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Follistatin-like 1 protects against 
hypoxia-induced pulmonary 
hypertension in mice
Wei Zhang1,2, Wang Wang1,2, Jie Liu1,2, Jinna Li3, Juan Wang3, Yunxia Zhang4, Zhifei Zhang1,2, 
Yafei Liu1,2, Yankun Jin5, Jifeng Li4, Jie Cao3, Chen Wang2,5, Wen Ning6 & Jun Wang1,2

Pulmonary hypertension (PH) remains a life-limiting disease characterized by pulmonary vascular 
remodelling due to aberrant proliferation and migration of pulmonary artery smooth muscle cells 
(PASMCs), thus leading to raised pulmonary arterial pressure and right ventricular hypertrophy. 
Secreted glycoprotein follistatin-like 1 (FSTL1) has been reported to ameliorate tissue remodelling in 
cardiovascular injuries. However, the role of FSTL1 in deranged pulmonary arteries remains elusive. We 
found that there were higher serum levels of FSTL1 in patients with PH related to chronic obstructive 
pulmonary diseases (COPD) and in mice model of hypoxia-induced PH (HPH). Haploinsufficiency of Fstl1 
in mice contributed to an exacerbated HPH, as demonstrated by increased right ventricular systolic 
pressure, pulmonary arterial muscularization and right ventricular hypertrophy index. Conversely, 
FSTL1 administration attenuated HPH. In cultured human PASMCs, hypoxia-promoted cellular 
viability, DNA synthesis and migration were suppressed by exogenous FSTL1 but enhanced by small 
interfering RNA targeting FSTL1. Additionally, FSTL1 inhibited the proliferation and migration of 
PASMCs via extracellular regulated kinase (ERK) signal pathway. All these findings indicate that FSTL1 
imposed a protective modulation on pulmonary vascular remodelling, thereby suggesting its role in the 
regulation of HPH.

Pulmonary hypertension (PH), manifested by a sustained elevation of pulmonary arterial pressure (PAP) and 
right ventricular hypertrophy (RVH), is a devastating clinical disorder with an age-standardized mortality of 
4.5–12.3 per 100,000 in USA1. The exact mechanism remains largely unknown and patients always die of right 
heart failure in spite of advances in pharmacological therapies over past years2,3. Pulmonary arterial remodelling, 
which comprises excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) in the medial layer, 
is one of the most prominent features of PH4–6. Multiple risk factors are associated with PH. It is well accepted 
that chronic hypoxia stimulates vascular structural changes and lumen narrowing, leading to the alteration of 
pulmonary vascular responsiveness and contributing to the development of PH7. This occurs clinically in more 
than 30% of patients suffering from chronic obstructive pulmonary diseases (COPD), with a sharply rising death 
rate subsequently8,9. Actually, hypoxic rodent is one of the most commonly used models to dissect the molecular 
mechanisms and to identify potential therapeutic targets for PH10. Therefore, hypoxia exerts a pivotal role in PH 
pathogenesis. Unfortunately, no specific therapy is currently available to effectively reduce hypoxia-induced PH 
(HPH). The exploration for novel mediators or modulators to attenuate hypoxia-induced cellular responses and 
thus lessen abnormal vascular remodelling may be helpful to delay the progression of HPH.

Follistatin-like 1 (FSTL1) is a secreted glycoprotein initially induced by transforming growth factor-β​1 (TGF-β​
1) from a mouse MC3T3-E1 osteoblast cell line11. It is widespread in mammalian tissues and produced mainly 
by cells of mesenchymal origin (fibroblasts, osteocytes, adipocytes, cardiomyocytes chondrocytes and tropho-
blasts)12,13. Additionally, endothelial cells (ECs), smooth muscle cells (SMCs), macrophages and epithelial cells 
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are also cellular origins of FSTL114–16. Disco-interacting protein 2 homolog A (DIP2A) has been suggested as a 
potential cell-surface receptor for FSTL1 in systemic ECs and cardiac myocytes17, yet to our knowledge, there 
seems no definite FSTL1 receptor in lung, where it functions in the extracellular matrix and regulates on other 
ligands18. Based on its extracellular calcium-binding and follistatin-like domains, FSTL1 belongs to the secreted 
protein acidic and rich in cysteine (SPARC) family. This family has been appreciated to play a critical role in 
organogenesis and human disease pathogenesis19. However, functions and mechanisms of FSTL1 have not been 
fully understood. A growing body of literatures have identified the regulatory functions of FSTL1 in cellular 
survival15,20, proliferation16,21, migration16,21–23 and differentiation22–25 involved both in physiological and patho-
logical processes. Recently, beneficial effects of FSTL1 in cardiovascular diseases have been reported. In systemic 
vascular damages, FSTL1 could preserve the viability of ECs and SMCs both in vivo and in vitro15,16,21,26. In pul-
monary circulation, it is highly expressed in blood vessels of the developing lung27, but its role in stressful arteries, 
such as in HPH, is not elucidated.

In this study, we reported the increased circulating levels of FSTL1 in patients with PH associated with COPD, 
as well as in hypoxia-challenged mice. Haplodeletion of Fstl1 in mice aggravated HPH, whereas administration 
of recombinant human FSTL1 protein led to amelioration in vivo. We found that FSTL1 inhibited the prolifera-
tion and migration of PASMCs via extracellular regulated kinase (ERK) signal pathway. Our finding suggested a 
protective role of FSTL1 in pulmonary vascular remodelling, pointing to its potential clinical value for patients 
with HPH.

