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Abstract
Background: CD8+ T cell responses are known to be important to the control of HIV-1
infection. While responses to reverse transcriptase and most structural and accessory proteins
have been extensively studied, CD8 T cell responses specifically directed to the HIV-1 enzymes
Protease and Integrase have not been well characterized, and few epitopes have been described in
detail.

Methods: We assessed comprehensively the CD8 T cell responses to synthetic peptides spanning
Protease and Integrase in 56 HIV-1 infected subjects with acute, chronic, or controlled infection
using IFN-γ-Elispot assays and intracellular cytokine staining. Fine-characterization of novel CTL
epitopes was performed on peptide-specific CTL lines in Elispot and 51Chromium-release assays.

Results: Thirteen (23%) and 38 (68%) of the 56 subjects had detectable responses to Protease and
Integrase, respectively, and together these targeted most regions within both proteins. Sequence
variability analysis confirmed that responses cluster largely around conserved regions of Integrase,
but responses against a large, highly conserved region of the N-terminal DNA-binding domain of
Integrase were not readily detected. CD8 T cell responses targeted regions of Protease that
contain known Protease inhibitor mutation residues, but strong Protease-specific CD8 T cell
responses were rare. Fine-mapping of targeted epitopes allowed the identification of three novel,
HLA class I-restricted, frequently-targeted optimal epitopes. There were no significant correlations
between CD8 T cell responses to Protease and Integrase and clinical disease category in the study
subjects, nor was there a correlation with viral load.

Conclusions: These findings confirm that CD8 T cell responses directed against HIV-1 include
potentially important functional regions of Protease and Integrase, and that pharmacologic targeting
of these enzymes will place them under both drug and immune selection pressure.
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Introduction
In HIV-1 infection, virus-specific CD8 T cell responses are
readily detected in peripheral blood and lymph nodes,
but HIV-1 replication typically persists in the face of an
exuberant CD8 response [1-3]. Although ineffective at
eradicating virus, HIV-specific CD8 T cells nonetheless
play an important role in decreasing viremia. In SIV-
infected macaques, depletion of CD8 cells results in
uncontrolled infection [4,5]. In human studies, partial
control of viremia during acute infection correlates with
the appearance of HIV-specific CD8 T cells [6,7], and
some reports have suggested that there is an inverse corre-
lation between the CD8 response and HIV-1 viral load,
although this remains controversial [8-11]. Escape from
CTL recognition has been linked to disease progression in
some studies [12-14], and recent population-based stud-
ies have confirmed that immune selection pressure medi-
ated through HLA class I-restricted responses influence
viral evolution, providing additional evidence that
immune selection pressure persists in the chronic phase of
HIV-1 infection [15]. Thus, although the specific relation-
ship between CD8 T cells and viral control in HIV-1 infec-
tion remains unclear, CD8 responses appear to be a
critical component of an effective HIV-1-specific immune
response [16,17].

Significant efforts have been made to identify HLA-
restricted CTL epitopes important for the control of HIV-
1 infection, but this analysis remains incomplete. More
than 300 peptides containing CD8 T cell epitopes have
been reported to the HIV-1 Molecular Immunology Data-
base, of which approximately 150 have been optimally
defined [18]. This work has largely focused on the HIV-1
proteins Gag p17, p24, Nef, Env and Reverse Transcriptase
(RT). The distribution of epitopes targeted within these
proteins is highly variable, with clustering in relatively
conserved regions of the virus [19,20]. Recently, studies
have also identified CD8 T cell responses to several HIV-1
accessory proteins, including Tat, Rev, Vpr, Vpu and Vif,
and shown that they comprise a significant percentage of
the overall CTL response [21,22].

In contrast, studies of CD8 T cell responses to two
enzymes within the Pol gene, Protease and Integrase, have
been limited. These proteins are relatively highly con-
served, and also are targets for drug development that
place them under pharmacologic selection pressure.
Moreover, since both proteins are relatively highly con-
served, they may be valuable targets for vaccine develop-
ment. The potential dual selective pressures on these
genes may have important clinical implications [23].
Here, we describe the comprehensive assessment of the
CD8 T cell response directed against Protease and Inte-
grase in a large, diverse cohort of HIV-1 infected subjects,
show that they are frequently targeted by HIV-specific

CD8 T cell, and identify novel optimal epitopes that are
frequently targeted.

Materials and methods
Subjects
Fifty-six subjects with documented HIV-1 infection based
on serologic criteria who are followed clinically at the
Massachusetts General Hospital, the Brigham and
Women's Hospital, the Fenway Community Health
Center or the Lemuel Shattuck Hospital in Boston were
recruited and divided into three groups based on disease
characteristics. Twenty-eight subjects were identified, and
began effective treatment, during acute HIV-1 infection,
defined as within 180 days of seroconversion ("acute
cohort"). Twenty-two subjects with chronic HIV-1 infec-
tion followed for routine longitudinal care were also stud-
ied ("chronic" cohort). Of these, thirteen were receiving
effective antiretroviral treatment and nine were not receiv-
ing treatment at the time of study. Finally, six individuals
who control HIV-1 infection without treatment, defined
as repeated HIV-1 RNA measurements below 1000 cop-
ies/ml in the absence of antiretroviral medications, were
studied ("HIV-1 controller" cohort). Clinical and immu-
nologic aspects of several of these patients have previously
been described [21,24]. The study was approved by the
Institutional Review Boards of the respective institutions,
and all subjects gave informed consent for their participa-
tion. A subset of subjects in the acute cohort was studied
while they were enrolled simultaneously in a study of
structured treatment interruption in acute HIV-1 infection
[25]; thus, for some acutely infected subjects, data both on
and off therapy were obtained.

