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Abstract

Introduced in the 1950s, ethidium bromide (EB) is still used as an anti-trypanosomal drug for African cattle although its
mechanism of killing has been unclear and controversial. EB has long been known to cause loss of the mitochondrial
genome, named kinetoplast DNA (kDNA), a giant network of interlocked minicircles and maxicircles. However, the existence
of viable parasites lacking kDNA (dyskinetoplastic) led many to think that kDNA loss could not be the mechanism of killing.
When recent studies indicated that kDNA is indeed essential in bloodstream trypanosomes and that dyskinetoplastic cells
survive only if they have a compensating mutation in the nuclear genome, we investigated the effect of EB on kDNA and its
replication. We here report some remarkable effects of EB. Using EM and other techniques, we found that binding of EB to
network minicircles is low, probably because of their association with proteins that prevent helix unwinding. In contrast,
covalently-closed minicircles that had been released from the network for replication bind EB extensively, causing them,
after isolation, to become highly supertwisted and to develop regions of left-handed Z-DNA (without EB, these circles are
fully relaxed). In vivo, EB causes helix distortion of free minicircles, preventing replication initiation and resulting in kDNA
loss and cell death. Unexpectedly, EB also kills dyskinetoplastic trypanosomes, lacking kDNA, by inhibiting nuclear
replication. Since the effect on kDNA occurs at a .10-fold lower EB concentration than that on nuclear DNA, we conclude
that minicircle replication initiation is likely EB’s most vulnerable target, but the effect on nuclear replication may also
contribute to cell killing.
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Introduction

Trypanosoma brucei, the African trypanosome, is a protozoan

parasite causing human sleeping sickness and the disease nagana

in cattle. For both humans and livestock, there is a compelling

need for less toxic and more effective drugs. One drug, ethidium

bromide (EB, known in the veterinary world as homidium; see

structure in Fig. S1) was synthesized as a trypanocide over a half-

century ago by chemists at Boots Pure Drug Co., Ltd, in

Nottingham, U.K. [1]. EB is an intercalating agent [2] widely used

as a fluorescent stain for DNA in electrophoresis gels although

many scientists are concerned about its mutagenicity. Given its

potential dangers, many would be shocked to learn that EB is still

used for treating cattle that provide beef and milk for human

populations [3].

EB has long been known to promote loss of the trypanosome’s

mitochondrial genome, the giant DNA network named kinetoplast

DNA (kDNA). kDNA is an amazing structure, constituting ,5%

of the cell’s total DNA, that consists of several thousand minicircles

(each 1 kb) and a few dozen maxicircles (each 23 kb). These circles

are interlocked together in one huge planar network that has a

topology like that of medieval chain mail (reviewed in [4,5]). The

kDNA network in vivo is condensed into a compact disk-shaped

structure residing in the mitochondrial matrix. Maxicircles, like

conventional mitochondrial DNAs, encode rRNAs and a few

mitochondrial proteins (e.g., subunits of respiratory complexes).

However, to form a functional mRNA with an open reading

frame, most maxicircle transcripts are edited by insertion or

deletion of uridylates at specific sites. Minicircles encode guide

RNAs that are editing templates (reviewed by [6]).

The unusual characteristics of kDNA and its replication

pathway (discussed below), coupled with the lack of DNA networks

in mammalian cells, would suggest that kDNA and its replication

proteins should be attractive targets for selective chemotherapy.

But this possibility was ignored for many years because of the

existence of bloodstream form (BSF) trypanosomes lacking kDNA.
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These dyskinetoplastic (Dk) BSFs appear spontaneously or have

been induced by treatment with DNA binding agents such as

acriflavin or EB [7,8,9]. Their existence suggested that kDNA is

not essential for viability of BSFs and therefore would not be a

drug target. Acriflavin causes loss of kDNA in other trypanoso-

matids, such as Leishmania tarentolae, but in this case the cell dies

because maxicircles encode essential mitochondrial proteins [10].

However, a recent discovery changed our thinking on kDNA as

a target for chemotherapy. A report that RNAi knockdown of a

mitochondrial RNA ligase involved in editing is lethal to BSFs

indicated that editing, and therefore kDNA, are indeed needed for

viability [11]. Subsequent studies revealed that an essential

maxicircle gene product in BSFs is the A6 subunit of the

membrane-embedded Fo component of the F1 Fo ATP synthase

[12]. In procyclic trypanosomes this enzyme makes ATP, but in

BSFs it couples the reverse reaction, ATP hydrolysis, to generation

of a mitochondrial membrane potential required for viability

[12,13]. If editing of A6 is inactivated in either lifecycle stage, then

the ATP synthase cannot function and the parasite dies. The

reason that some Dk cell lines survive is that they acquire a

compensating mutation in a nuclear gene (encoding the gamma

subunit of the F1 portion of the ATP synthase) that rescues Dk cells

and permits their survival [12,14,15]. Since the compensating

mutation occurs at low frequency, kDNA and proteins involved in

its replication or gene expression should be valid drug targets in

BSFs.

Since EB-mediated kDNA loss could be due to a block in

network replication, we will briefly discuss this pathway (reviewed

in [4,5]), focusing first on minicircles. In the first step, a

topoisomerase (topo) II releases monomeric covalently-closed

minicircles from the network into the kinetoflagellar zone (KFZ),

a region of the mitochondrial matrix between the kDNA disk and

membrane near the flagellar basal body. Proteins in the KFZ

initiate and propagate unidirectional theta-type replication. Free

minicircle progeny probably segregate in the KFZ and then

migrate to the antipodal sites, two protein assemblies flanking the

kDNA disk and positioned ,180u apart. Here RNA primers are

removed, and most but not all gaps and nicks (we will refer to these

discontinuities as gaps) are repaired. The newly replicated

minicircles, still containing at least one gap, are then attached to

the network periphery by the mitochondrial topoisomerase II

(TbTopoIImt) positioned in the antipodal sites. Following comple-

tion of replication, when the minicircle copy number has doubled,

the network splits in two and minicircle gaps are repaired. The

progeny kinetoplasts then segregate into the daughter cells during

cytokinesis. Much less is known about maxicircle replication. They

also replicate unidirectionally as theta structures, but unlike

minicircles, they remain linked to the network during replication

(see [16,17,18] for information on maxicircle replication).

In this paper we report new and unexpected effects of EB on

trypanosomes that reveal, for the first time, how this drug kills

these parasites.

Results

Effect of EB on cell growth and kDNA size
We tested EB concentrations ranging from 0.01 mg/ml to

10 mg/ml on growth of BSF T. brucei 427. Although 0.02 mg/ml

EB stopped growth in 3 days, in most experiments we used 2 mg/

ml (5 mM) EB to compare our results with previous data [19]. This

concentration arrested growth and killed the cells (Fig. 1A).