Results
FSTL1 is upregulated in patients with PH related to COPD and mice exposed to hypoxia.  We 
first determined whether FSTL1 production is aberrant in HPH patients. We analyzed serum FSTL1 concentra-
tions from patients with COPD only or COPD combined with PH, and their healthy controls by enzyme-linked 
immunosorbent assay (ELISA). General characteristics of subjects were shown in Supplementary Table S1. As 
shown in Fig. 1a, COPD patients had a higher serum FSTL1 level as compared with healthy controls (P <​ 0.0001), 
which was significantly increased when complicated with PH (P =​ 0.0356). Subsequently, we setup a hypoxia 
mouse model of PH and measured the substantially elevated right ventricular systolic pressure (RVSP) and right 
ventricular hypertrophy index (RVHI) by week 2 and week 4, respectively, after hypoxia exposure (Fig. 1b and c, 
P <​ 0.01 for both RVSP and RVHI compared to untreated mice). The effects of hypoxia treatment on Fstl1 mRNA 
expression were examined by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). 
As shown in Fig. 1d, hypoxia exposure increased Fstl1 mRNA levels in lung tissues to 2.6 folds by week 2 (P <​ 0.01 
compared to untreated mice) and to 1.4 folds by week 4 (P >​ 0.05 compared to untreated mice). Western blot 
analysis confirmed that the increase in Fstl1 mRNA levels by hypoxia was accompanied with an increase to 1.4 
folds in FSTL1 protein expression by week 2 (Fig. 1e, P <​ 0.05 compared to untreated mice). Serum collections 
from hypoxia-treated mice were also assayed for FSTL1 levels by ELISA. Figure 1f shows a remarkable elevation 
of 1.5 folds in circulating FSTL1 levels in mice after 4 weeks of hypoxia treatment (P <​ 0.05 compared to untreated 
mice). Consistently, immunofluorescent (IF) staining showed the higher level of FSTL1 protein in small remod-
elled pulmonary arteries (PAs) as compared to normal controls, which overlapped with α​-smooth muscle actin 
(α​-SMA), a specific marker for SMCs, suggesting that PASMCs could produce and secrete FSTL1 in adult mice 
(Fig. 1g). Above all, both human and mice data imply that FSTL1 is a HPH-related gene and may affect the patho-
genesis of HPH.

Fstl1+/− mice have an aggravated HPH phenotype after hypoxia treatment.  To investigate the 
biological significance of the inducible expression of FSTL1 during HPH, we examined the hypoxic response in 
Fstl1-deficient mice. Because homozygous Fstl1−/− mice die of respiratory failure shortly after birth18, heterozy-
gous Fstl1+/– mice were used to study the hypoxic response. General characteristics of Fstl1+/− and wide type 
(WT) mice were presented in Supplementary Table S2, with mean arterial pressure (MAP), as a surrogate for 
systemic pressure, not affected by FSTL1. Fstl1+/– mice made significant less FSTL1 protein in lung tissue (~59% 
decrease) and displayed less circulating FSTL1 levels (~80% decrease), as compared to WT controls (Fig. 2a). 
As expected, both WT and Fstl1+/− mice responded to hypoxia, as indicated with the elevations of both RVSP 
(Fig. 2b, P <​ 0.0001 and P =​ 0.0002 for WT and Fstl1+/− mice, respectively) and RVHI (Fig. 2c, P =​ 0.0020 and 
P =​ 0.0025 for WT and Fstl1+/− mice, respectively). But, Fstl1+/– mice were more susceptible to hypoxia-induced 
lung injury and showed an increase of RVSP and RVHI than that of WT mice (Fig. 2b and c, P =​ 0.0013 for RVSP 
and P =​ 0.0493 for RVHI, respectively).

The extent of structural changes in pulmonary arterioles, characterized by de novo muscularization of pre-
capillary pulmonary arteries, medial hypertrophy and intimal proliferation, is an important determinant for the 
severity of chronic HPH7,28. To examine whether the aggravated HPH phenotype in Fstl1+/− mice is associated 
with the derangements of pulmonary arteries, we performed haematoxylin-eosin (HE) staining on lung sections. 
As shown in Fig. 2d, hypoxia-induced remodelling of pulmonary arterioles was much thicker in Fstl1+/− mice. 
Furthermore, IF analysis of α​-SMA showed the increased positive cells in Fstl1+/− mice (Fig. 2e), indicating the 
proliferation of SMCs located in arterial media. Quantification of hypoxic lung sections by a blinded pathologist 
illustrated the increased thickness of media wall (MT%) in arteries of 0–100 μ​m diameters from both WT and 
Fstl1+/− mice, respectively, after 4 weeks hypoxia treatment. Importantly, Fstl1+/− mice displayed a more severe 
thickening media in arterioles smaller than 50 μ​m, as compared to WT mice (Fig. 2f, P =​ 0.0087). For larger 
arteries of 50–100 μ​m, hypoxia-induced MT% was higher in Fstl1+/− mice than in WT ones, but the difference 
did not reach a statistical significance (Fig. 2f, P =​ 0.3231). This is in line with the fact that vascular remodelling 
is incited in smaller and more distant arterioles4. To further elucidate the effects of FSTL1 on de novo muscular-
ization of arterioles, fully muscularized arterioles with external diameter <​50 μ​m were detected and totaled per 
ten fields from each treatment group. The results exhibited a remarkable increase after 4 weeks of hypoxia, which 
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was higher in Fstl1+/− mice than WT ones (Fig. 2g, P =​ 0.0499). These in vivo data indicate that FSTL1 may be a 
critical homeostatic regulator in the pathogenesis of HPH and its deficiency could aggravate HPH.

Administration of FSTL1 in mice leads to an attenuated HPH after hypoxia treatment.  To ver-
ify our observation, recombinant human FSTL1 protein was administrated to C57BL/6 mice via tail-vein injec-
tion at the indicated time-points during hypoxia treatment (Fig. 3a). The dose we chose is according to an earlier 
observation that intravenous delivery of recombinant human FSTL1 100 ng/g (mouse) has led to a circulating 
concentration at 232 ng/mL20, similar to that effective to inhibit platelet derived growth factor (PDGF)-induced 

