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Abstract: Clarifying critical differences in free charge generation and recombination processes between
inorganic and organic semiconductors is important for developing efficient organic photoconversion
devices such as solar cells (SCs) and photodetector. In this study, we analyzed the dependence of
doping concentration on the photoconversion process at the organic pn-homojunction interface in a
single organic semiconductor using the temperature dependence of J–V characteristics and energy
structure measurements. Even though the organic pn-homojunction SC devices were fabricated using
a single host material and the doping technique resembling an inorganic pn-homojunction, the charge
generation and recombination mechanisms are similar to that of conventional donor/acceptor (D/A)
type organic SCs; that is, the charge separation happens from localized exciton and charge transfer
(CT) state being separated by the energy offset between adjacent molecules, and the recombination
happens from localized charge carrier at two adjacent molecules. The determining factor for
photoconversion processes is the localized nature of charges in organic semiconductors. The results
demonstrated that controlling the delocalization of the charges is important to realize efficient organic
photoconversion devices.
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1. Introduction

Free charge generation processes by light absorption in inorganic and organic semiconductors are
completely different. Inorganic semiconductors have a large dielectric constant; thus, free charges are
directly formed after the light absorption in a single semiconductor material [1]. In contrast, a strongly
bounded Frenkel type exciton forms after light absorption in organic semiconductors, because they
generally have a smaller dielectric constant when compared with that of inorganic semiconductors [2].
The exciton can be separated using the energy offset between the two organic semiconductor materials
called donor and acceptor in organic solar cells (OSCs) [2,3]. The question is whether free charge
formation is possible in single organic semiconductor material by light absorption, similar to that in
inorganic semiconductors.

Recently, we have reported that pn-homojunction interfaces in a single organic semiconductor
films formed by doping can achieve efficient charge separation [4]. The organic pn-homojunction solar
cell SC device showed a high internal quantum efficiency of 30%. Further investigation for clarifying
the mechanism of the photoconversion at the pn homojunction interface can help to answer the basic
question of how free charges form beyond the strong coulomb binding and recombine in a single
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organic semiconductor film, and what is the critical difference in these processes between organic and
inorganic semiconductors.

In this study, we analyzed the doping concentration dependence on the photoconversion
process in organic pn-homojunction SC devices mainly by a temperature dependence measurement.
The measurement gives information about thermal activation for the charge generation and recombination
pathways [5,6]. Upon combining an energy structure measurement near the pn-homojunction, we revealed
the detailed mechanism of photoconversion at the single organic semiconductor interface.

2. Results and Discussion

The pn-homojunction SC devices were fabricated in the same manner as previously reported [4].
We used diindenoperylene (DIP), which is an ambipolar organic semiconductor molecule, as the
host, and MoO3 and Cs2CO3 as p- and n-dopants, respectively. The device was fabricated by
thermal evaporation under high vacuum, and the structure was indium tin oxide (ITO)/MoO3:
10 nm/MoO3-doped DIP: 50 nm/Cs2CO3-doped DIP: 50 nm/bathocuproine (BCP): 10 nm/Al: 60 nm
(Figure S1). Dopants were introduced into the semiconductor layer via co-deposition techniques and
the concentration of the dopants relative to the semiconductor volume was controlled by varying the
ratio between the deposition rates of the two species [4]. Figure S2 shows the typical J–V characteristics
of pn-homojunction devices and the performances are summarized in Table S1. As previously reported,
JSC drastically increased and VOC decreased with an increase in doping concentration. The degrees
of JSC increase were eight times from undoped to 5% doping in the DIP devices. In contrast, VOC

decreased from 1.13 V to 0.83 V. The fill factor (FF) values increased marginally in the device with high
doping concentration. The increase of external quantum efficiency (EQE) spectra without the change
in spectral shape (Figure S3) indicated that charge separation from the absorption of the ground state
of DIP was accelerated by doping.

To investigate the charge generation and recombination processes, we measured the J–V
characteristics of the devices at temperatures from 30 to −60 ◦C, as shown in Figure 1.
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Figure 1. J–V curves for the 5% doped pn-homojunction device at various temperatures under AM
1.5 irradiation (100 mW cm−2).

Typically, JSC decreases while VOC increases with a decrease in temperature in the OSCs [6].
The pn-homojunction devices followed the same tendency. Firstly, the temperature dependence of JSC

is expressed by the following Arrhenius Equation (1):

JSC = J0(Plight)exp(−Ea/kT), (1)
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where J0(Plight) is the pre-exponential factor, Ea is the activation energy, k is Boltzmann constant,
and T is temperature [7]. The origin of Ea was attributed to the activation process during charge
separation [5,8]. The calculated Ea of the devices with 5% and 1% doped DIP from the Arrhenius plots
in Figure 2a are 74.4 and 110 meV, respectively.
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Figure 2. Temperature dependence of (a) JSC and (b) VOC for the 1% doped (red) and 5% doped (blue)
pn-homojunction devices.