We next used fluorescence microscopy of DAPI-stained cells to

examine EB’s effect on the kinetoplast (Figs. 1B, C). It was not

surprising that EB initially caused production of small kinetoplasts,

and by 72 h, more than 75% of cells had no detectable kDNA (we

refer to these cells as Dk even though we did not confirm that they

are completely devoid of kDNA). Examples of cells with normal

kinetoplasts, small kinetoplasts, and none at all (Dk) are shown in

Fig. 1C. We then isolated and DAPI-stained networks from EB-

treated cells and measured their surface areas (Fig. 1D). Networks

from untreated cells averaged ,5.5 mm2 (in agreement with

previous measurements [20,21]), but after a 3 day EB treatment

had shrunk to an average area of ,2.1 mm2 (Fig. 1D). Because

kDNA isolation involves centrifugation, there may have been

selective loss of the smallest networks; thus the average area may

be smaller than indicated.

To prove that kinetoplast shrinking is due to loss of minicircles

and maxicircles, we digested total DNA with Hind III/Xba I. After

electrophoresis, we probed a Southern blot for maxicircle and

minicircle fragments (Fig. 1E). Taking into account the loading

control, more than half of the minicircles and maxicircles were lost

by 72 h.

Effect of EB on free minicircles
Covalently-closed circular DNAs isolated from prokaryotic or

eukaryotic cells are always negatively supertwisted, with one

exception. Remarkably, covalently-closed minicircles in a kDNA

network [22] or free replication intermediates [23] are fully

relaxed in vivo. However, we expected that minicircles isolated

from EB-treated cells, either in a network or free, would become

negatively supertwisted. This prediction was based on the

equation, Lk = Tw + Wr, that relates linking number (Lk) to

twist (Tw) and writhe (Wr) [24]. Since minicircles in vivo are

relaxed (Wr = 0), then Lk = Tw, and for a 1 kb minicircle Tw is

,96 (assuming 10.4 bp/helical turn). EB in the mitochondrial

matrix should intercalate into minicircles, thereby reducing their

helical twist. Since EB binding does not change Lk, the decrease in

twist is compensated by an increase in writhe, or positive

supertwisting. A mitochondrial topoisomerase could then remove

the positive supertwists, reducing Lk. EB, however, would be still

bound to the DNA and would be removed only when DNA is

isolated. After EB removal, the twist would revert to its normal

level of ,96, but since Lk had been reduced in vivo, the writhe

would decrease, producing negative supertwisting.

To test the effect of 2 mg/ml EB on free minicircle replication

intermediates, we fractionated total DNA from treated cells on an

agarose-EB gel that resolves relaxed covalently-closed minicircles

(CC; the replication precursors) from gapped minicircles (G, the

replication products). A Southern blot (Fig. 2A) revealed a

profound increase in a new minicircle species, designated fraction

E, that migrated near covalently-closed minicircles. Fraction E

Author Summary

Trypanosoma brucei is a protozoan parasite that causes
cattle disease and human sleeping sickness in Africa.
Trypanosomes are primitive eukaryotes with atypical
biological features. One well-studied example is their
mitochondrial genome, known as kinetoplast DNA or
kDNA. kDNA, resembling medieval chain mail, is a giant
network of interlocked DNA rings known as minicircles and
maxicircles. Here we study ethidium bromide, a drug used
for over 50 years for treating cattle infected with
trypanosomes. EB’s killing mechanism has been elusive,
and many thought it could not involve kDNA. We now
report that EB kills these parasites by blocking the
initiation of minicircle replication, and, at higher drug
concentration, it also blocks nuclear replication.
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Figure 1. Effects of EB on growth and kDNA. (A) Effect of EB (2 mg/ml) on growth. Values of parasites/ml on y-axis are measured value times
dilution factor. (B) Effect of EB on kinetoplast size. DAPI-stained cells (,100 per time point) were visually categorized by kinetoplast size. Dk,
dyskinetoplastic or no detectable kDNA. (C) Fluorescent images of different-sized kinetoplasts seen in DAPI-stained cells untreated or following EB
treatment. Scale bar, 5 mm. (D) Bar graphs showing surface areas, calculated with IPLabs software, of DAPI-stained networks isolated from cells

Killing Trypanosomes by Ethidium Bromide
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forms a smear that broadened between 3 and 72 h, and at later

time points its level declined. There was also an increase in

multimeric minicircles, and at least one species, probably an

interlocked dimer (marked *), formed a smear like that of fraction

E. As observed previously [19], EB caused a rise in linearized

minicircles (maximum at 1 h, data not shown) that then leveled

off. Gapped free minicircles rose during the first 3 h followed by a

small decline.

We then set out to identify fraction E, first using a 2-D gel to

compare DNA from untreated cells with that from cells treated 6 h

with 2 mg/ml EB. The first dimension conditions were the same as

those used for the gel in Fig. 2A; the second dimension was run in

30 mM NaOH. This gel system is effective in resolving free

minicircle species [25,26]. We then probed a Southern blot with
32P-oligonucleotides of comparable specific radioactivity and

complimentary to either the L-strand (Fig. 2B, left panel) or H-

strand (Fig. 2B, right panel). From untreated cells, we observed the

well-documented resolution of covalently-closed minicircles (CC)

and gapped minicircles (G). These two species hybridized equally

to both probes because their strands are equimolar. Most

importantly, this experiment showed that fraction E consists of

minicircles in the 1-kb range that also have roughly equimolar

amounts of L and H strands.

In our second approach, we treated fraction E (purified by

sucrose gradient sedimentation [25]) with E. coli topo I, an enzyme

that relaxes negative but not positive supertwists [27]. Electro-

phoresis on an agarose-EB gel (Fig. 2C) demonstrated that the

fraction E smear collapsed into a band that migrated with

covalently-closed relaxed monomers.

Finally, EM of Fraction E provided the most compelling

evidence on its structure (Fig. 2D), proving that Fraction E is a

family of supertwisted free minicircles. The topo I experiment (Fig.

2C) showed that the supertwisting is negative.

Fraction E contains left-handed Z-DNA helix
In addition to supertwisting, DNA can compensate for severe

underwinding by forming single-stranded regions and regions of

left-handed helix [28]. In fact, we previously detected Z-DNA in

highly supertwisted free minicircles from cells undergoing RNAi of

p38, a protein involved in replication initiation [25]. To determine

whether a region of Z-DNA forms in free minicircles from EB-

treated cells, we immunoprecipitated total DNA with anti-Z DNA

antibody, centrifuged the immune-complexes, and fractionated the

DNA from the supernatant and pellet on an agarose-EB gel. A

Southern blot (Fig. 2E) showed that minicircles from untreated

cells or following 6 h of EB treatment had no fraction E in the

pellet, indicating that these minicircles contain no Z-DNA.