Synthetic HIV-1 peptides
Overlapping peptides 15 to 18 amino acids in length
spanning the complete clade B consensus amino acid
sequence of HIV-1 Protease (13 peptides) and Integrase
(37 peptides) were synthesized on an automated peptide
synthesizer (MBS 396, Advanced Chem Tech, Louisville,
Kentucky, USA) by fluorenylmethoxycarbonyl chemistry.
The algorithm used to design overlapping peptides has
been described [11]. Briefly, consecutive 18-mers overlap-
ping by 10 amino acids served as the basic template. If the
terminal amino acid was not a defined class I MHC
anchor residue, a shortened 15-, 16- or 17-mer with a
compatible anchor residue was synthesized instead. A ten
amino acid overlap was maintained for all peptides. Trun-
cated peptides (8- to 11-mers) used to map novel optimal
CTL epitopes were obtained from Research Genetics (Bir-
mingham, Alabama, USA).

ELISPOT assay
Protease- and Integrase-specific CD8 T cell responses were
quantified by IFN-γ ELISPOT assay as previously described
[21,26]. Briefly, fresh peripheral blood mononuclear cells
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(PBMC) were isolated by Ficoll-Hypaque (Sigma, St.
Louis, Missouri, USA) density gradient centrifugation.
100 µL of complete RPMI/10% fetal calf serum containing
0.5–1 × 105 PBMC were plated in each well of a 96-well
polyvinylidene plate (MAIP S45; Millipore, Bedford, Mas-
sachusetts, USA) pre-coated with 0.5 µg/ml of the anti-
IFN-γ MAb 1-DIK (Mabtech, Stockholm, Sweden). Indi-
vidual peptides were added to wells at a final concentra-
tion of 1 × 10-5 M; wells without peptide served as a
negative control, and phytohemagglutinin (PHA) was
used as a non-specific activator of IFN-γ production to
serve as a positive control. Plates were incubated over-
night at 37°C. After washing with PBS, biotinylated anti-
IFN-γ MAb 7-B6-1 was added at 0.5 µg/ml and incubated
for 60–90 minutes at room temperature. After washing,
100 µl of 1:20,000 streptavidin-conjugated alkaline phos-
phatase (Mabtech) was added to each well, and individual
IFN-γ secreting cells were visualized as dark spots after
reacting with 5-bromo-4-chloro-3-indolyl phosphate and
nitro blue tetrazolium (Bio Rad Labs, Hercules, Califor-
nia, USA). Specific IFN-γ producing cells (spot-forming
cells, or SFC) were counted by direct visualization.
Responses of greater than 40 SFC/million PBMC after sub-
tracting the negative control value were considered posi-
tive; negative control values in all cases were less than 30
SFC/million PBMC.

Flow cytometric detection of peptide-stimulated IFN-γ 
production
Intracellular cytokine staining assays were performed as
described previously [27]. Briefly, 0.5–1 × 106 PBMC were
incubated with 4 µM peptide and 1 µg/ml each of anti-
CD28 and anti-CD49 MAbs (Becton Dickinson, San Jose,
California, USA) for one hour, followed by the addition of
10 ug/ml of brefeldin A (Sigma). Cells were incubated at
37°C for 6 hours, and then at 4°C overnight. Cells were
then washed, stained with fluorescent-labeled CD4 and
CD8 antibodies (Becton Dickinson), and then fixed and
permeabilized using the Caltag Fixation/Permeabilization
Kit according to the manufacturer's instructions (Caltag,
Burlingame, California, USA). Fixed and permeabilized
cells were then stained with anti-IFN-γ-fluoresceine isothi-
ocyanate antibody (Becton Dickinson), washed and ana-
lyzed on a FACSCalibur flow cytometer (Becton
Dickinson). In all but one detected T cell response, IFN-γ
producing cells were exclusively CD8+.