Figure 1.  FSTL1 is upregulated in patients with PH related to COPD and mice exposed to hypoxia. (a) 
Serum concentration of FSTL1 protein by ELISA in patients with COPD only (n =​ 8), COPD combined 
with PH (n =​ 8) and healthy controls (CTL, n =​ 7). (b) Effect of chronic hypoxia on RVSP and RVHI (c) in 
C57BL/6 mice. n =​ 8. (d) QRT-PCR analysis of Fstl1 mRNA in lung tissue of C57BL/6 mice under hypoxia 
as normalized by Gapdh mRNA. n =​ 10. (e) Representative cropped western blots and statistical analysis of 
FSTL1 protein in lung tissue of C57BL/6 mice under hypoxia as normalized by GAPDH. n =​ 10. (f) Serum 
concentration of FSTL1 protein by ELISA in C57BL/6 mice under hypoxia. n =​ 7–11. (g) Representative 
immunofluorescence images showing FSTL1 (green) and α​-SMA (red) staining of pulmonary arterioles from 
lung sections in hypoxia-treated mice and untreated ones. Nuclei were stained with DAPI (blue). n =​ 4–5. 
Bar =​ 50 μ​m. Data are presented as mean ±​ SEM. *P <​ 0.05, **P <​ 0.01. COPD =​ chronic obstructive pulmonary 
diseases. PH =​ pulmonary hypertension. RVSP =​ right ventricular systolic pressure. RVHI =​ right ventricular 
hypertrophy index. W =​ week. ELISA =​ enzyme-linked immunosorbent assay. GAPDH =​ glyceraldehyde-3-
phosphate dehydrogenase. α​-SMA =​ α​-smooth muscle actin. DAPI =​ 4′​,6-diamidino-2-phenylindole.
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proliferative responses in cultured human aorta SMCs (HASMCs)21. The protocol for continual administration 
of FSTL1 protein is referred to an earlier study in which FSTL1-neutralizing antibody was given every 3 days to 
justify the interventional impact of FSTL1 on bleomycin-induced lung fibrosis in C57BL/6 mice29. General char-
acteristics of mice were listed in Supplementary Table S3. As expected, we measured a 2.4-fold increase of serum 
concentration in mice treated with FSTL1 than phosphate buffer saline (PBS) (Fig. 3b, P =​ 0.0408). As shown in 
Fig. 3c and d, exogenous FSTL1 could attenuate HPH, as indicated by a reduction in RVSP and RVHI relative to 
PBS control (P =​ 0.0205 for RVSP and P =​ 0.0368 for RVHI, respectively).

Figure 2.  Fstl1+/− mice have an aggravated HPH phenotype after hypoxia treatment. (a) Representative 
cropped western blots of FSTL1 protein in Fstl1+/− and WT mice as normalized by GAPDH. n =​ 6. (b) RVSP in 
Fstl1+/− and WT mice under hypoxia. n =​ 7–12. (c) RVHI in Fstl1+/− and WT mice under hypoxia. n =​ 8–10. 
(d) Representative images showing hematoxylin and eosin staining of pulmonary arterioles from lung sections 
in Fstl1+/− and WT mice under hypoxia. n =​ 4–5. Bar =​ 20 μ​m. (e) Representative immunofluorescence 
images showing α​-SMA staining (red) of pulmonary arterioles from lung sections in Fstl1+/− and WT mice 
under hypoxia. n =​ 4–5. Bar =​ 50 μ​m. (f) MT% of pulmonary arteries grouped by 0–50 μ​m and 50–100 μ​m in 
outer diameter from lung sections in Fstl1+/− and WT mice under hypoxia. n =​ 5. (g) Numbers of completely 
muscularized arterioles (0–50 μ​m in outer diameter) per 10 fields from lung sections in Fstl1+/− and WT mice 
under hypoxia. n =​ 5. Data are presented as mean ±​ SEM. *P <​ 0.05, **P <​ 0.01, ***P <​ 0.001. HPH =​ hypoxia-
induced PH. WT =​ wide type. RVSP =​ right ventricular systolic pressure. RVHI =​ right ventricular hypertrophy 
index. MT =​ media thickness. W =​ week. GAPDH =​ glyceraldehyde-3-phosphate dehydrogenase. α​-SMA =​  
α​-smooth muscle actin.
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Figure 3.  Administration of FSTL1 in mice leads to an attenuated HPH after hypoxia treatment. (a) FSTL1 
treatment regimen in HPH model of mice. (b) Representative cropped western blots of serum FSTL1 protein 
in mice intravenously administrated with FSTL1 or PBS under hypoxia. n =​ 4. RVSP (c) and RVHI (d) in mice 
intravenously administrated with FSTL1 or PBS under hypoxia. n =​ 5. (e) Representative images showing 
hematoxylin and eosin staining of pulmonary arterioles from lung sections in mice intravenously administrated 
with FSTL1 or PBS under hypoxia. n =​ 4–5. Bar =​ 20 μ​m. (f) Representative immunofluorescence images 
showing α​-SMA staining (red) of pulmonary arterioles from lung sections in mice intravenously administrated 
with FSTL1 or PBS under hypoxia. n =​ 4–5. Bar =​ 50 μ​m. (g) MT% of pulmonary arteries grouped by 0–50 μ​m 
and 50–100 μ​m in outer diameter from lung sections in mice intravenously administrated with FSTL1 or PBS 
under hypoxia. n =​ 5. (h) Numbers of completely muscularized arterioles (0–50 μ​m in outer diameter) per 10 
fields from lung sections in mice intravenously administrated with FSTL1 or PBS under hypoxia. n =​ 5. Data are 
presented as mean ±​ SEM. *P <​ 0.05, **P <​ 0.01, ***P <​ 0.001. HPH =​ hypoxia-induced PH. PBS =​ phosphate 
buffer saline. RVSP =​ right ventricular systolic pressure. RVHI =​ right ventricular hypertrophy index. α​
-SMA =​ α​-smooth muscle actin. MT =​ media thickness. W =​ week.
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In accordance with the attenuated RVSP level by administration of FSTL1, pulmonary morphometrics also 
displayed an ameliorated luminal narrowing and medial muscularization (Fig. 3e and f). Accordingly, a decrease 
in MT% was exhibited in FSTL1-treated arterioles of <​50 μ​m (Fig. 3g, P =​ 0.0014) and the number of fully mus-
cularized vessels also showed a drastic decline as compared to PBS controls (Fig. 3h, P =​ 0.0260). So both hemod-
ynamic and morphological features are in coincidence with the hypoxic responses of heterozygous Fstl1+/− mice, 
supporting the proposal that FSTL1 may operate beneficially in hypoxia-induced pulmonary vascular remodel-
ling and thus delay the development of HPH.