However, after 16 or 24 h of EB exposure, we observed part of

fraction E (with the slowest electrophoretic mobility) in the pellet,

demonstrating that some fraction E minicircles contain regions of

Z-DNA. We conclude that fraction E minicircles have a broad

distribution of linking numbers and the most severely underwound

have sequences that flip into Z-DNA.

T. brucei has 3 known mitochondrial topoisomerases, TbTopoIImt

[29], TbTopoIAmt [30], and TbTopoIB (the latter is functional in

both nucleus and mitochondrion [31]). In RNAi experiments in Fig.

S2, we showed that knockdown of TbTopoIImt, but not

TbTopoIAmt or TbTopoIB, prevented reduction of the linking

number of EB-bound free minicircles and thereby inhibited

production of Fraction E. Thus, TbTopoIImt is responsible for

supertwisting free minicircles isolated from EB-treated cells.

Effect of EB on replication of minicircles
Experiments already presented provide strong evidence that EB

blocks free minicircle replication. The dramatic rise in covalently-

closed monomeric free minicircles in the form of Fraction E (Fig.

2A) indicates that minicircle release from the network occurs in the

presence of EB. In addition, their accumulation indicates that the

subsequent step, initiation of replication, is inhibited. We therefore

assessed replication directly by measuring incorporation of

bromodeoxyuridine (BrdU), a thymidine analog, into free mini-

circles. We incubated log phase cells (62 mg/ml EB for 6 h) with

50 mM BrdU for the last 40 min. We then isolated total DNA, and

fractionated the minicircle species first on a 1-dimensional

agarose-EB gel (Fig. 3A, left panel). A Southern blot confirmed

that minicircles were more abundant after EB treatment because

of the large increase in Fraction E and multimers. To assess BrdU

incorporation, we ran the same amount of DNA on a 2-

dimensional gel (like that in Fig. 2B). We used this gel to evaluate

whether any BrdU-labeled minicircle species accumulated in the

presence of EB. Probing a blot with anti-BrdU antibody revealed

BrdU incorporation into gapped minicircles in the absence of EB

but little or none in any minicircle species during the EB treatment

(Fig. 3B). This experiment provided even stronger evidence that

EB inhibits initiation of minicircle replication.

EM of networks isolated from EB-treated cells
Based on our findings with free minicircles, we predicted that

minicircles in networks isolated from EB-treated cells would also be

negatively supertwisted and we used EM to test this possibility (for

this experiment it was essential to extract EB from the DNA prior to

EM). We were astonished that most minicircles in networks isolated

from cells exposed to 2 mg/ml EB for up to 24 h remained relaxed.

Fig. 4B shows a network from a cell treated for 24 h (compare with

untreated network in Fig. 4A). Although it is impossible to evaluate

many minicircles in the network interior, most on the periphery are

relaxed. Only a few (some marked by arrows) appear highly twisted.

Fig. S3 shows many more examples of networks from cells treated

with EB for 6 h, 15 h, and 24 h. By 24 h, most networks were

smaller and more loosely packed (Fig. S3, networks J, K, and L). In

these it was easier to evaluate minicircles in the network interior,

and most were relaxed. However, one example (Fig. S3, network F)

has a substantial region of the network periphery in which most

minicircles are twisted.

From the data presented so far, EB treatment of trypanosomes

causes severe underwinding of free minicircles but, despite our

inability to assess minicircles in the crowded interiors of many

networks, it does not have this effect on many and probably most

network minicircles. This is remarkable because both DNAs reside

in the same cellular compartment, the mitochondrial matrix.

Testing possible explanations for the absence of
supertwisting of network minicircles

One possibility is that the EB caused nicking of network minicircles,

thereby preventing supertwisting. To test for nicking, we studied the

same networks used in the previous section, but we spread them for

EM in the presence of a high concentration of EB (100 mg/ml). If the

treated for the indicated time with 2 mg/ml EB. Arrows show average size. Insets show a representative field at each time point. Scale bar, 5 mm. (E)
Time course of kDNA loss. Total DNA digested with Hind III/Xba I was fractionated on a 1.5% agarose gel (106 cell equivalents/lane). A Southern blot
was probed for minicircles (only the 1 kb fragment is shown) and maxicircles (probe recognizes only a 1.4 kb fragment).
doi:10.1371/journal.ppat.1001226.g001
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Figure 2. Discovery and characterization of Fraction E. (A) Effect of EB on free minicircle population. Total DNA (56106 cell equivalents/lane),
from cells treated with 2 mg/ml EB for indicated time, was fractionated on an agarose-EB gel. The autoradiograph is a Southern blot probed for
minicircles and hexose transporter gene (load). G, gapped, L, linearized, and CC, covalently-closed minicircles. E is Fraction E. * is probably interlocked
minicircle dimer forming a smear like that of Fraction E. We usually see only trace amounts of linearized minicircles in untreated cells (0 time point).
(B) Two-dimensional neutral-alkaline gel electrophoresis of free minicircles. The sample was total DNA (56106 cell equivalents/lane), from untreated

Killing Trypanosomes by Ethidium Bromide
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network minicircles are nicked, they could not supertwist under these

conditions. However, as shown by the example in Fig. 4C (others are

in Fig. S3, networks H and M), we observed extensive supertwisting of

minicircles in most networks. However, some, such as network I in

Fig. S3, contained relaxed minicircles. These networks must contain

mostly gapped minicircles, and they will be further evaluated below.

These data prove that most networks from EB-treated cells contain

minicircles that are covalently-closed and that lack of supertwisting is

not due to nicking.

A second possibility is that network minicircles bind EB, but

there is no topoisomerase available to reduce the minicircle Lk.

We showed in Fig. S2 that there is considerable active TbTopoIImt

present. Furthermore, we recently reported that TbTopoIImt is

present throughout the kDNA disk where it mends holes made by

minicircle release during replication [20]. Thus, this possibility is

unlikely.

We addressed a third possibility, that network minicircles bind

little or no EB, by fluorescence microscopy of EB-treated live cells.

We found that brief EB treatment (2 mg/ml added to culture

medium) caused distinct staining of the kinetoplast in nearly all cells,

but it is possible that some of this staining could be due to free

minicircles. Unfortunately, the high motility of trypanosomes

precluded capture of adequate images of live cells. Even when the

cells were restrained by adherence to poly-lysine coated slides and

other methods, they quickly died and lost their staining. Before this

happened their localized movement prevented imaging. Instead,

Fig. S4 shows images of 16 fluorescent kinetoplasts in formaldehyde-

fixed cells. Our conclusion is that kDNA in vivo probably binds some

EB, but it could be far less than that observed with free minicircles.

A likely reason for low EB binding could be that the condensed

network is associated in vivo with basic proteins [32], some of which

may stabilize the network in its disk-shaped configuration [33].