Generation of peptide-specific CD8 CTL lines and HLA 
restriction of responses
PBMC were expanded with a bispecific CD3/CD4b mon-
oclonal antibody [22] for 10 to 14 days in R10 medium
[RPMI 1640 medium supplemented with 10 mM HEPES,
2 mM L-glutamine, 50 U/ml penicillin, 50 µg/ml strepto-
mycin and 10% heat-inactivated fetal calf serum (Sigma)]
supplemented with 50 U/ml recombinant interleukin-2

(Hoffman LaRoche, Nutley, New Jersey, USA). Peptide-
specific CD8 T cell lines were isolated from expanded
PBMC as previously described, using 20 µM peptide in an
IFN-γ catching assay [22]. Peptide specificity of CD8 CTL
lines was confirmed by flow cytometry, and lines were fur-
ther expanded for an additional 7–10 days in the presence
of irradiated feeder cells before use in epitope mapping
and HLA restriction studies. HLA-restriction assays were
performed using extensively washed, peptide-pulsed B-
LCL as the peptide-presenting cell. HIV-1-specific cytotox-
icity was assessed by 51chromium-release assay using an
E:T ratio of 10:1. HLA-restriction of CTL epitopes was
determined using a panel of target cells matched through
only one of the HLA-A, HLA-B or HLA-C class I alleles
expressed by the effector cells [28]. HLA tissue typing was
performed at the MGH Tissue Typing Laboratory using
sequence-specific primer PCR.

Fine mapping of CTL epitopes
In some cases, putative CTL responses to overlapping 15–
18 mer peptides were further fine mapped to define the
optimal, HLA-restricted epitope, as previously described
[21,29]. Briefly, 8-, 9-, 10- and 11-mer truncations of the
parent peptide were obtained (Research Genetics), and
serial dilutions from 1 × 10-4 to 1 × 10-11 M were used in
an ELISPOT assay. The optimal epitope was defined as the
peptide that induced 50% maximal SFC at the lowest pep-
tide concentration [29].

Comparison of CD8 T cell responses with amino acid 
sequence variability
To correlate CD8 T cell responses with conserved and
non-conserved regions of Protease and Integrase, two cal-
culations were performed. First, primary sequence data for
individual Protease and Integrase protein sequences (n =
155) were obtained from the HIV-1 Molecular Immunol-
ogy Database [30]. All subtypes were represented, and all
clade B sequences with known dates of isolation were
prior to 1997, so that Protease sequence variability would
not have been influenced by Protease inhibitor-selected
variations. Normalized Shannon entropy scores for each
amino acid position were calculated using the general
formulae:

(1) Cent =  log2 pa/log2(min(N, K)) and

(2) pa = na/N

where na is the number of amino acid residues of type a,
N is the number of residues in the sequence database, and
K is the number of residue types. In the subsequent anal-
ysis, N was set equal to155 (the number of sequences ana-
lyzed) and K was set equal to 21, representing the 20
amino acids and an extra symbol for any gaps in the

−∑ a
K

ap
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sequence. The program Scorecons http://www.bio
chem.ucl.ac.uk/cgi-bin/valdar/scorecons_server.pl was
used for all calculations. Second, because few optimal
epitopes have been mapped in Protease or Integrase, there
are insufficient data to develop a score based on known
CTL epitopes directed against each amino acid in the two
proteins. Thus, for each amino acid position, the number
of subjects in the current study with detectable responses
against peptides containing that amino acid were
summed and used as a measure of CD8 responses to that
amino acid residue. Raw normalized entropy scores were
then correlated with the amount of CD8 T cell responses
for each amino acid residue in both Protease and Inte-
grase. Entropy scores were also smoothed over nine
amino acids (corresponding to the size of a typical CD8 T
cell epitope) and correlated with CD8 T cell responses.
Correlations were made using the Spearman's rank-order
correlation test [20].

Comparison of CTL responses against HIV-1 proteins by 
size
The HIV-1 Molecular Immunology Database was
reviewed for reports describing CTL epitopes [18,30].
Published reports of cohorts in whom subjects were com-
prehensively screened against peptides spanning the
entire length of one or more HIV-1 proteins were identi-
fied [8-10,24], and data on CTL frequency against individ-
ual HIV-1 proteins extracted for the comparison plot
presented as Figure 5.

Results
Characteristics of study subjects
A total of 56 HIV-infected subjects were studied, including
cohorts with acute, chronic, and controlled HIV-1 infec-
tion, as depicted in Table 1. Cohorts were similar with
respect to basic demographics and ethnic background, as
well as CD4 cell counts. The expected differences in viral
load between controllers and the other cohorts were seen.
Mean log10HIV-1 RNA level in the controller cohort was
2.03 ± 2.15 copies/ml; mean value in the untreated
chronic cohort was 4.52 ± 4.56 copies/ml. Acute cohort
subjects had been infected for a mean 23 months (range,
1 to 49 months) at the time of study. Although all but one
of the 28 subjects enrolled in the acute cohort began effec-
tive antiretroviral treatment at the time of enrollment, 12
subjects were subsequently enrolled in a supervised treat-
ment interruption trial [25], and thus had CD8 responses
measured while off therapy.