FSTL1 attenuates hypoxia-induced proliferation and migration of HPASMCs.  To explore the 
efficacy of FSTL1 at a more mechanistic level, human PASMCs (HPASMCs) were pretreated with recombinant 
human FSTL1 or vehicle (PBS) followed by hypoxia challenge. FSTL1 concentrations of 100 ng/mL and 250 ng/mL 
were adopted as previously reported20,21,30. Cellular viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide assay (MTT)31. As shown in Fig. 4a, 48 h of hypoxia led to an augmented HPASMCs 
proliferation (P <​ 0.0001 compared to baseline), which was obviously suppressed by FSTL1 (P <​ 0.05 for 100 ng/
mL and P <​ 0.01 for 250 ng/mL). DNA synthesis in HPASMCs was analyzed by 5-bromo-2-deoxyuridine (BrdU) 
flow kit32. Figure 4c presents the flow cytometric analysis of cell subsets in different phases of cell cycle. Percentage 
of cells accumulated in synthesis (S, P4) phrase significantly increased under hypoxia (P =​ 0.0236 compared to 
baseline), but with a reduction when pretreated with FSTL1 (P =​ 0.0273). Chronic hypoxia also activates a variety 
of SMCs growth factors including PDGF33. The role of FSTL1 in PDGF-stimulated proliferation was also detected. 
HPASMCs were pretreated with recombinant human FSTL1 or vehicle (PBS) for 10 h followed by PDGF chal-
lenge (10 ng/mL) for 24 h. As can be seen in Fig. 4b, PDGF-induced cellular viability was obviously suppressed 
by FSTL1 (P <​ 0.001 for both 100 ng/mL and 250 ng/mL). Percentage of cells accumulated in synthesis (S, P4) 
phrase increased under PDGF (P =​ 0.0160 compared to baseline), but was significantly reduced when pretreated 
with FSTL1 (Fig. 4d, P =​ 0.0419). Our results implied the anti-proliferative capacity of FSTL1 in HPASMCs under 
hypoxic stimuli.

Transwell assay was performed to examine the effects of FSTL1 on cellular motility. Our findings revealed an 
obvious elevation in the number of migrated HPASMCs subjected to hypoxia (P <​ 0.0001 compared to baseline), 
which was suppressed by FSTL1 as compared to vehicle in a dose-dependent manner (Fig. 4e, P <​ 0.05 for 100 ng/mL  
and P <​ 0.0001 for 250 ng/mL, respectively). Taken together, FSTL1 could act as an anti-proliferation and 
anti-migration mediator in hypoxic HPASMCs.

Small interfering RNA (siRNA)-mediated knock down of FSTL1 promotes hypoxia-induced pro-
liferation and migration of HPASMCs.  To assess the significance of endogenous FSTL1, we knocked 
down FSTL1 gene in the HPASMCs by siRNA transfection. The inhibition efficiency was determined by qRT-PCR 
and western blots, which proved a downregulation of FSTL1 at both mRNA (P =​ 0.0013) and protein levels, 
relative to negative control (N.C.) (Fig. 5a and b). On base of that, MTT assay showed the hypoxia-activated 
cellular growth was enhanced by FSTL1 siRNA transfection as compared to N.C. in normoxic cells as well as cells 
subjected to hypoxia (Fig. 5c, P <​ 0.0001 for both). Similar results were obtained in BrdU incorporation experi-
ment, with larger percentage of BrdU-incorporated cells by FSTL1 knockdown than by N.C. controls under both 
normoxia and hypoxia (Fig. 5d, P =​ 0.0252 for normoxia and P =​ 0.0427 for hypoxia). In concordant, transwell 
assay discovered a larger number of hypoxia-treated cells allowed to migrate when treated with FSTL1 siRNA 
than with N.C. (Fig. 5e, P =​ 0.0059 for normoxia and P =​ 0.0439 for hypoxia). These findings suggest endogenous 
FSTL1 as a homeostatic regulator in HPASMCs proliferation and migration, and thus provide supports as well as 
explanations for the beneficial effects of FSTL1 in HPH.

ERK activity is implicated in the modulation of FSTL1 on HPH.  To determine the molecular mech-
anism whereby FSTL1 alteration results in the phenotypes described earlier, we examined the phosphorylation 
levels (p) of Smad 1/5/8, mitogen-activated protein kinases (ERK, p38 kinase and Jun-N-terminal kinase) and 
AMP-activated protein kinase (AMPK), which are critical transducers in hypoxic pulmonary vascular remodel-
ling. As can be drawn from Fig. 6a, immunoblotting detection of p-ERK showed a promoted signal by hypoxia 
compared to untreated mice (P =​ 0.0069 for WT and P <​ 0.0001 for Fstl1+/− mice, respectively), which was fur-
ther enhanced in Fstl1+/− mice than in WT mice (P =​ 0.0345). Conversely, a reduction in p-AMPK occurred in 
hypoxic treated lungs (P =​ 0.0471 for WT and P =​ 0.0017 for Fstl1+/− mice, respectively), with a further decrease 
in Fstl1+/− mice as compared to WT mice (P =​ 0.0098). Accordingly, the hypoxia-stimulated phosphorylation 
level of ERK was attenuated by administration of FSTL1 in mice (Fig. 6b, P =​ 0.0428), accompanied with an 
exaggerated p-AMPK relative to PBS controls (P =​ 0.0443). However, assessment of p-Smad 1/5/8, p-p38 and 
p-JNK (Jun-N-terminal kinase) in Fstl1+/− lungs revealed no significant differences compared with WT lungs in 
HPH mice (see Supplementary Fig. S1). Therefore, ERK and AMPK are among the potential signalling proteins 
participating in the modulation of FSTL1 against HPH.

To testify whether FSTL1 directly affect ERK and AMPK signallings, FSTL1-pretreated HPASMCs were 
analyzed by western blots. FSTL1 (250 ng/mL) significantly suppressed the phosphorylated ERK under hypoxia 
(P =​ 0.0327 compared to vehicle), with total ERK levels (t-ERK) not affected (Fig. 6c). However, AMPK status 
in hypoxic HPASMCs was not influenced by FSTL1 (Fig. 6d, P =​ 0.1686 compared to vehicle). This implied that 
alteration of p-AMPK by FSTL1 may be in other types of vascular cells rather than in PASMCs. Accordingly, we 
found that siRNA knockdown targeting FSTL1 could result in an activated p-ERK in hypoxic HPASMCs as com-
pared to N.C. control (Fig. 6e, P =​ 0.0401). Furthermore, when pretreated with U0126, an ERK inhibitor, the ele-
vated cellular viability and DNA synthesis in these cells were significantly prohibited (Fig. 7a and b, P =​ 0.0214 in 
MTT and P =​ 0.0382 in BrdU assay as compared to vehicle, respectively). Additionally, siRNA-treated HPASMCs 
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Figure 4.  FSTL1 attenuates hypoxia-induced proliferation and migration of HPASMCs. (a) Effect of 
FSTL1 on cellular viability under hypoxia and PDGF-BB (b) in MTT assay. n =​ 3. (c) Effect of FSTL1 on 
DNA synthesis under hypoxia and PDGF-BB (d) in BrdU assay for flow cytometer analysis. Cells in synthesis 
phrase (S, P4) at a cell cycle was calculated as the percent of P4/(P3 +​ P4 +​ P5). n =​ 3. (e) Effect of FSTL1 on 
cellular migration in transwell chamber. Nuclei of trans-membrane cells were stained with DAPI (blue). n =​ 3. 
Bar =​ 50 μ​m. Data are presented as mean ±​ SEM. *P <​ 0.05, **P <​ 0.01, *** P <​ 0.001. HPASMCs =​ human 
pulmonary artery smooth muscle cells. P3 =​ G0/G1 phrase. P4 =​ S phase. P5 =​ G2 phrase. P6 =​ apoptosis 
phrase. MTT =​ 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. BrdU =​ 5-bromo-2-
deoxyuridine. DAPI =​ 4’,6-diamidino-2-phenylindole. N =​ normoxia. H =​ hypoxia. V =​ vehicle. P =​ PDGF-BB. 
PDGF =​ platelet derived growth factor. FSTL1 =​ ng/mL.