Figure 3. Effect of EB treatment on replication of minicircles. (A) Cells (50 ml, 0.76106 cells/ml, treated with 2 mg/ml EB for 6 h) were
incubated with 50 mM BrdU during the last 40 min. Free minicircles were then fractionated on an agarose-EB gel as in Fig. 2A, and a Southern blot
was probed for minicircles. (B) The same amount of DNA used for the gel in Panel A was run on a 2D neutral/alkaline gel (as in Fig. 2B) and a blot was
probed with anti-BrdU antibody. BrdU label at top of gel is in nuclear DNA. Abbreviations of minicircle species are same as in Fig. 2A.
doi:10.1371/journal.ppat.1001226.g003

or EB-treated (6 h, 2 mg/ml) cells. 32P-labeled oligonucleotides were used for probing minicircle L (left two panels) and H (right two panels) strands.
Scales below gels are sizes of linear markers. Abbreviations of minicircle species are same as in Panel A. See [25,26] for description of other bands in
these gels. (C) Treatment with Topo I. Fraction E (10 ml, sucrose gradient purified) was treated with E. coli topo I [51] and fractionated on an agarose-
EB gel. Arrow indicates position of covalently-closed relaxed minicircles. (D) EM of fraction E also sucrose gradient purified. Molecule at upper left is a
relaxed minicircle. Scale bar, 200 nm. (E) Fraction E contains regions of Z-DNA. Total DNA (T) from 50 ml of culture (0.86106 cells/ml) of untreated or
EB (2 mg/ml)-treated cells was immunoprecipitated with anti-Z DNA antibody and then with protein G-Sepharose [24]. Upon centrifugation, DNA in
supernatant (S) and pellet (P) was electrophoresed and probed for minicircles. Increases in linearized minicircles could be due to nuclease
contamination of the antibody. Gel conditions and abbreviations of minicircle species are same as in Fig. 2A.
doi:10.1371/journal.ppat.1001226.g002

Killing Trypanosomes by Ethidium Bromide

PLoS Pathogens | www.plospathogens.org 6 December 2010 | Volume 6 | Issue 12 | e1001226



Figure 4. EM of isolated networks. (A) Network from untreated cell spread for EM in the absence of EB. Boxed region is enlarged at lower right.
(B) Network from cells treated with EB (2 mg/ml, 24 h), but EB was removed prior to EM. Arrows indicate supertwisted minicircles. (C) Network from
EB-treated cells (2 mg/ml EB, 6 h) spread for EM in presence of EB. Prior to EM, EB (100 mg/ml) was added to the DNA, the spreading solution, and the
hypophase. Arrows indicate rare untwisted minicircles that likely are nicked. Bars, 500 nm.
doi:10.1371/journal.ppat.1001226.g004

Killing Trypanosomes by Ethidium Bromide
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Such proteins could prevent unwinding of the minicircle helix and

therefore would block EB binding. One candidate protein for this

role is p19 (GeneDB Accession Number Tb11.02.2420), recently

discovered in our laboratory and shown to localize throughout the

kDNA disk (unpublished studies of J. Wang, Z. Zhao, B. Liu, P.T.

Englund, and R.E. Jensen). Recombinant p19 condenses isolated

networks in vitro (not shown) to a size comparable to that of the

kinetoplast in situ. In fluorometric experiments, we observed that

network-bound recombinant p19 inhibited EB binding as

measured by the marked reduction in EB fluorescence (Fig. 5,

compare middle panel with left panel). In a similar assay, p19

could displace EB from a network (Fig. 5, right panel). Thus, the

most likely explanation for the absence of supertwisting in many if

not most network minicircles is that EB binds poorly to networks in

vivo. Perhaps those minicircles that do become supertwisted are

devoid of proteins, and it is EB binding to these, along with free

minicircles, that contributes to the kinetoplast fluorescence

observed in Fig. S4.

Analysis of gaps in networks from EB-treated cells
As mentioned above, some networks from EB-treated cells,

examined by EM in the presence of 100 mg/ml EB, had many

minicircles that did not twist, suggesting that these minicircles were

gapped (an example is network I in Fig. S3). We further investigated

these networks by in vitro labeling the 39-OH groups at gaps with

terminal deoxynucleotidyl transferase (TdT) and fluorescein-dUTP

[34]. In networks from cells untreated with EB, we detected the

well-characterized polar labeling of partly replicated networks

[34,35,36]; labeling is polar because gapped minicircles are attached

to the network adjacent to the antipodal sites. From these cells,

never exposed to EB (Fig. 6A), 28% of networks were stained by

TdT (TdT-positive). This value changed little during 24 h of EB

treatment (see time course in Fig. 6B). However, EB dramatically

changed the labeling pattern, causing an increase in uniformly

labeled networks and a steady decline in polar labeling. The latter

suggested that reattachment of newly-replicated minicircles to the

network periphery must be strongly reduced by EB, as expected

from the fact that EB blocks minicircle replication. In the Discussion

we will comment further on these data.

The effect of ethidium bromide on dyskinetoplastic
trypanosomes

If EB kills trypanosomes by blocking initiation of replication of

free minicircles, then it would be logical to predict that Dk

trypanosomes would be resistant to EB killing. We therefore studied

the effect of EB on Dk 164, a BSF trypanosome lacking kDNA

[8,37]. Our cytotoxicity assay, using a range of EB concentrations,

involved colorimetric measurement of acid phosphatase activity

released by lysing living cells after 24 h in wells of a 96-well plate

[38]. To our great surprise, we found that EB efficiently killed Dk

parasites, and its EC50, 0.3 mg/ml, was slightly lower that of the wild

type 427 strain, 0.65 mg/ml (Fig. 7A). Thus, EB must have an

efficient killing mechanism unrelated to kDNA.

The effect of ethidium bromide on nuclear DNA
replication

A likely possibility for the killing of Dk trypanosomes was that

EB also targets nuclear DNA replication. We therefore incubated

427 BSFs with BrdU in the presence and absence of EB for 6 h.

Incorporation of this thymidine analog into nuclear DNA

increased with time in untreated cells and was inhibited

substantially with 2 mg/ml EB (Fig. 7B).