CD8 T cell responses against HIV-1 Protease
We generated a series of 13 overlapping peptides (15 to 18
amino acids in length) spanning the complete HIV-1 Pro-
tease sequence, using the clade B consensus sequence [30]
as a template (see Figure 1A for peptide sequences). Of the
13 peptides spanning Protease, a total of 10 (77%) were
recognized by at least one study subject. Eight of these ten
responses were confirmed as CD8-mediated by either
CD4 cell depletion or intracellular cytokine staining; the
remaining two responses could not be further evaluated
due to sample availability. Thirteen of 56 subjects (23%)
recognized at least one Protease peptide, with magnitudes
ranging from 50 to 750 spot-forming cells (SFC) per mil-
lion PBMC. The mean Protease-specific response in those

Table 1: Baseline characteristics of the 56 HIV-infected study subjects

Acute (n = 28) Chronic (n = 22) Controller (n = 6)

Age, years 40.6 ± 9.1 43.7 ± 8.1 35.8 ± 5.0
Male/Female 27/1 18/4 5/1
Race/Ethnicity
African-American 3 3 2
Caucasian 23 16 3
Haitian 0 1 0
Latino/Hispanic 2 2 1
Duration of infection, monthsa 23 ± 13 122 ± 58 137 ± 83
[range] [1 – 49] [30 – 191] [16 – 241]
CD4+ T cells, cells × 106/mla 675 ± 239 546 ± 236 615 ± 285
[range] [253 – 1252] [89 – 828] [176 – 1000]
Mean plasma HIV-1 RNA, log10 copies/ml 3.99 4.13 2.03
[range] [1.70 – 5.27] [1.70 – 4.99] [1.70 – 2.60]
Receiving antiretroviral therapyb

Yes (%) 57 % 59 % 0 %
No (%) 43 % 41 % 100 %

a Values are mean +/- S.D. b Two patients in the acute cohort were evaluated at two different time points, once on therapy, once off therapy.
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recognizing this protein was 212 ± 202 SFC per million
PBMC (Figures 1B and 1C and Table 2). These values are
similar to reported CD8 T cell responses against other
HIV-1 proteins [8-10,24]. There were not statistically sig-
nificant differences in the percentage of subjects respond-
ing to Protease peptides among the three cohorts, or in the
magnitude of the responses. Of the 13 subjects with iden-
tifiable Protease-specific responses, most targeted only

one peptide, although the single peptide targeted varied
among the persons tested. The broadest Protease-specific
responses were in two subjects, both in the acute cohort,
each of whom recognized four of the 13 Protease pep-
tides, two of which were overlapping and therefore sug-
gested recognition of the overlap region common to both
peptides.

CD8 T cell responses to HIV-1 ProteaseFigure 1
CD8 T cell responses to HIV-1 Protease. PBMC were stimulated with the indicated peptide in an overnight IFN-γ ELIS-
POT assay. Each row represents an individual peptide. (A) Amino acid sequence, using standard single-letter amino acid abbre-
viations. Numbers above peptide sequences refer to the amino acid position within Protease, with key Protease inhibitor 
mutation residues indicated in bold. (B) Bars represent the percentage of 56 study subjects who responded to the peptide in an 
ELISPOT assay. Peptides with the highest number of responses are shaded gray. (C) The magnitude of every CTL response 
detected in the study cohort. Each symbol represents a single CTL response against that peptide by one individual. Magnitudes 
of responses are shown after subtraction of background, which in all cases was <30 SFC/million PBMC. Closed circle (● ): 
acute cohort. Open circle (❍ ): chronic cohort. Shaded triangle ( ): controllers.

Table 2: Number and percentage of subjects with detectable CTL responses, by group

Group Protease Integrase

Number of subjects 
with any response (%)

Mean responsea Number of subjects 
with any response (%)

Mean responsea

Acute Total 7/28 (25) 221 18/28 (64) 378
On therapyb 3/17 (18) --- 9/17 (53) ---
Off therapyb 4/13 (31) --- 10/13 (77) ---

Chronic Total 4/22 (18) 204 15/22 (68) 281
On therapy 2/13 (15) --- 9/13 (69) ---
Off therapy 2/9 (22) --- 6/9 (67) ---

Controller 2/6 (33) 125 5/6 (83) 215
Overall 13/56 (23) 212 38/56 (68) 320

a Values are SFC/million PBMC. b Two patients in the acute cohort were evaluated at two different time points, once on therapy, once off therapy.
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Although CD8 responses directed against the majority of
Protease peptides were found, most of the individual Pro-
tease peptides were infrequently targeted by CTL. Only
three peptides, Protease 3, Protease 6, and Protease 13
were recognized by more than two subjects; these were
also the only peptides against which the mean magnitude
of the CD8 response was greater than 250 SFC/million
PBMC (Figure 1B and 1C). Protease 6 was the most fre-
quently recognized peptide, targeted by five subjects
(9%), and was thus chosen for further analysis and opti-
mal epitope fine-mapping.

CD8 T cell responses against HIV-1 Integrase
Thirty-seven overlapping peptides spanning the complete
HIV-1 Integrase sequence were used to assess CD8
responses in the same cohorts, also using the HIV-1 clade
B consensus sequence as a template (Figure 2A). Twenty-
six of the 37 Integrase peptides (70%) were recognized by
at least one subject. Thirteen responses were confirmed as
CD8-mediated by either CD4 cell depletion or intracellu-
lar cytokine staining. One response, against Integrase 29,
was found to be CD4+ T cell mediated in one subject, and
CD8-mediated in another subject, which suggests that this
overlapping peptide contains both a CD4 and a CD8 T
cell epitope. Unlike Protease, where a fairly uniform dis-
tribution of responses was seen across the entire protein,
there were large regions in the Integrase sequence that
were nearly devoid of CD8 responses. A stretch of nine
peptides, Integrase 3 to Integrase 11, spanning 58 amino
acids at the N-terminus of Integrase in the DNA-binding
domain, were targeted by only three responses in the
entire cohort of 56 study subjects (Figure 2C). Poorly
immunogenic regions of Integrase were also seen at Inte-
grase 18 to 22, Integrase 25 to 29, and at the C-terminus
(Integrase 32 to 37).