www.nature.com/scientificreports/

8Scientific Reports | 7:45820 | DOI: 10.1038/srep45820

in the presence of U0126 also exhibited lower chemotaxis (Fig. 7c, P <​ 0.001 compared to vehicle). These suggest 
a role of FSTL1 in HPASMCs by targeting ERK signalling.

Discussion
Our research offered data at clinical, animal and cellular levels to support FSTL1, a mediator not previously asso-
ciated with PH, as a novel homeostatic factor for HPH. Firstly, we showed that FSTL1 was upregulated in HPH. 
Secondly, the role of FSTL1 on HPH was suggested by the increased RVSP and pulmonary arterial remodelling 
in hypoxia-treated Fstl1+/− mice relative to their WT littermates, with enhanced ERK phosphorylation and dis-
rupted AMPK activity in lung tissue. We also demonstrated that systemic delivery of FSTL1 protein at least partly 

Figure 5.  SiRNA-mediated knock down of FSTL1 promotes hypoxia-induced proliferation and migration 
of HPASMCs. (a) QRT-PCR analysis of FSTL1 mRNA in HPASMCs transfected with siRNA or N.C., as 
normalized by GAPDH mRNA. n =​ 4. (b) Representative cropped western blots of FSTL1 protein in HPASMCs 
transfected with siRNA or N.C. n =​ 3. (c) Effect of FSTL1 siRNA transfection on cellular viability in MTT assay. 
n =​ 3. (d) Effect of FSTL1 siRNA transfection on DNA synthesis in BrdU assay for flow cytometer analysis. 
Cells in synthesis phrase (S, P4) at a cell cycle was calculated as the percent of P4/(P3 +​ P4 +​ P5). n =​ 3. (e) 
Effect of FSTL1 siRNA transfection on cellular migration in transwell chamber. Nuclei of trans-membrane 
cells were stained with DAPI (blue). n =​ 3. Bar =​ 50 μ​m. Data are presented as mean ±​ SEM. *P <​ 0.05, 
**P <​ 0.01, ***P <​ 0.001. SiRNA =​ small interfering RNA. N.C. =​ negative control. P3 =​ G0/G1 phrase. P4 =​ S 
phase. P5 =​ G2 phrase. P6 =​ apoptosis phrase. N =​ normoxia. H =​ hypoxia. GAPDH =​ glyceraldehyde-3-
phosphate dehydrogenase. DAPI =​ 4′​, 6-diamidino-2-phenylindole. MTT =​ 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide. BrdU =​ 5-bromo-2-deoxyuridine.



www.nature.com/scientificreports/

9Scientific Reports | 7:45820 | DOI: 10.1038/srep45820

attenuated HPH in mice. Finally, we corroborated these data by finding that FSTL1 exerted a direct inhibitory 
impact on hypoxia-stimulated PASMCs proliferation and migration via ERK in vitro.

An earlier study has already demonstrated that FSTL1 protein expression could be markedly upregulated 
under hypoxia in primary human trophoblasts, just like NDRG1, a hypoxia-induced gene to alleviate hypoxic 
injury13. Most recently, emerging evidence has proposed FSTL1 as a clinically relevant secreted factor which 
could be highly regulated and impose a protective role in response to cardiovascular insults34,35. For patients with 
acute coronary syndrome (ACS)24,36 or heart failure37, FSTL1 was found to rise in circulation or in the explanted 
failing heart, respectively. Cardiac transcript level of Fstl1 in mice has shown a substantial increase of 7 folds by 
transverse aortic constriction (TAC), which proved FSTL1 as an antihypertrophic “cardiokine” following pressure 
overload30. Additionally, serum FSTL1 was elevated to 3 folds by permanent left anterior descending coronary 
artery ligation (LAD), plus a 13-fold rise in transcript level of ischemic heart35. In this animal model, adminis-
tration of exogenous FSTL1 has suppressed cardiac apoptosis and inflammation20. Moreover, FSTL1 has been 
identified as a novel “myokine” secreted by skeletal muscle to promote ischemic limb reperfusion or prohibit 
vascular neointimal formation21,26,34. All these are in supportive of our findings that FSTL1 was upregulated in 
patients and mice with deranged pulmonary arteries, with its significance being on the protection against PH. 
What’s more, a newly published study has revealed a remarkable positive association between plasma FSTL1 and 
derivatives of reactive oxidative metabolites (dROMs) concentrations in healthy male individuals38. DROMs can 

