modeling and empirical studies have shown that

large-scale brain networks are topologically organized with communi-

ties and hubs to promote the segregation and integration of neural

information (Deco et al., 2015; Sporns, 2013; Zamora-Lopez

et al., 2010). These hubs can be further divided into different types in

terms of their connectional profiles (Guimera & Nunes Amaral, 2005;

van den Heuvel & Sporns, 2013). Accordingly, a disproportionate

number of connectors and provincial hubs have been identified across

different functional systems; for example, higher-order cognitive con-

trol systems include many more connector hubs, while primary senso-

rimotor and DMN systems are mainly occupied by provincial hubs

(Bertolero et al., 2017; Betzel et al., 2018; Power et al., 2013). Nota-

bly, although the DMN belongs to higher-order association systems,

most regions are provincial hubs with many intra-network connec-

tions. Owing to the existence of many connector hubs in cognitive

control systems, both between- and within-network connections con-

tribute to activity flow prediction. In contrast, because there are few

connector hubs, activity flow prediction in sensorimotor and DMN

systems is largely determined by within-network connections. In addi-

tion, sensorimotor systems are strongly modular compared with

higher-order cognitive control networks and exhibit very weak

between-network connectivity. This may explain why the within-

network connectivity of sensorimotor systems has a higher contribu-

tion. We found that between-network connectivity of the sensorimo-

tor system showed a lower contribution to activity flow prediction

even for the motor task, while the between-network connectivity of

higher-order cognitive control networks remained more prominent.

Together, our findings suggest that the effect of between- and

within-network connections on the prediction of task-evoked activa-

tions across functional systems is largely dependent on intrinsic con-

nectional profiles, rather than task types.

Across functional brain systems, we further quantified that

between-network connections play a more dominant role in activity

flow prediction for cognitive control systems than for sensorimotor

systems. Instead, within-network connections have a relatively higher

contribution to activity flow prediction for sensorimotor systems than

for cognitive control systems. This finding indicates a gradient of dis-

tributed versus local neural processing across the functional systems.

Many studies have suggested that cognitive control areas usually flex-

ibly update their global FC to support adaptive task demands, while

sensorimotor areas are mainly connected within their communities to

achieve specific functions (Bertolero et al., 2018; Chen et al., 2016;

Cole et al., 2013; Liao et al., 2017). Convergent evidence implies that

unbalanced local and distributed processing across functional systems

is associated with the brain hierarchy or gradient organization

(Huntenburg et al., 2018; Margulies et al., 2016). Ito et al. reported a
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negative relationship between localized and distributed processes

across the cortical functional hierarchy (Ito et al., 2020). In line with

this framework, our results offer new insights into a functional hierar-

chy based on activity flow prediction with between- and within-

network connections.

Regarding the effect of tight versus loose task contrasts on activ-

ity flow mapping, we observed a significant decrease in prediction

accuracy at the whole-brain network level using tight compared with

loose task contrasts. This overall reduction is likely due to the smaller

number of tight task contrasts (i.e., 6 tight vs. 24 loose task contrasts).

Interestingly, at the level of individual functional networks, we found

that higher-order cognitive control networks (i.e., FPN and SN)

showed a remarkable increase in prediction accuracy in tight task con-

trasts compared to loose task contrasts and a significant decrease in

primary sensory networks. A rough distinction between loose and

tight task contrasts is that the former may activate both primary sen-

sory and higher-order cognitive control areas, while the latter recruits

cognitive control areas more purely because sensory stimulus-driven

processing is often well controlled. Hence, the decline in prediction

accuracy in sensory areas is possibly a result of their activations being

reduced in tight task contrasts, which is equivalent to a decrease in

the SNR.

On the other hand, activations of cognitive control areas may be

involved in both top-down and bottom-up processes in loose task

contrasts, while tight task contrasts may primarily account for the

top-down process. Cognitive processes comprise complex interactions

between primary sensory and cognitive control systems through feed-

forward and feedback connections (Corbetta & Shulman, 2002; Engel

et al., 2001; Kastner & Ungerleider, 2000). In particular, previous stud-

ies have suggested that the modulation strength of activity between

cognitive control and primary sensory areas depends on stimulus con-

trast (Ekstrom et al., 2008; Roelfsema, 2006). Therefore, we speculate

that the improved prediction accuracy in cognitive control areas is

likely attributable to the more specific and refined activity flow that

occurred in the tight task contrasts.

Although our proposed probabilistic FC routes showed superior

performance in individual-level activity flow prediction, a few method-

ological issues should be considered. First, despite the commonly used

sliding window approach adopted to characterize dynamic FC, it is

potentially affected by the general limitations of this technique

(Hindriks et al., 2016; Hutchison et al., 2013). Specifically, although

the HCP datasets using multiband acquisition could dramatically

improve the sampling rate, some spurious correlations remain because

of the relatively few data points for each time window or low SNR in

subcortical areas. To reduce the effect of artifact connections, we cal-

culated probabilistic FC using a statistical assessment of only a few of

the strongest connections for each region in each temporal window.

In addition to the benefit of removing potentially spurious connec-

tions, the local thresholding method (Alexander-Bloch et al., 2010) can

preserve some important weak connections in comparison with hard

thresholding methods based on whole-brain connections.

Second, both current and previous studies have employed the

same linear activity flow model for different brain functional

systems, despite multiple FC routes being tested. However, our

findings showed divergent effects of areal connectivity topology

and task contrast on activity flow prediction, at least between

higher-order cognitive control and primary sensorimotor systems.

Computational simulations also imply that activity flow mapping is

more suitable for describing global information processing (Cole

et al., 2016). In addition, to conduct a fair comparison of single FC

approaches, we did not perform activity flow mapping with com-

bined FC routes (Sanchez-Romero & Cole, 2021) in this study,

although they may improve activity-flow prediction. Therefore, it

would be interesting for future studies to explore the difference in

activity flow mechanisms between functional systems with adjusted

models (e.g., nonlinear) or advanced connectivity routes (e.g., causal

FC [Reid et al., 2019]).

Third, following a previous study (Cole et al., 2016), prediction

accuracy (or predicted-to-actual correlation) was computed across

regions for each task contrast and then averaged across task con-

trasts. This may lead to potential bias in the comparison of prediction

accuracy across individual functional networks. However, by comput-

ing predicted-to-actual correlations across task contrasts for each

region separately, consistent results were obtained. Moreover, the

goal of the current study was to compare the prediction performance

using different connectivity routes, connectional profiles, and task

contrasts for each functional network. Therefore, we believe that

computing the predicted-to-actual correlation does not affect our

main conclusions.

In conclusion, this study demonstrated a promising probabilistic

FC estimation for activity flow mapping, particularly for individual-

level predictions. Moreover, our findings revealed divergent influ-

ences of areal connectional topology and task contrasts on activity

flow prediction across different functional systems. This system-level

differentiation aligns with the brain hierarchy, which further corrobo-

rates the activity flow mechanism of human cognition.
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