Thirty-eight of fifty-six subjects (68%) recognized
epitopes within Integrase, with a magnitude of response
ranging from 50 to 1500 SFC per million PBMC (Figures
2B and 2C, Table 2). The mean magnitude of the response
was 320 ± 301 SFC per million PBMC. Four subjects rec-
ognized as many as five Integrase peptides; most subjects
recognized a single peptide. Three Integrase peptides were
each recognized by more than 10% of study subjects: Inte-
grase 14, Integrase 24 and Integrase 30 (Figure 2B). The
majority of the CD8 T cell responses against Integrase
were clustered around these three peptides.

Identification of optimal CD8 T cell epitopes within 
Protease and Integrase
Most of the previously described epitopes in Protease and
Integrase have been defined based on predicted HLA-
binding motifs, and published data on optimally-defined
epitopes within Protease and Integrase identified directly
from HIV-1 infected subjects are scarce [31-36]. We char-

acterized the minimal amino acid sequences required for
optimal recognition of the dominant Protease and Inte-
grase peptides in these study subjects, as well as the
restricting HLA class I alleles. Finemapping of the three
novel CTL epitopes described in figure 3 was performed
with cells from one patient, respectively. For each epitope
peptide titrations were repeated and confirmed in at least
one other study subject with a response to the correspond-
ing 15 mer and the matching HLA type. In addition, the
novel 9 or 10 mer was tested in all study subjects for
which additional specimen were available.

Five subjects had strong responses to Protease 6 (range
150 to 460 SFC/million PBMC). Using serial dilutions of
truncated peptides, we identified the optimal epitope
within Protease 6 as EEMNLPGRW (EW9, amino acids
Protease 34–42), as shown in Figure 3A,3B. HLA restric-
tion of EW9 by HLA-B44 was determined using a
51chromium release assay. Overall, 4 of the 8 subjects
(50%) expressing the HLA-B44 allele and evaluated in our
study responded to Protease 6 and the novel EW9 epitope.
Although the optimal epitope EW9 does not include the
primary Protease inhibitor mutation site M46, it does
include residue M36, which is a known accessory muta-
tion site in PI-treated patients.

Using a similar approach to the fine-mapping of optimal
epitopes and their HLA restriction, two frequently targeted
CTL epitopes within Integrase were further characterized
in detail. The most frequently targeted Integrase peptide is
Integrase 30, which was recognized by 16% of study sub-
jects. Several persons had responses to the adjacent pep-
tide (Integrase 29), suggesting the presence of an epitope
within the overlapping region of these peptides. Fine
mapping confirmed the optimal epitope to be in the over-
lap region shared by both peptides, KIQNFRVYY (KY9),
which was restricted by the HLA-A30 allele (Figure 3E,3F),
an allele recently associated with decreased viral set point
in non-clade B infection [37]. Both individuals with a
response to Integrase 29/30 recognized the 9 mer peptide.
Sabbaj et al. also described this epitope in a recently pub-
lished article [38]. A related epitope, KIQNFRVYYR
(KR10), has been predicted based on the HLA-A2 binding
supermotif, and this 10 amino acid peptide has been pre-
viously studied in HLA-A2-positive long-term non-pro-
gressors [35]. Interestingly several study subjects had
concomitant responses to Integrase 30 and 31 and
expressed HLA alleles different from HLA-A30, suggesting
that an additional epitope is contained within the C-ter-
minal half of Integrase 30. It further indicates that the
region of the Integrase sequence spanned by overlapping
peptides Int-29–30 may be an immunodominant region
of the Integrase protein.
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CD8 T cell responses to HIV-1 IntegraseFigure 2
CD8 T cell responses to HIV-1 Integrase. PBMC were stimulated with the indicated peptide in an overnight IFN-γ ELIS-
POT assay. Each row represents an individual peptide. (A) Amino acid sequence, using standard single-letter amino acid abbre-
viations. Numbers above peptide sequence indicate amino acid position within Integrase. The conserved HHCC zinc finger-like 
domain and DDE element are indicated in bold. (B) Bars represent the percentage of 56 study subjects who responded to the 
peptide in an ELISPOT assay. Peptides with the highest number of responses are shaded gray. (C) The magnitude of every CTL 
response against Integrase peptides detected in the study cohort. Each symbol represents a single CTL response against that 
peptide by one individual. Magnitude of responses are after subtraction of background, which in all cases was <30 SFC/million 
PBMC. Symbols are the same as in Figure 1: Closed circle (● ): acute cohort. Open circle (❍ ): chronic cohort. Shaded triangle 
( ): controllers.
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Fine-mapping of one novel epitope within Protease and two within IntegraseFigure 3
Fine-mapping of one novel epitope within Protease and two within Integrase. Peptide-specific CD8 cell lines were 
generated for three peptides, Protease 6, Integrase 17, and Integrase 29/30. PBMC collected from subjects with strong 
responses by ELISPOT were expanded using a bispecific CD3/4 antibody. Following expansion, peptide-specific cells were col-
lected using an IFN-γ catching assay after stimulation with the appropriate peptide. Peptide specificity was confirmed by flow 
cytometry. HLA-restriction was then determined using peptide-pulsed target cells matched at only one MHC class I allele in a 
51Cr-releasse assay at an E:T ratio of 10:1; peptide-pulsed autologous cells were used as a positive control. The sequences of 
the optimal epitopes were also determined by testing peptide-specific cell lines against serial dilutions of truncations of the 
original peptide in an ELISPOT assay. Data are shown for three epitopes: (A, B) – Protease 6. (C, D) – Integrase 17. (E, F) – 
Integrase 29/30.
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Fine mapping confirmed the epitope within Integrase 17,
a peptide targeted by 9% of study subjects, as the epitope
STTVKAACWW (SW10). This epitope was restricted by
HLA-B57, an MHC class I allele known to be associated
with HIV-1 long-term non-progression, as shown in Fig-
ure 3C,3D. All five HLA-B57 positive study subjects in this
cohort were long-term non-progressors and recognized
STTVKAACWW, suggesting high immunogenicity of this
newly defined epitope.