Figure 6.  ERK activity is implicated in the modulation of FSTL1 on HPH. (a) Representative cropped 
western blots and statistical analysis of phosphorylations of AMPK (p-AMPK, n =​ 5) and ERK (p-ERK, n =​ 6) 
in lung tissue of Fstl1+/− mice and WT controls under hypoxia. (b) Representative cropped western blots and 
statistical analysis of p-AMPK (n =​ 5) and p-ERK (n =​ 5) in lung tissue of mice treated with FSTL1 or PBS 
under hypoxia. Representative cropped western blots and statistical analysis of p-ERK (c) and p-AMPK (d) 
in HPASMCs exposed to hypoxia or normoxia for 24 h. n =​ 3. (e) Representative cropped western blots and 
statistical analysis of p-ERK in HPASMCs transfected with FSTL1 siRNA exposed to hypoxia or normoxia for 
24 h. n =​ 3. Data are presented as mean ±​ SEM. *P <​ 0.05, **P <​ 0.01, ***P <​ 0.001. HPH =​ hypoxia-induced PH. 
ERK =​ extracellular regulated kinase. AMPK =​ AMP-activated protein kinase. PBS =​ phosphate buffer saline. 
FSTL1 =​ 250 ng/mL. SiRNA =​ small interfering RNA. W =​ week.
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be used as a valuable marker for reactive oxygen species (ROS), the important mediators also linked with chronic 
hypoxia39. This strengthens our results by implying that FSTL1 could be induced by oxidative stress including 
chronic hypoxia. However, as we have shown in Fig. 3b, after 4 weeks of hypoxia challenge, FSTL1 level (in 
PBS controls) was even much less than that in mice intravenously administrated with exogenous FSTL1, which 
resulted in a partly improved HPH. So the insufficiency of hypoxia-induced FSTL1 may account for the reason 
why higher FSTL1 expression failed to protect against HPH. What’s more, it should be noted that after 4 weeks of 
hypoxia, both Fstl1 mRNA and its protein level in lung tissue exhibited no significant difference as compared to 
baseline (Fig. 1d and e). Maybe for the sake of organ protection, FSTL1 was originally induced to confer resist-
ance to damages caused by hypoxia. With the progression of HPH, the protection mechanisms would gradually 
come into a decompensation in lung and detrimental consequences occurred subsequently, leading to a resident 
reduction in Fstl1 transcript and expression. Actually, the precise mechanism of serum FSTL1 elevation observed 
under hypoxic exposure remains unclear and should be explored further.

To the best of our knowledge, this study provides the first evidence that FSTL1 ameliorated hypoxia-induced 
vascular hypertrophy by suppression of PASMCs proliferation and migration. FSTL1 can be expressed in SMCs 
and ECs of embryonic vessels. Combined with the fact that it could prohibit the growth and metastatic potential 
of cancer cells, the mechanisms of FSTL1 action during vascular development may be to suppress cellular growth 
and invasion40–42. In pathological conditions, overexpression of FSTL1 prompted revascularization in murine 

Figure 7.  FSTL1 inhibited hypoxic HPASMCs proliferation and migration via ERK signalling. (a) Effect 
of ERK inactivation on FSTL1 knockdown-induced cellular viability under hypoxia in MTT assay. n =​ 3. (b) 
Effect of ERK inactivation on FSTL1 knockdown-induced DNA synthesis under hypoxia in BrdU assay for 
flow cytometer analysis. Cells in synthesis phrase (S, P4) at a cell cycle was calculated as the percent of P4/
(P3 +​ P4 +​ P5). n =​ 3. (c) Effect of ERK inactivation on FSTL1 knockdown-induced cellular migration under 
hypoxia in transwell chamber. Nuclei of trans-membrane cells were stained with DAPI (blue). n =​ 3. Bar =​ 50 μ​m.  
Data are presented as mean ±​ SEM. *P <​ 0.05, **P <​ 0.01, ***P <​ 0.001. ERK =​ extracellular regulated kinase.  
P3 =​ G0/G1 phrase. P4 =​ S phase. P5 =​ G2 phrase. P6 =​ apoptosis phrase. DAPI =​ 4′​,6-diamidino-2-phenylindole.  
BrdU =​ 5-bromo-2-deoxyuridine. SiRNA =​ small interfering RNA. MTT =​ 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide.
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ischemic limbs by protecting against endothelial cell apoptosis26. Also, FSTL1-mediated attenuation of neointimal 
thickening was demonstrated in rodent models of injurious carotid and femoral artery16,21. In vitro experiments 
proposed FSTL1 as an autocrine regulator which could be induced in human umbilical artery smooth muscle 
cells (HUASMCs) and negatively accumulate cells in G2 phase16. Combined with our results here, FSTL1 may 
play an important role in the control of aberrant structural remodelling in both systemic and pulmonary vascular 
diseases.

FSTL1 has been identified as an antagonist for bone morphogenetic protein 4 (BMP4) to negatively reg-
ulate Smad 1/5/8 signalling in lung morphogenesis and lung fibrosis18,29. Our study observed the discrep-
ant results regarding p-Smads levels by FSTL1 between HPASMCs and human pulmonary artery endothelial 
cells (HPAECs), with FSTL1 limiting the activation of Smad 1/5/8 in HPAECs while exhibiting no effects in 
HPASMCs. This cell-specific function may explain why FSTL1 could negatively regulate BMP/Smads in PAECs, 
as has been demonstrated by Gosens’ lab43, but in the meantime, no changes had been detected in Smads levels 
by FSTL1 in total lung tissues of our HPH mice (see Supplementary Fig. S1). Previous studies have reported the 
impact of FSTL1 on ERK and AMPK activities in injurious myocyte and systemic vascular cells20,21,35. Our study 
demonstrated that haplodeletion of Fstl1 in HPH mice led to a decreased p-AMPK but increased p-ERK in lung 
homogenate as compared to WT group, while systemic delivery of FSTL1 upregulated p-AMPK but downregu-
lated p-ERK relative to PBS controls. ERK is a key enzyme that can be activated by hypoxia44. Blockade of ERK 
activation could inhibit HPASMCs proliferation and prevent hypoxia- and monocrotaline (MCT)-induced pul-
monary vascular remodelling45,46. Conversely, AMPK is an energy sensor serving to switch off the rapid synthesis 
of protein, lipid and ribosomal RNA required for proliferating cells47. AMPK agonist metformin could improve 
hypoxia-induced or MCT-induced PH in rodents48. Also, endothelial-specific AMPK-knockout mice has devel-
oped an accelerated HPH49. All these findings offer clues about the involvement of ERK and AMPK signallings 
in FSTL1-mediated pulmonary arterial remodelling. Intriguingly, our in vitro experiment further indicated that 
FSTL1 affected HPASMCs via ERK but not AMPK signalling, which is different from HASMCs21. Discrepancy 
in responsiveness between HPASMCs and HASMCs could be one reason. Another plausible explanation is that 
endothelium constitutes the primary source of AMPK, which was crucial for the homeostasis of hypoxic pul-
monary arteries partly by downregulation of adjacent PASMCs proliferation49. So it is likely that in HPH mice, 
FSTL1-orchestrated AMPK activity was predominantly detected in ECs but not in SMCs. Thus different roles 
of FSTL1 in multiple cell types should be in further careful consideration and additional studies are warranted.