The 5% doped device showed a lesser Ea than 1% doped, indicating that the charge separation
was accelerated in the device with high doping concentration.

Next, the temperature dependence of VOC is expressed by the following equation:

qVOC = Eg
eff + nkTln(Jph/J00), (2)

where q is elementary charge, Eg
eff is effective bandgap energy at the interface, n is ideality factor, Jph

is the photogenerated current density, and J00 is the pre-exponential factor of the reverse saturation
current density [9]. Equation (2) represents the VOC, which is determined by mainly by two parts,
that is, the former energetic term and latter recombination loss term, which are dependent on the
temperature [6]. The VOC plots as a function of temperature are shown in Figure 2b. Eg

eff of the devices
with 5% and 1% doped DIP calculated from the intercept of the plots are 1.75 and 1.95 eV, respectively.
On the other hand, the VOC loss values induced by the recombination Eg

eff/q − VOC of both devices
showed similar values of 0.95 and 0.92 V, respectively. The results indicate that the decrease in VOC
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owing to an increase in doping concentration is the result of the reduction in the effective energy gap at
the interface, not because of the difference in the recombination processes.

The energetic structure of the doped DIP films was estimated by energy-level mapping using the
Kelvin probe (KP) method to measure the work function (WF) [10–12]. Figure 3 shows the schematic
image of the KP measurement and the result of the 5% doped DIP film.
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Figure 3. Work function (WF) of (a) 5% MoO3-doped and (b) 5% Cs2CO3-doped diindenoperylene
(DIP) films on the Cs2CO3-doped film and MoO3-doped film, respectively, as a function of the thickness.

The results of the 1% doped DIP film are shown in Figure S4. The WF of the p-doped layer
was measured on an Al/BCP/n-doped layer substrate and that of n-doped layer was measured on an
ITO/MoO3/p-doped layer substrate. The steep change in the WF near the pn-interface was observed in
all of the films. The ionization potentials (IP) of the undoped and doped DIP films were evaluated by
photoelectron yield spectroscopy (PYS) in Figure S5. The IPs of the undoped and doped films did not
change significantly, indicating that doping does not affect the IP of the films. Small changes in the
absorption spectra (ABS) shown in Figure S3b also indicate that the bandgap and electron affinity (EA)
of the film were not affected by doping. Therefore, the energetic structure of doped DIP films was
determined only by the WF difference [10].

The energy diagrams of the active layer in the pn-homojunction devices were estimated based
on the result of the KP measurement [13]. The drawback of the KP measurement is that it can only
measure the WF at the surface of the films. We cannot observe the WF change of the underlying layer
after the deposition of the over layer. To estimate the energetic structure of whole films, we calculated
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the electric potential distribution derived from Poisson’s equation [13]. The total depletion layer width
(W) of pn-junction for uniformly doped semiconductor is given by the following equation:

W =

√√√
2εrε0Vbi

(
N−p + N+

n

)
qN−p N+

n
, (3)

qNn
-xp = qNn

+xn, (4)

where εr, ε0, Vbi, Nn
−, Np

+, xp, and xn denote the relative dielectric constant of the semiconductor,
the dielectric permittivity in a vacuum, the built-in-potential, ionized dopant concentration of the p
and n layer, and the depletion layer width in the p- and n-type regions, respectively. The Np

+ and Nn
−

values can be calculated by the measured xp, xn, and Vbi values in Figure 3 and Figure S4. The electric
potential distribution V(x) at the pn-junction can be found by integrating Poisson’s equation as follows:

V(x) = −
qN+

n

2εrε0
(x + xn)

2 + Vbi (−xn 5 x 5 0), (5)

V(x) =
qN−p
2εrε0

(
xp − x

)2 (
0 5 x 5 xp

)
, (6)

Figure 4 shows the calculated energy diagram of the active layer in the pn-homojunction devices.
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Figure 4. Vacuum level, HOMO, and LUMO energy levels relative to the Fermi level in the 1% doped
DIP (red) and 5% doped DIP (blue) devices as a function of film thickness. These results are based on
the KP measurement shown in Figure 3 and Figure S4 and the calculation by Equations (5) and (6).

The W and Vbi values of the 5% and 1% doped DIP devices are 20 nm and 1.40 eV and 60 nm
and 0.99 eV, respectively. This shows that the higher doping concentration decreased the W value and
increased the Vbi value.