kDNA is the major target of EB
At first glance, the data in Fig. 7A suggested that a killing

mechanism targeting nuclear replication may be as important, or

Figure 5. Fluorometric measurement of EB-network binding and the effect of p19. Binding of EB to kDNA was measured by fluorescence
spectroscopy using a Fluoromax-3 fluorometer (Horiba). Excitation was at 525 nm and emission was measured from 580 to 680 with a maximum at
604 nm. Titles above each panel show the components of the reaction. Those in parentheses are at constant concentration and those that vary are
indicated. Vertical arrows inside each panel show direction of variation. Left panel shows that EB (6.25 mg/ml) emission fluorescence increases
markedly on addition of kDNA networks (0, 0.25, 0.5, 1.25, 2.5, 3, 4, 6.5, 25 mg/ml). In middle panel, the same amount of DNA was pre-incubated with
20 mM p19 (room temperature, 5 min) before adding to EB (6.25 mg/ml). Right panel shows displacement of EB (6.25 mg/ml) from DNA (25 mg/ml) by
addition of increasing concentrations of p19 (0, 1, 2, 4, 8, 10, 12.5, 15, 20 mM). In this experiment we used Crithidia fasciculata networks (purified as
described [54]) as they are much easier to isolate than those from T. brucei. The preparation of recombinant p19 will be published elsewhere.
doi:10.1371/journal.ppat.1001226.g005
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possibly more important, that that targeting kDNA. However, we

then considered the possibility that our 24 h cytotoxicity assay

may not reveal the effects of EB-mediated kDNA loss in wild type

427 cells. The reason is that the killing would not occur until

essential maxicircle gene products were depleted, which,

depending on their half-lives, may take a few days. Thus, the

427 cells might contain a time bomb that would not explode until

after termination of the 24 h cytotoxicity assay. To evaluate this

possibility, we conducted a new cytotoxicity assay using 427

trypanosomes (Fig. 7C). In this assay, we collected cells not only

for evaluation of the effect of EB on growth, but also for

measurement of kinetoplast size by DAPI staining. In addition,

we measured nuclear replication by adding BrdU to the wells for

the last 2 h of the 24 h assay. As shown in Fig. 7C, inhibition of

nuclear replication occurred at the same EB concentration as the

growth effect; thus, inhibiting nuclear replication kills with little

delay. In contrast, kDNA loss occurs at a .10-fold lower EB

concentration and this loss will ultimately lead to cell death but

not during the 24 h cytotoxicity assay. To further evaluate this

possibility, we chose an EB concentration, 0.02 mg/ml, that,

based on the graphs in Fig. 7C, should eventually kill 427

trypanosomes by targeting kDNA and not kill DK-164 cells

which would require a higher EB concentration to inhibit nuclear

replication. As predicted, there was little effect of EB on Dk-164

cells (Fig. 7D). Also, as expected, there was little effect on 427

cells during the first 24 h (the duration of the cytotoxicity assay),

but survivors were reduced by 75% at day 2 and few cells were

alive at day 3. We also noted in our initial studies mentioned in

the first paragraph of Results that 0.02 mg/ml EB killed

trypanosomes within 3 days.

Most studies in this paper on the effect of EB were conducted

at 2 mg/ml. Now it was essential to evaluate further the effects of

0.02 mg/ml EB on minicircle and nuclear DNA replication. For

minicircles we conducted an analysis of free minicircles to

determine whether covalently-closed free minicircles (including

Fraction E) accumulate (because they are unable to initiate

replication). In a control experiment, similar to that in Fig. 2A,

we found that 6 h treatment with 2 mg/ml EB caused a 36-fold

increase in covalently-closed minicircles (Fig. 7E). Reducing the

EB concentration 100-fold to 0.02 mg/ml, increased the

covalently-closed minicircles 15-fold, still a very potent inhibition

of replication. As with 2 mg/ml, the maximum effect of 0.02 mg/

ml was at 6 h and at both concentrations there was a large

increase in minicircle oligomers. It was not surprising that

0.02 mg/ml EB had a smaller effect in reducing the free

minicircle linking number; thus its fraction E smear is more

compact. To measure the effect of 0.02 mg/ml EB on nuclear

replication, we treated a culture for 0, 6, 12, and 24 h. At each

time point we incubated a sample with [3H]thymidine for 2 h

and then measured acid-insoluble radioactivity (Fig. 7F). Since

kDNA constitutes only about 5% of the total DNA, nearly all of

the incorporation is in nuclear DNA. These results show that

0.02 mg/ml EB has no effect on nuclear replication at 6 h and a

small effect thereafter.

All the experiments in Fig. 7 provide strong evidence that the

most sensitive mechanism by which EB kills trypanosomes is to

Figure 6. Effect of EB on distribution of gapped circles in isolated networks. Isolated networks were labeled by fluorescein-12-dUTP using
terminal deoxynucleotidyl transferase (TdT) [33]. This procedure adds a fluorescent tag to 39 OH groups flanking minicircle gaps. Because of the
relative abundance of minicircles and the distribution of fluorescein fluorescence within networks, most gaps must be in minicircles rather than
maxicircles [33]. This procedure reveals the extent of replication of a network. TdT-positive networks are mostly undergoing replication and some are
post-replication with gaps yet to be repaired. In wild type cells, the labeling pattern is usually polar or uniform, representing early and late stages of
replication respectively. (A) Fluorescent images of networks isolated from untreated cells stained with 2 mg/ml DAPI (upper-left panel) and labeled
with TdT (upper-right). Lower panels are the same except cells were EB-treated (2 mg/ml, 24 h). In upper panel, network (NW) 1 is a TdT-negative pre-
replication or post-replication network because it stains with DAPI but not TdT. Networks 2 and 3 are replicating networks with polar labeling.
Network 4 is TdT-positive with uniform labeling, appearing double-size and ready to divide. Scale bars, 5 mm. (B) Kinetics of change in TdT labeling
pattern during EB treatment. Upper inset shows a uniformly labeled network and lower inset shows one with polar labeling. At least 120 networks
were counted at each time point. Scale bars, 1 mm.
doi:10.1371/journal.ppat.1001226.g006
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Figure 7. The mechanism of killing BSF trypanosomes by EB. (A) Effect of EB concentration on killing of wild type 427 and Dk 164
trypanosomes. In a 24 h acid phosphatase-based cytotoxicity assay [38], A405 was measured on a microtiter plate reader (Molecular Devices). Each EB
concentration in an experiment was assayed in quadruplicate, and error bars indicate standard deviations for three experiments. Data were fit to the
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block minicircle replication initiation. However, inhibiting nuclear

replication also contributes to the trypanocidal activity.

Discussion

The differing effects of EB on network bound minicircles
and free minicircles

Our goal in these studies was to determine whether EB kills

trypanosomes by its action on kDNA and, if it does, to determine

the killing mechanism. One remarkable and unexpected effect of

EB treatment was that it caused profound supertwisting of free

minicircles (Fig. 2), whereas many if not most network minicircles,

in the same cellular compartment, remained relaxed (Figs. 4, S3).

The most likely explanation is that the EB binding to the network,

although detectable by fluorescence microscopy (Fig. S4), occurs at

a much lower level than it does to free minicircles. The large

reduction in EB binding to network minicircles is most likely

explained by the fact that basic proteins like p19 condense the

network in vivo and by preventing helix unwinding, inhibit EB

binding (Fig. 5). The conclusions from this experiment are limited

because they are based on only one protein, p19, whose function is

unknown, and because the kDNA disk in vivo is likely bound and

stabilized by multiple proteins [32]. However, the p19 experiments

clearly demonstrate that such proteins can reduce EB binding in

vivo (Fig. 5). Polyamines also bind DNA and prevent EB binding

[39], but proteins seem more likely to be compartmentalized,

binding to networks and not free minicircles.