The potential therapeutic effects of FSTL1 on HPH have also been tested by systemic administration of FSTL1 
protein after 2 weeks of hypoxia (see Supplementary Fig. S2). Although the differences did not reach statistical 
significance, we have observed the trend of reduced HPH from FSTL1-treated mice as compared to PBS con-
trols (P =​ 0.1282 for RVSP and P =​ 0.1176 for RVHI, respectively). It has been reported that pulmonary arterial 
remodelling occurs immediately after exposure to hypoxia, with cellular proliferation and medial hypertrophy 
peaking at 7 days and 10 days, respectively50. This may be the reason for our findings here and highlight the need 
for effective interference before establishment of active remodelling. Together with the earlier results that FSTL1 
treatment starting from the onset of hypoxia has partly delayed the vascular derangement in mice, our findings 
have proposed the capacity of FSTL1 to improve HPH progression.

In conclusion, we attract renewed focus on the protective effects of FSTL1 on HPH. Although the significance 
of FSTL1 remains to be determined in other animal models, as well as in the clinical setting, our study has posi-
tively shown the rationale for further detecting the use of FSTL1 in PH.

Methods
Ethics declaration.  This study obtained the written informed consents from all human subjects according 
to the Declaration of Helsinki, and the authorization from the Ethics Committees of Tianjin Medical University 
General Hospital and Beijing Chao-Yang Hospital of Capital Medical University. The human research proto-
col was approved by the Institutional Review Boards of both hospitals, and all experimental methods involving 
human subjects were completed in accordance with the relevant guidelines and regulations. All animal protocols 
were approved by the Institutional Animal Care and Use Committee of Capital Medical University, and com-
plied with Regulations for the Management of Laboratory Animals announced by the Ministry of Science and 
Technology of People’s Republic of China.

Subjects.  Serum samples from patients with COPD only, COPD combined with PH, and their healthy con-
trols matched in age, sex and smoking history were collected from Tianjin Medical University General Hospital 
and Beijing Chao-Yang Hospital in 2016. COPD was diagnosed according to the Global Initiative for Chronic 
Obstructive Lung Disease (GOLD) criteria. PH was determined by an echocardiography with the pulmonary 
arterial systolic pressure (PASP) no less than 38 mmHg51. Excluded were patients with valvular heart diseases, 
diabetes mellitus, bronchiectasis, pulmonary embolism or tuberculosis, tumor or inability to cooperate. Venous 
blood samples were allowed to clot for two hours at room temperature before centrifugation for 15 min at 3000 
rotations per minute. Serum was stored in aliquot at −​80 °C.

Animal models.  Male C57BL/6 mice (8–10 weeks) were purchased from Vital River Laboratory Animal 
Technology Company of Beijing in China. Fstl1+/− mice and their WT littermates were a kindly gift from College 
of Life Sciences, Nankai University (Tianjin, China). All animals were specific pathogen free (SPF) with unre-
stricted standard mouse chew and water. After 3 days of acclimation, mice were randomly exposed to mixed 
air containing 10% oxygen in a normobaric chamber (BioSpherix, USA) for 0, 2 or 4 weeks. Cages were kept at 
22–24 °C and opened for cleaning every 3 days for half an hour.
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For systemic delivery of FSTL1 protein, mice were randomly subjected to tail-vein injection with recombinant 
human FSTL1 protein (100 ng/g mouse20, R & D Systems, USA) or with equal dosage of vehicle (PBS), immedi-
ately before the beginning of hypoxia or after 2 weeks of hypoxia, and repeated every 3 days until the end.

Measurements of hemodynamics in HPH mice.  After anesthetized with 2% pentobarbital (50 mg/kg,  
i.p.), mice were placed on a pad with chests shaved and disinfected. Pressure waveforms were detected by a 
closed-chest puncture into right ventricle (RV) and transduced to the PowerLab system (ADInstruments, 
Australia)52 for analysis of RVSP as a surrogate for mean PAP. Systemic blood pressure and heart rate (HR) were 
assessed by tail cuff method (Softron, Japan). Blood sample was then withdrawn by cardiac apex puncture for 
hematocrit analysis (Radiometer, Denmark). Serum was stored in aliquot at −​80 °C.

Mice were euthanized by blood drain, with hearts and lungs flushed with saline and then dissected. The free 
wall of RV was excised from septum. Ratio of RV weight to left ventricle plus septum (LV +​ S) weight was calcu-
lated as RVHI.

Analysis of lung morphometrics in HPH mice.  Serial sections in thickness of 4 μ​m were cut through 
the paraffin-embedded left lung lobe and stained with HE (Beijing Dingguo Changsheng Biotechnology, China). 
Anti-α​-SMA (1:200, Sigma-Aldrich, USA) and FSTL1 (1:200, Santa Cruz, USA) were visualized by Alexa Fluor 
594-labelled goat anti-mouse IgG and Fluorescein-conjugated rabbit anti-goat IgG (ZsBio, China), respectively, 
with nuclei mounted by 4′​,6-diamidino-2-phenylindole (DAPI, ZsBio, China). Blood vessels were screened with 
a microscope digital camera (Nikon, Japan) and analyzed by NIS-Elements system (Nikon, Japan). Vascular 
remodelling was evaluated by MT% and numbers of completely muscularized arterioles52,53. Briefly, MT% was 
expressed as a percentage of ((external diameter - internal diameter)/external diameter). Arterioles exhibiting 
more than 75% of circumference positive for α​-SMA were identified as completely muscularized arteries and 
their numbers were totaled in every 10 high-power (×400) fields. Transversely cut arterioles were included for 
measurement, with the exclusion of obliquely cut ones and pulmonary veins.

Cell culture.  HPASMCs (4–8 passages, ScienCell Research Laboratories, USA) were cultured in complete 
smooth muscle cell medium (SMCM)54. Cells were placed in a CO2 incubator (5%, Thermo, USA) at 37 °C until 
reaching a confluence of 80%-90%. After starvation by fetal bovine serum (FBS)-free SMCM to arrest growth for 
24 h, cells were pretreated with FSTL1 (100 ng/mL and 250 ng/mL) in 2% FBS-SMCM for 10 h, followed by stim-
ulation under hypoxia (3% oxygen) or sometimes under PDGF-BB (10 ng/mL). For some experiments, U0126 
(15 μ​M, Cell Signalling Technology, USA) was added 2 h before FSTL1 treatment.