The charge generation and recombination processes in the pn-homojunction devices are discussed
based on the results of the temperature dependence of J–V characteristics and the energy structure
measurements. Firstly, JSC increased eight times owing to doping and Ea for charge separation
decreased from 110 meV in the 1% doped pn-homojunction devices to 74.4 meV in the 5% doped
pn-homojunction devices. In this study, we used the same host material, and only the interfacial
energetics were modified by doping. The light intensity dependence of JSC in the 1% and 5% doped
devices in Figure S6 showed that the slopes of both the devices were close to unity, indicating that the
bimolecular recombination is negligible under a short circuit condition [14]. Thus, the origin of the
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difference in the Ea induced by doping is attributed to the charge separation process and not to the
exciton diffusion, nor the bimolecular recombination process. The charge separation processes are
mainly separated into the two processes: exciton to CT state, which is defined as a bounded charge pair
by the coulomb attraction at the interface, and the CT state to the charge separated state [2]. The energy
structure measurement revealed that the energy offset between adjacent molecules at the pn-interface
was 0.07 and 0.26 eV for 1% and 5% doped devices, respectively. The offset at one molecular layer apart
from the pn-interface was 0.06 and 0.22 eV in the 1% and 5% doped devices, respectively (Figure 5).
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Figure 5. Schematic energy diagram and charge dissociation and recombination mechanisms in organic
pn-homojunction SCs. The inset shows the energy gap between adjacent molecules at the pn-interface
with 1% (red) and 5% (blue) doping.

The conventional donor/acceptor (D/A)-type OSCs have an energy offset only at the D/A interface,
and an offset larger than 0.3 eV not only accelerates the exciton dissociation, but also suppresses
geminate recombination from the CT state [15]. By the analogy with the D/A-type OSCs, the energy offset
between adjacent molecules at the pn-interface is crucial for charge separation in the pn-homojunction
devices. The reason for the smaller Ea in the 5% doped device, compared with that in the 1% device,
was that larger energy offset close to 0.3 eV in the 5% doped device not only accelerated exciton
dissociation, but also suppressed geminate recombination from the CT state.

In contrast to JSC, VOC decreased from 0.98 V in the 1% doped device to 0.83 V in the 5% doped
device. Temperature dependence of VOC revealed that the VOC difference in the doping concentration
was attributed to the Eg

eff difference, not to the recombination loss difference. Eg
eff reflects the energy

of charge recombination center [16]. In the case of inorganic SCs, Eg
eff corresponds to the energy of the

bandgap of the semiconductor material because the charge recombination happens from delocalized
charges on the conduction and valence bands [16]. In contrast, Eg

eff in the conventional D/A-type
OSCs corresponds to the CT state energy because localized electrons on the LUMO of the acceptor
and holes on the HOMO of the donor recombine [17]. In the case of the organic pn-homojunction
SCs in this study, Eg

eff decreased with an increase of Vbi. The Eg
eff difference between 1% and 5%

is 0.20 eV, which is almost same value with the energy offset difference between 1% and 5% at the
adjacent molecules at the pn-interface (Figure 5). The result indicates that the charge recombination
in the organic pn-homojunction SCs happens from localized holes and electrons at the two adjacent
molecules. The mechanism is similar to that of the CT state recombination in the conventional D/A-type
OSCs, even though the devices in this study were fabricated using a single host material and a doping
technique resembling the inorganic pn-homojunction SCs.
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3. Conclusions

In summary, the temperature dependence of J–V characteristics and energy structure measurement
revealed that the increase in JSC and decrease in VOC with an increase in doping concentration in
the organic pn-homojunction SC devices was the result of the acceleration of charge separation
and the change in energy of the recombination center. The charge separation mechanism in the
device is that the localized exciton and CT state are separated by the energy offset between adjacent
molecules, and the recombination happens from the localized charge carrier at two adjacent molecules.
These mechanisms are similar to those of conventional D/A-type OSCs, not to those of the inorganic
SCs. In the case of inorganic pn-homojunction, larger Vbi formed by higher doping concentration
leads to both higher JSC and VOC [1]. The same tendency is favorable to obtain high efficiency in
organic pn-homojunction SCs. The primordial difference in the photoconversion process between
inorganic and organic pn-homojunction SCs comes from the delocalized and localized nature of
charges in inorganic and organic semiconductors, respectively. Recently, some organic semiconductor
materials showed a band-like nature of charges [18,19]. Utilizing these kinds of materials as hosts
in organic pn-homojunction SCs could lead to the realization of direct free charge formation and
band-to-band recombination.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/7/1727/s1,
Figure S1: chemical structure, schematic of the device, energy levels; Figure S2: J–V curves; Figure S3: EQE and
absorption spectra; Figure S4: WF as a function of the thickness; Figure S5: PYS spectra; Figure S6: light intensity
dependence of JSC Table S1: summary of the device performances.
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