Our EM data provides some clues into the replication status of

maxicircles. Gel electrophoresis of topo II-decatenated networks

[40] from cells treated with 2 mg/ml EB for 6 to 24 h revealed that

20–50% of maxicircles were covalently-closed (data not shown).

Furthermore, in 121 EM images of networks (from cells treated

similarly with EB and then observed by EM after EB removal), we

observed no supertwisted maxicircles. Thus, the covalently-closed

network-bound maxicircles, like most network minicircles, must

bind little if any EB in vivo. We speculate that the lack of EB

binding to maxicircles, as in minicircles, is due to bound protein. If

EB does not bind to the maxicircles, it is possible that it has no

effect on maxicircle replication. Further studies are needed to

address this issue.

EB inhibits minicircle replication
Our most significant finding was that the most effective

mechanism by which EB kills trypanosomes is by inhibition of

initiation of free minicircle replication. We initially based this

conclusion on the dramatic accumulation of covalently-closed free

minicircles, the substrates for replication (Figs. 2A (using 2 mg/ml

EB) and 7E (using 0.02 mg/ml EB)). Especially in the case of 2 mg/

ml EB, the high level of EB that bound these molecules in vivo not

only resulted in the development of extensive negative supertwisting

after isolation but also, by distorting their helix in vivo, must have

prevented assembly of replication proteins at the origin. The

inhibition of BrdU incorporation into gapped minicircles confirmed

the replication block (Fig. 3). Since newly replicated free minicircles

attach to the network poles adjacent to the antipodal sites, the EB-

mediated decline in networks with polar TdT labeling led to the

same conclusion (Fig. 6). But why does the number of networks

uniformly-labeled with TdT increase during EB treatment? The

likely reason is that a partially-replicated network contains gapped

minicircles (labeled by TdT) in the two polar regions and covalently-

closed minicircles (not yet replicated and unlabeled by TdT) in the

central region [34,35]. In the presence of EB, few if any minicircles

attach to the network poles, preventing enlargement of the polar

regions. However, Fig. 2A shows that covalently-closed minicircle

release continues, and these must derive from the central region of

the network. Once all are released, the two polar regions, containing

gapped minicircles, then fuse. Thus the network appears, after TdT

labeling, to be uniformly-labeled and small in size. As the network

shrinks, minicircle release may become less precise, resulting in

release of multimers (Fig. 2A).

We previously found that EB poisons mitochondrial TbTo-

poIImt (but not nuclear topo II) and that cell lysis by SDS-

proteinase K results in linearization of ,2% of the minicircles

[19]. This inhibition of TbTopoIImt is unlikely responsible for cell

death because only a small fraction of the TbTopoIImt is trapped

as a cleavable complex (for comparison, a more powerful topo II

poison, etoposide, causes linearization of 12% [41]). Further-

more, the fact that TbTopoIImt is responsible for the EB-

mediated reduction in free minicircle linking number (Fig. S2)

proves that much of this enzyme is catalytically active in the

presence of EB.

equation for the sigmoidal Emax model [55] using GraphPad Prism software that generated EC50 values of 0.30 mg/ml for Dk cells (R2 = 0.99) and
0.65 mg/ml for wild type (R2 = 0.97). (B) Effect of EB on BrdU incorporation into nuclear DNA of wild type BSF trypanosomes. Cells (105 cells/ml, 10 ml)
were incubated with EB (2 mg/ml) and BrdU for up to 6 h. Total DNA at each time point was isolated, fractionated by agarose gel electrophoresis,
transferred to a PVDF membrane, probed with anti-BrdU, and labeled DNA was detected by chemiluminescence (quantitated by Image J software;
http://rsbweb.nih.gov/ij/). After normalizing for loading using the hexose transporter probe, label in the nuclear DNA band was quantitated by a
phosphorimager. Inset graph shows that detection of BrdU was in the linear range (in this experiment, 1, 2.5, 5, 7.5, and 10 ml of the untreated 6 h
sample was processed and quantitated with Image J. (C) Effect of EB concentration on kinetoplast size, nuclear replication, and growth of wild type
cells. Cells (105 cells/ml, 10 ml) were incubated with the indicated concentrations of EB for 24 h and BrdU was added for the last 2 h. Cytotoxicity
(killing) was assayed with 200 ml samples as in Panel A. To measure effect of EB on kinetoplast size, cultures (1 ml) were collected, fixed, stained with
DAPI and evaluated by fluorescence microscopy. With regard to kinetoplast size, the reason that some cells retain some kDNA at high EB
concentration is not clear. To measure the effect of EB on nuclear DNA replication, total DNA was isolated from remaining samples for electrophoresis
as in Fig. 4A; a blot was probed with anti-BrdU and quantitated as in Panel B. Data were fit to the equation for the sigmoidal Emax model as in Panel A.
(D) Survival of wild type and Dk trypanosomes in 0.02 mg/ml EB. Cells (56104/ml) were incubated with 0.02 mg/ml EB and at indicated times were
counted by hemocytometer (mean 6 standard deviation of 3 independent experiments). Cell densities were maintained between 56104/ml and 106/
ml. (E) Comparison of the effects of EB concentration on free minicircles. The experiment was identical to that in Fig. 2A except that EB was either
2 mg/ml or 0.02 mg/ml. Abbreviations and * are same as in Fig, 2A. This experiment was run 3 times with virtually identical results. The fraction E
smear in the second lane is narrower than that in Fig. 2A for unknown reasons. The numbers in each lane below fraction E are relative band intensities
of fraction E plus covalently-closed minicircles determined by phosphorimaging and corrected for background and load. (F) Effect of 0.02 mg/ml EB
on nuclear DNA replication. A culture was treated with EB and at indicated times, cells (200 ml, 26106/ml) were incubated with [3H]thymidine (Perkin-
Elmer, 300 mCi/ml, 20 Ci/mmole) in thymidine-free HMI-9 for 2 h (the serum may contain low levels of thymidine). At the end of the labeling,
radioactivity was measured in 5% TCA-precipitable DNA. Values on Y-axis are percent of incorporation into untreated cells. The latter incorporated
10.5610362.86103 dpm in 2 h. Roughly 5% of the zero time incorporation should be in kDNA. Each experiment was run with duplicate samples, and
plotted values are Mean 6 S.D. of three independent experiments.
doi:10.1371/journal.ppat.1001226.g007
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How EB kills trypanosomes
Since EB blocks initiation of replication of free minicircles, we

were initially surprised, and troubled, to find that Dk cells were

also killed by EB. However, further study showed that the EB-

susceptibility of Dk cells could be explained by inhibition of

nuclear DNA replication (Fig. 7B). Furthermore, the effect of EB

on kinetoplast size occurred at a .10-fold lower concentration,

indicating that kDNA replication is the primary target for EB

killing of wild type trypanosomes. Our realization that killing of

wild type cells by low EB concentrations does not occur during

our 24 h cytotoxicity assays fully clarified this mechanism. The

delay in killing must be due to the time needed for the cell to

run out of its essential maxicircle gene product, the A6 subunit

of the ATP synthase [12]. When we analyzed free minicircles

from cells treated 6 h with 0.02 mg/ml EB, we confirmed that

this low concentration also inhibits free minicircle replication

(Fig. 7E).