Cell proliferation.  HPASMCs were seeded at 5 ×​ 103 cells per well in a 96-well plate and treated under differ-
ent conditions. Numbers of cells were counted in MTT assay (Amresco, USA) as described before54. For analysis 
of DNA synthesis, a sample of 1 ×​ 106 cells were incubated with BrdU (10 μ​M) at 37 °C for 1 h. Collected cells were 
fixed and permeabilized, followed by exposure to DNase (300 μ​g per sample) at 37 °C for 1 h. The incorporated 
BrdU was stained with specific anti-BrdU fluorescent antibody at room temperature for 20 min. 7-AAD (20 μ​L 
per sample) was added for staining of total DNA. All reagents were from BD Pharmingen, USA. Detected cells in 
S phrase (P4), G0/G1 phrase (P3), G2 phrase (P5) and apoptosis phrase (P6) were separated and analyzed by an 
LSRFortessa flow cytometer (Becton Dickinson, USA). S phrase cells at a cell cycle was calculated as the percent 
of P4/(P3 +​ P4 +​ P5).

Human FSTL1 siRNA preparation.  HPASMCs were seeded in a 96-well or 6-well plate at 60% confluence, 
followed by starvation for 24 h. FSTL1 siRNA (GenePharma, China) and Lipofectamine RNAiMAX were diluted 
in Opti-MEM medium (Invitrogen, USA) and then mixed gentlely for 5 min incubation at room temperature. 
Then the siRNA-reagent mixture was added to every well at the final siRNA amount of 1 pmol in a 96-well plate 
and 25 pmol in a 6-well plate, respectively. The medium was changed for 2% FBS-SMCM after 6 h. Transfection 
efficiency was verified by qRT-PCR and western blot. The siRNA sequences were as following:

FSTL1 siRNA: sense: 5′​-GAAACUGCCAUCAAUAUUATT-3′​;
anti-sense: 5′​-UAAUAUUGAUGGCAGUUUCTT-3′​.
N.C. siRNA: sense: 5′​-UUCUCCGAACGUGUCACGUTT-3′​;
anti-sense: 5′​-ACGUGACACGUUCGGAGAATT-3′​.

Cell migration.  Serum-deprived cells were seeded at 1 ×​ 105 per transwell chamber (Millipore, USA) in a 
24-well plate and allowed to migrate through the 8.0 μ​m membrane pore for 6 h under hypoxia. Then upper 
surface of membrane was washed with PBS twice and swabbed with a cotton bud to discard non-migrated cells. 
Migrated cells on the lower surface were fixed in 4% paraformaldehyde for 20 min. DAPI-labelled nuclei were 
quantified in high-power fields under a microscope digital camera (Nikon, Japan).

Western blot.  Equal amounts of protein extracted from lung tissue, HPASMCs or plasma (1 μ​L) were 
subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and then trans-
ferred to a nitrocellulose membrane (0.45 μ​m, Millipore, USA). After blocked by 5% non-fat milk for at least 
1 h at room temperature, the membrane was incubated in primary antibodies of FSTL1 (1:500, Santa Cruz, 
USA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH, 1:2000, Cell Signalling Technology, USA), 
p-ERK, t-ERK, p-AMPK, t-AMPK, p-Smad 1/5/8, t-Smad 1/5/8, p-p38, t-p38, p-JNK and t-JNK (1:200, Cell 
Signalling Technology, USA) overnight at 4 °C. Then the membrane was washed in PBST (0.1% Tween 20-PBS, 
Sigma-Aldrich, USA) 3 ×​ 10 min followed by incubation in IRDye800-conjugated secondary antibody (1:10000, 
Odyssey LI-COR, USA) for 1 h. After washed again in PBST 3 ×​ 10 min, the membrane was visualized by the 
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LI-COR Odyssey imaging system. The protein signal was quantified by Image J and relative protein level was 
normalized to that of GAPDH as house-keeping protein or to their respective total expressions.

qRT-PCR.  Lung lobe was incubated in RNAlater (Ambion, USA) at 4 °C overnight and stored at −​80 °C. 
Total RNA was extracted from tissue or cultured HPASMCs with the Trizol reagents (Sigma-Aldrich, USA). 
Reverse-transcription was performed with Superscript III First-strand Synthesis System (Invitrogen, USA) and 
quantitative real-time PCR with Brilliant SYBRgreen QPCR Master Mix by a Mx3000 P System (Stratagene, 
USA), as previously conducted in our laboratory31. The relative abundance of Fstl1 mRNA in mice or FSTL1 
mRNA in HPASMCs was normalized to that of the constitutively expressed Gapdh or GAPDH, respectively, by a 
comparative cycle threshold method (2−ΔΔCT). The primer sequences were listed below:

Fstl1: sense: 5′​-TCCAAGATCCAGGTTGATTATGATG-3′​;
anti-sense: 5′​-TCGCGGTTAGCTTGATAGCAGA-3′​.
Gapdh: sense: 5′​-CGGAGTCAACGGATTTGGTCGTAT-3′​;
anti-sense: 5′​-AGCCTTCTCCATGGTGGTGAAGAC-3′​.
FSTL1: sense: 5′​-TCTGTGCCAATGTGTTTTGTGG-3′​;
anti-sense: 5′​-TGAGGTAGGTCTTGCCATTACTG-3′​.
GAPDH: 5′​-GGGTGTGAACCATGAGAAGTATGA-3′​;
anti-sense: 5′​-TGCTAAGCAGTTGGTGGTGC-3′​.

ELISA assay.  Serum FSTL1 concentrations were analyzed by ELISA kits (Uscnk, China) for human and mice 
as instructed by manual.

Statistical analysis.  All data are expressed as mean ±​ standard error of mean (SEM) and analyzed using 
GraphPad Prism 5.0 (GraphPad sofware, USA). One-way analysis of variance (ANOVA) followed by Tukey’s 
Multiple Comparison was carried out for analysis of differences among 3 or more groups. Comparison between two 
groups was conducted using two-tailed unpaired Student’s t test. Statistical significance was considered as P <​ 0.05.
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