Correlation of regions targeted by CD8 T cell responses 
with amino acid variability
The above data indicate that numerous regions of both
Protease and Integrase are potential targets for CD8 T cell
responses, and suggest regions of epitope clustering. We
further evaluated epitope clustering in these proteins
through an analysis of primary sequence diversity. As a
measure of sequence variability, we calculated the average
entropy at each of the 288 amino acid positions within
Integrase, based on 155 protein sequences, including 34
clade B sequences, reported to the HIV-1 Molecular
Immunology Database [30]. A similar analysis has
recently been reported for other HIV-1 proteins [20]. This
analysis confirms that within Integrase, a large stretch of
highly-conserved sequence exists at amino acids 40 to
100, and three smaller highly-conserved regions exist
centered at amino acids 145, 181 and 240 (Figure 4, blue
and red lines).

We next compared the entropy at each position with the
number of subjects targeting peptides containing that
amino acid (Figure 4, purple line). CD8 T cell responses
cluster around three regions of Integrase, centered around
amino acids 110, 180 and 220. The two clusters at the C-
terminal end of Integrase correspond to regions of low
amino acid variability, while the N-terminal epitope clus-
ter centered on amino acid 110 overlaps with a region of
high amino acid variability. Somewhat surprisingly, the
highly conserved region of Integrase in the N-terminal
domain from amino acids 40–90 with low sequence vari-
ability was largely devoid of CD8 T cell responses. Spear-
man's rank-order correlation coefficient (rs) and the P
value for the correlation between the number of responses
and raw entropy was rs = -0.07 and P = 0.11 for all
sequences, and rs = -0.61 and P < 0.0001 for clade B
sequences. Smoothing entropy scores over nine amino
acids did not significantly alter the correlation between
entropy and response frequency; for smoothed entropy, rs
= -0.07 and P = 0.13 for all sequences, and rs = -0.26 and
P < 0.0001 for clade B sequences. Thus overall, there is a
slight inverse correlation between clade B sequence
variability and CD8 T cell responses for the entire Inte-
grase protein.

A similar analysis was performed for Protease. Notably,
Protease has more clearly defined domains of high and
low amino acid variability (Figure 5, blue and red lines).
As the sequences used to calculate amino acid variability
predate Protease inhibitor therapy, this is not the result of
drug-induced selection pressure. Confirming this, non-
clade B sequences from regions of the world where drugs
are unavailable also show three domains with high and
three domains with low variability (data not shown). Fig-
ure 5 also reveals a slight inverse correlation between CD8
T cell responses against Protease (Figure 5, purple line)
and Protease sequence variability for clade B sequences.
Both graphically and statistically, this association is not as
strong for Protease as it is for Integrase. For Protease,
Spearman's rank-order correlation coefficient using raw
entropy scores was rs = -0.16 and P = 0.054 for all
sequences, and rs = -0.61 and P < 0.0001 for clade B
sequences. The corresponding values using smoothed
entropy scores were rs = -0.003 and P = 0.49 for all
sequences, and rs = -0.20 and P = 0.02 for clade B
sequences. It should also be noted that the data on CD8 T
cell responses presented here were obtained from subjects
many of who were receiving, or had previously received,
Protease inhibitor therapy. Because autologous protein
sequences from these patients were not readily available,
we were not able to assess the impact of prior PI treatment
on the subsequent correlation between Protease-specific
responses and Protease sequence diversity. Nonetheless,
as has been found for other HIV proteins [20], there
appears to be an inverse correlation between clade B
sequence diversity and CD8 T cell responses against both
Integrase and Protease in the study subjects.