Although our cytotoxicity assays suggest that EB acts primarily

on kDNA, this drug has at least some effect on nuclear DNA

replication. The effect is modest at low concentrations (0.02 mg/ml

EB; see Figs. 7C and 7F), but inhibition of nuclear replication

becomes significant at higher concentrations (2 mg/ml EB; see Fig.

7C and compare Fig. 7B with 7F). Therefore, the contribution of

inhibition of nuclear DNA replication to trypanosome killing

depends on the level of EB in the treated animal. The blood

concentration of ethidium in cattle injected intra-muscularly with

the standard dose of 1 mg/kg is 0.070–0.268 mg/ml at 15 min and

,0.075 mg/ml after 24 h [42,43,44]. These concentrations are for

the free base form of ethidium. At the highest concentration

detected, 0.268 mg/ml ethidium base (equivalent to 0.34 mg/ml

EB), which is transient, inhibition of nuclear DNA replication is

only about 40% of maximum effectiveness (see Fig. 7C). The 24 h

level, ,0.075 mg/ml (equivalent to 0.095 mg/ml EB), is about 5

times higher than the 0.02 mg/ml EB used in our experiments,

suggesting that inhibition of nuclear DNA replication could

contribute to killing. One problem with comparing drug activity in

vitro to that in animals is that many drugs bind tightly to serum

proteins, thereby reducing markedly in animals the concentration

of free active drug [42]. We could find no reports on the extent of

EB binding to serum proteins, but if high this could substantially

reduce the levels of free EB in animals.

One reason why EB may target minicircle replication so

effectively is that the intra-mitochondrial EB concentration could

be higher than the extracellular concentration, due to a membrane

potential-driven transport of ethidium into the mitochondrial

matrix [43]. We think it unlikely, but cannot rule out the

possibility, that non-specific effects of EB, such as binding to RNA

or membranes, could contribute to the killing of trypanosomes.

Another anti-trypanosomal drug still used for treating African

cattle is isometamidium chloride [3], an EB derivative (see

structure in Fig. S1). In a previous study of whether isometami-

dium could target kDNA, the effect of the drug on wild type and

Dk trypanosomes was investigated using in vitro assays [44]. As we

found with EB, those authors reported a slightly lower EC50 for

the Dk cells and concluded that an effect on the kinetoplast could

not be the primary target of isometamidium. As with EB, it is

possible that an effect on maxicircle gene products was not

manifested during their cytotoxicity assays even though theirs were

longer than ours. Thus, like EB, the primary target of

isometamidium could be minicircle replication.

In conclusion, these experiments prove decisively that low

concentrations of EB kill trypanosomes by blocking initiation of

minicircle replication. However, it is likely that curing of

trypanosome infections depends in part on the effect of EB on

nuclear replication. Although it has been shown previously that

kDNA is essential for viability of BSF parasite [11], our studies

emphasize that enzymes involved in kDNA replication could be

valid drug targets for chemotherapy for BSF trypanosomes, not

only for those causing bovine trypanosomiasis but also for the

parasites causing human sleeping sickness.

Materials and Methods

Trypanosome strains, culturing, and EB treatment
All experiments except those involving RNAi or the dyskine-

toplastic Dk 164 strain (gift from Ken Stuart, Seattle Biomedical

Research Institute) were conducted on BSF T. brucei wild-type 427

strain (gift from George Cross, Rockefeller University), cultured as

described [45,46]. For RNAi we used procyclic T. brucei 29–13

[47] (also from George Cross) cultured in SDM-79 medium [48]

containing 15% fetal bovine serum. Ethidium bromide (Bio-Rad,

10 mg/ml) was kept at room temperature in the dark and added to

a final concentration of 2 mg/ml unless otherwise indicated.

Purification of Fraction E and networks
Total DNA, (purified as described [49]) from 76106 EB-treated

(6 h, 2 mg/ml EB) cells was centrifuged on a 33 ml 5–20% sucrose

gradient (Beckman SW28 rotor, 25,000 rpm, 20 h, 4uC) [24].

Aliquots (10 ml) of 1 ml fractions were electrophoresed as in Fig.

2A and a blot probed for minicircles. Fraction E was detected in

tubes 9 to 15 and the pool was dialyzed overnight against 25 mM

Tris-HCl, pH 8.0, 50 mM NaCl, 10 mM MgCl2 (final volume,

9 ml). It was used for E. coli topo 1 treatment (Fig. 2C) and EM

(Fig. 2D). Networks were isolated as described [50].

EM
Fraction E was prepared for EM using the cytochrome c drop

spreading method [51]. After shadowing, samples were examined

in an FEI (Hillsboro, OR) Tecnai 12 TEM and images recorded

using a Gatan Inc. (Pleasanton, CA) Ultrascan400 CCD camera.

Isolated kDNA networks were spread on grids using the

formamide method [52]. Since many experiments required

removal of EB from networks prior to EM, we extracted 6 times

with an equal volume of water-saturated n-butanol. However, we

observed identical results if we did not extract; in that case EB

must have been removed by formamide or by ethanol-washing of

the grids. After rotary shadowing, networks were photographed

using a Hitachi 7600 transmission electron microscope and a

DVC 1412M-FW digital camera with AMT Image Capture

Engine Software. EM images were uniformly adjusted for

brightness and contrast using Adobe Photoshop.

Gel electrophoresis
Undigested total DNA was electrophoresed to analyze free

minicircles, and HindIII/XbaI digests were electrophoresed to

analyze for total minicircles and maxicircles [25]. Both were run in

a 1.5% agarose gel in 1X Tris-borate-EDTA (TBE) buffer

containing 0.5 mg/ml EB (18 h, 70 V) [41]. DNA was detected

by probing Southern blots, and the hexose transporter gene was

the load control. For 2-D electrophoresis [25], the first dimension

used conditions just described and the second was run in 30 mM

NaOH. After electrophoresis, DNA was transferred to GeneSc-

reen plus membrane (Perkin Elmer) and probed with strand-

specific 59-[32P]oligonucleotides [25].

Metabolic labeling with BrdU
Untreated and 6 h EB-treated cells (50 ml, 0.76106 cells/ml)

were pulse-labeled for 40 min with 50 mM bromodeoxyuridine
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(BrdU) and 50 mM 29-deoxycytidine [53]. The latter was added to

overcome potential allosteric inhibition of ribonucletotide reduc-

tase by high concentrations of BrdU. Total DNA was isolated,

electrophoresed on either a one-or-two dimensional gel followed

by transfer to a nitrocellulose membrane (Schleicher and Schuell).

Membranes were blocked, probed with anti-BrdU antibody, and

BrdU level was detected by chemiluminescence [25].

Supporting Information

Figure S1 Three anti-trypanosomal drugs currently used to treat

or prevent trypanosome infections in cattle. Ethidium (also known

as homidium), isometamidium (also known as samorin), and

berenil were first synthesized for their anti-trypanosomal activity

[56]. Ethidium, one of the most thoroughly studied DNA binding

agents, is a classical intercalator whose planar aromatic ring

system inserts between the base pairs in a double helix [2]). Berenil

is a symmetrical biguanide that binds DNA’s minor groove [57].

Isometamidium incorporates structural features of both ethidium

and berenil; its mode of binding to DNA is not well described but

it may be a threading-type intercalator [58], in which the ethidium

nucleus stacks between base pairs and the berenil-like side chain

interacts with the minor groove. Another fluorescent dye used for

staining DNA is 49,6-diamidino-2-phenylindole (DAPI); this

compound was also synthesized as a trypanocide [59,60] but,

unlike EB, it is no longer used for that purpose.

Found at: doi:10.1371/journal.ppat.1001226.s001 (0.08 MB

PDF)

Figure S2 TbTopoIImt is the enzyme that decreases the linking

number of EB-bound free minicircles in vivo. We investigated

which of the 3 known mitochondrial topoisomerases, TbTopoIImt

[29], TbTopoIAmt [30], or TbTopoIB (functional in both nucleus

and mitochondrion [31]) was responsible for reducing the linking

number of EB-bound free minicircles. In this experiment we used

procyclic parasites (this lifecycle stage dwells in the tsetse vector’s

midgut and is conveniently cultured in the laboratory) as RNAi of

these 3 enzymes had been well characterized in that stage

[49,30,31]. (A) RNAi of TbTopoIImt. Like EB-treated BSF forms,

procyclic cell line 29–13 carrying the TbTopoIImt stem-loop

RNAi vector but not induced by tetracycline, was susceptible to

EB (2 mg/ml) and accumulated fraction E over the 24 h time

course (left panel). Also, the effect of TbTopoIImt RNAi on free

minicircles was similar to that reported previously [49] (not

shown). Furthermore, a northern blot confirmed that RNAi

caused a nearly complete loss of the TbTopoIImt mRNA (right

panel, next to bottom). For the northern blot, purified total RNA

was fractionated on a 1.5% agarose27% formaldehyde gel [49]

and a blot was probed for TbTopoIImt mRNA. The critical

experiment is in the main right panel. In this experiment, RNAi

of TbTopoIImt was induced by 1 mg/ml tetracycline. Each day,

EB (2 mg/ml), was added to culture for 6 h (at day 0, EB was

added at the time of induction with tetracycline). Left-most lane

shows that EB causes accumulation of fraction E in absence of

RNAi. The rest of the right panel showed that knockdown of

TbTopoIImt blocked appearance of fraction E. (B) RNAi of

TbTopoIAmt (left panel) and TbTopoIB (right panel). The

experimental strategy was the same as in Panel A and the

efficacy of RNAi was shown by the effect on the growth curves,

which were comparable to published results [30,31]. In control

experiments (not shown), EB (2 mg/ml, 6 h) added to uninduced

cells led to production of Fraction E. When RNAi was induced by

tetracycline (1 mg/ml), EB (2 mg/ml) was added for 6 h after 0–6

days of RNAi induction (for example, at day 0, EB was added at

the time of RNAi induction with tetracycline). Samples were

electrophoresed, blotted, probed, and autoradiographed as in

Figs. 2A. Since there was no effect on production of Fraction E,

we conclude that these enzymes cannot reduce the linking

number of EB-bound free minicircles in vivo. This result was

expected for TbTopoIAmt as enzymes of this type relax negative

but not positive supertwists [27]. Therefore, we conclude that

only TbTopoIImt can reduce the linking number of EB-bound

free minicircles in vivo and is responsible for production of

Fraction E.

Found at: doi:10.1371/journal.ppat.1001226.s002 (1.15 MB PDF)

Figure S3 EMs of kDNA networks isolated from cells treated with

2 mg/ml EB. Networks A–D were treated in cells for 6 h, networks

E–I were treated in cells for 15 h, and networks J–M were treated in

cells for 24 h. Unless otherwise indicated, EB was removed prior to

EM. Large loops extending from network edge are maxicircles.

Small loops are minicircles. Most of the latter are relaxed, but a few,

some of which are marked by arrows, are supertwisted. In crowded

networks, especially those present after short treatments with EB, it

is usually impossible to determine whether minicircles in the

network interior are twisted. Network F has a region on the

periphery (spanned by the bracket) in which many neighboring

minicircles are twisted. Large arrows in panels E and L indicate

maxicircle bubbles. Because the strands within the bubble are

thinner than the surrounding strands, the bubbles are probably not

due to replication but instead are due to denaturation caused by the

high formamide concentrations (up to 40%) during spreading for

EM. This is not surprising because maxicircles have AT contents of

76.7%. The presence of two bubbles in a maxicircle in panel D

provides another strong argument against the possibility that these

bubbles are caused by replication. Networks H, I, and M were

spread in the presence of 100 mg/ml EB. Most networks in these

preparations resemble networks H and M, having covalently-closed

minicircles that become supertwisted by EB in vitro. In contrast, a

small number, like network I, have most minicircles relaxed,

indicating that they contain nicks or gaps; these networks are further

evaluated in Fig. 6. In networks from cells treated with EB for 24 h

(networks J–M), some had mostly minicircles (J and M) and some

had mostly maxicircles (K and L). Analysis of 24 randomly-selected

networks from this preparation indicated that 4 were rich in

maxicircles, 11 were rich in minicircles, and 9 were intermediate.

Scale bars, 0.5 mm.

Found at: doi:10.1371/journal.ppat.1001226.s003 (6.36 MB PDF)

Figure S4 EB staining of T. brucei BSF cells. Log-phase cells were

fixed with 4% formaldehyde, washed with PBS-glycine, stained

with 2 mg/ml EB for 1 min, and then examined by phase (upper

panel) and fluorescence (lower panel) microscopy. Scale bar, 2 mm.

Arrows point to kinetoplasts weakly stained by EB. The kinetoplast

in the lower left is undergoing division. The larger EB-staining

structures are nuclei.

Found at: doi:10.1371/journal.ppat.1001226.s004 (0.23 MB PDF)
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