Discussion
We here report a unique and most detailed assessment of
the CD8 T cell response against the HIV-1 enzymes Pro-
tease and Integrase in a large cohort of HIV-1-infected
subjects representing both early and chronic disease. To
date, responses directed against two of the three key HIV-
1 enzymes encoded by the pol gene, Protease and Inte-
grase, have received limited attention, and the breadth
and specificity of responses to these proteins remain
poorly defined [18]. We show that both Protease and Inte-
grase are significant targets for HIV-1-specific CD8 T cell
responses, recognized by 23% and 68% of subjects in our
cohort, respectively. These values are consistent with the
frequency of responses targeting other HIV-1 proteins,
although lower per unit protein length than more immu-
nogenic proteins such as Gag p17, Gag p24, and Nef.
Moreover, we optimally define the three most frequently
targeted discrete epitopes within these proteins, and show
that peptides containing Protease epitopes overlap with
regions expected to be under pharmacologic selection
pressure in those persons fortunate to have access to Pro-
tease inhibitor therapy.
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Correlation of amino acid sequence variability with frequency of CD8 T cell responses targeting Protease.Figure 4
Correlation of amino acid sequence variability with frequency of CD8 T cell responses targeting Protease. For 
Protease, amino acid sequences were obtained from at the HIV-1 Molecular Immunology Database (27), and aligned relative to 
the HIV-1 clade B consensus sequence. Entropy scores for each amino acid residue were calculated based on this alignment, 
smoothed over nine amino acids, and plotted for all sequences (n=155, blue line, left axis) and clade B sequences only (n=34, 
red line, left axis). Entropy scores of 1 correspond to 100% conserved residues, while lower scores (plotted here on an inverse 
scale) correspond to increasing sequence variability. The number of responses in the 56 study subjects against peptides con-
taining each amino acid was also plotted (purple line, right axis) to correlate regions with high sequence variability with regions 
targeted by CD8 T cells. Spearman’s rank-order correlation coefficient was calculated to correlate CD8 T cell responses 
against sequence variability for each protein.
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Although studies of CD8 responses to the pol gene product
have been conducted [10,11,39], few Protease and Inte-
grase epitopes had been described, even in the highly con-
served active sites of the enzyme. No epitopes within
Protease have been defined de novo in infected persons;
those reported to the HIV-1 CTL database have been
identified either on the basis of predicted HLA-binding
motifs, or characterized only in HIV-exposed, seronega-
tive individuals [31,35,40]. Optimal epitope mapping for

these epitopes and analysis of the frequency and breadth
in HIV-1 infected populations has not been done.
Similarly, rigorous optimal epitope mapping in Integrase
has not been reported; peptides targeted within Integrase
have been identified based largely on predicted binding
motifs, as well as studies of exposed seronegative subjects
or populations with selected HLA alleles [32,33,35,36].
Our data indicate that both of these proteins serve as fre-
quent targets for CD8 T cells.

Correlation of amino acid sequence variability with frequency of CD8 T cell responses targeting IntegraseFigure 5
Correlation of amino acid sequence variability with frequency of CD8 T cell responses targeting Integrase. For 
Integrase, amino acid sequences were obtained from at the HIV-1 Molecular Immunology Database (27), and aligned relative to 
the HIV-1 clade B consensus sequence. Entropy scores for each amino acid residue were calculated based on this alignment, 
smoothed over nine amino acids, and plotted for all sequences (n = 155, blue line, left axis) and clade B sequences only (n = 34, 
red line, left axis). Entropy scores of 1 correspond to 100% conserved residues, while lower scores (plotted here on an inverse 
scale) correspond to increasing sequence variability. The number of responses in the 56 study subjects against peptides con-
taining each amino acid was also plotted (purple line, right axis) to correlate regions with high sequence variability with regions 
targeted by CD8 T cells. Spearman's rank-order correlation coefficient was calculated to correlate CD8 T cell responses 
against sequence variability for each protein.
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Significant epitope clustering in Integrase was seen in our
study, and these epitopes cluster largely around highly
conserved residues in the C-terminal portion of the
protein. Interestingly, highly conserved residues in the N-
terminal zinc finger domain and the conserved "DDE"
catalytic core are largely devoid of CD8 T cell responses
[41]. Without sequencing autologous virus, we cannot
rule out the possibility that the peptides used in our study
to evaluate CD8 responses in the conserved regions of
Integrase failed to pick up responses that were actually
present in our study subjects. However, because these
regions of Integrase are highly conserved, the clade B con-
sensus sequence used to generate the peptides should be a
close reflection of the viral sequence present in our study
subjects. Identification of factors that might contribute to
a paucity of immune responses against a highly conserved
region of this protein, such as poor proteasome cleavage
sites [42] or reduced affinity for HLA class I molecules
[43]. A recent study actually indicates that the frequency
of recognition of a peptide was indeed correlated with the
presence of predicted immunoproteasomal cleavage sites
within the C-terminal half of the peptide and a reduced
frequency of amino acids that impair binding of optimal

epitopes to the restricting class I molecules [11]. However,
this issue will require further study.

The HIV-1 Protease gene is under considerable selection
pressure through the use of Protease inhibitor therapy in
populations fortunate enough to have access to these
drugs. Given the potentially complex interactions
between drug selection pressure and immune selection
pressure, we determined whether the epitopes targeted by
Protease-specific CD8 cells were contained within regions
known to mutate in the presence of drug selection
pressure. Protease 6, the most frequently targeted Protease
peptide, contains the primary mutation site M46 and the
accessory mutation site M36. Primary PI mutations at
M46, I54, V82, I84, and L90 [44,45] are clustered in pep-
tides Protease 6 through 9, and Protease 11 through 13
(Figure 1A), all of which contain CD8 T cell epitopes.

Because of their relative immunogenicity and highly con-
served nature, both Protease and Integrase could be
potential targets for vaccines and immunotherapeutic
interventions. However, features of the CD8 T cell
response directed against each protein should be noted in
this context. First, the Protease-specific responses identi-
fied here were of relatively low magnitude, even in those
who control viremia without treatment. Second, although
the Integrase-specific responses described here were of
high magnitude, they cluster around three regions of the
Integrase molecule, at least one of which falls largely out-
side of the highly conserved active sites of the enzyme
[46]. Further epitope mapping within Protease and Inte-
grase will be necessary to determine the extent of epitopes
throughout these proteins, and further delineate the
relationship between sequence diversity and effective
CD8 T cell responses.

The frequent targeting of the Protease and Integrase pro-
teins raises the question as to how immunogenic these
proteins are compared to other HIV proteins. Figure 6
compares the frequency of CD8 T cell responses versus
protein amino acid length for Integrase and Protease, as
well as for all HIV-1 proteins based on published data
from large cohorts evaluating the responses against
individual proteins [8-10,24,47]. Although Integrase pep-
tides were targeted by CD8 T cells in HIV-1 infected sub-
jects at three times the frequency of Protease peptides,
comparison of CD8 T cell responses per unit protein
length suggests that the relative targeting of the two
proteins is similar (Figure 6). In addition, published data
on CTL frequencies per unit protein length for other non-
structural proteins, including Tat, Rev, and Vif, are similar
to Protease and Integrase. Reverse transcriptase, Vpr, and
the envelope glycoproteins exhibit proportionately lower
frequencies of CTL induction relative to their number of
amino acid residues; conversely, the frequency of CTL

Frequency of CD8 T cell responses to HIV-1 proteins rela-tive to protein sizeFigure 6
Frequency of CD8 T cell responses to HIV-1 proteins 
relative to protein size. The frequency of responses 
directed against Protease and Integrase in the study cohort 
are plotted against the size of the proteins, in number of 
amino acids. Published data from cohorts where the fre-
quency of CD8 T cell responses against at least one HIV-1 
protein are plotted for comparison (see text for references).
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responses per unit length of protein to Nef, Vpr, and the
Gag proteins appear to be over-represented in HIV-1-
infected subjects. There are multiple factors that may
influence immunogenicity. Levels of the protein available
for epitope processing are affected by the stability of the
mRNA, polyprotein or mature protein and the protein's
relative cytoplasmic abundance [48]. CTL epitopes are
also affected by the presence of proteasome cleavage sites
within a protein, sequence variation, the stability of HLA
binding and TCR recognition. The role of each of these
factors can be difficult to measure.

Finally, in our study we did not determine any significant
differences in CD8 T cell responses directed against Pro-
tease and Integrase when comparing acute and chronic
HIV infection. Previous studies have suggested that CTL
responses that develop during acute infection may differ
from those seen during chronic infection, and that these
differences may be important in the ultimate failure of the
immune response to control viremia [10,12,24,49].
Responses directed against nef and accessory proteins
appear to develop early in HIV infection, until Gag p24-
specific responses emerge and dominate the CTL response
in chronic infection. The generation and persistence of
Protease and Integrase-specific responses do not appear to
differ in acute versus chronic infections, although the
impact of drug selection pressure on this process remains
to be determined.

Conclusions
We conclude that Protease and Integrase are frequently
targeted by the CD8 T cell response in infected individu-
als. These responses may be particularly important to
examine in relation to viral immunopathogenesis and
specific selection pressures as treatment with Protease
inhibitors expands and Integrase inhibitors commence. In
treated patients, viral sequence within these epitopes will
be under selective pressures from two sources, drug and
the immune system. Recent data from Moore et al.
strongly suggest that HIV-1 sequence variation in individ-
ual patients can be directly attributed to escape from CTL,
and previous studies in humans and primate models have
confirmed CTL escape and its functional consequences
[15,50-53]. Similar analyses have been undertaken on the
evolution of virus under selective pressure from Protease
inhibitors alone [54,55]. The dynamics of viral escape
during selective pressure from both CTL and from drugs
will be critical to examine, and will likely require assess-
ment of immune responses to the autologous virus vari-
ants present in vivo to provide further insights regarding
HIV immunopathogenesis and vaccine development.
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