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Abstract
Objectives: Deidentification of personally identifiable information in free-text clinical data is fundamental to making these data broadly available 
for research. However, there exist gaps in the deidentification landscape with regard to the functionality and flexibility of extant tools, as well as 
suboptimal tradeoffs between deidentification accuracy and speed. To address these gaps and tradeoffs, we develop a new Python-based dei-
dentification software, pyDeid.
Materials and Methods: pyDeid uses a combination of regular expression-based rules, fixed exclusion lists and inclusion lists to deidentify 
free-text data. Additional configurations of pyDeid include optional named entity recognition and custom name lists. We measure its deidentifi-
cation performance and speed on 700 admission notes from a Canadian hospital, the publicly available n2c2 benchmark dataset of American dis-
charge notes, as well as a synthetic dataset of artificial intelligence (AI) generated admission notes. We also compare its performance with the 
Physionet De-identification Software and the popular open-source Philter tool.
Results: Different configurations of pyDeid outperformed other tools on various metrics, with a “best” accuracy value of 0.988, best precision 
of 0.889, best recall of 0.950, and best F1 score of 0.904. All configurations of pyDeid were significantly faster than Philter and Physionet De- 
identification Software, with the fastest deidentification speed of 0.48 s per note.
Discussion and Conclusions: pyDeid allows the flexibility to prioritize between performance and speed, as well as precision and recall, while 
addressing some of the gaps in functionality left by other tools. pyDeid is also generalizable to domains outside of clinical data and can be fur-
ther customized for specific contexts or for particular workflows.

Lay Summary
Free-text clinical data (eg, clinical notes) contain information that can greatly enrich clinical research, and will be increasingly used to train 
machine-learning models that require large amounts of text data. However, these data contain personally identifiable information that must be 
removed to preserve patient privacy. We developed pyDeid, an open-source Python package to fill a gap in the deidentification space for a tool 
that is modular, customizable, fast, and scalable to large notes. pyDeid performs surrogate replacement and, when available, can take advantage 
of in-memory name lists that cannot be securely written to persistent storage. Additionally, pyDeid is flexible in its approach to use regular expres-
sions and named entity recognition to balance between precision and recall as appropriate for the use case. It is also able to accept user-specified 
custom regular expressions, allowing it to be easily adapted to a variety of contexts. We measure pyDeid’s deidentification accuracy and speed 
on 700 admission notes from a Canadian hospital and the n2c2 benchmark dataset of American discharge notes. We find that pyDeid achieves 
comparable or better performance to similar tools such as the Physionet De-identification Software and the popular open-source Philter tool.
Key words: deidentification; personal health information; privacy; software validation. 

Background and significance
Electronic health records (EHRs) are a valuable resource for 
medical research and quality improvement.1–5 For many 
important research applications, personally identifiable 

information (PII) contained in EHRs must be deidentified in 
compliance with privacy laws, data sharing agreements, and 
research ethics. Deidentification involves removing PII and/or 
replacing it with surrogate information. In the United States 

Received: August 15, 2024; Revised: December 12, 2024; Editorial Decision: December 17, 2024; Accepted: December 31, 2024 
© The Author(s) 2025. Published by Oxford University Press on behalf of the American Medical Informatics Association.   
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/ 
by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial 
re-use, please contact journals.permissions@oup.com 

JAMIA Open, 2025, 8(1), ooae152 
https://doi.org/10.1093/jamiaopen/ooae152 
Application Notes 

https://orcid.org/0000-0001-8792-2240
https://orcid.org/0000-0001-6857-931X


and Canada, the Health Insurance Portability and Account-
ability Act (HIPAA) and the Personal Information Protection 
and Electronic Documents Act, respectively, outline what 
information constitutes PII. In general, names, addresses, and 
contact information such as phone numbers and email 
addresses are considered PII.

Manual deidentification is laborious and time-consuming, 
as it can take approximately 1.5 min to deidentify a single 
patient record in an EHR.6 Thus, tools have been developed 
to automate the deidentification process. Rule-based tools 
use regular expressions to pattern-match information in 
EHRs to information in data dictionaries.7–11 Tools that use 
machine-learning techniques can generalize better, but are 
slower relative to rule-based methods. Hybrid tools that use 
machine-learning capabilities in conjunction with rules have 
yielded considerable success in PII deidentification.12–15 By 
and large, however, existing tools lack broad generalization 
(eg, US vs Canadian health care contexts), are time- 
consuming to run, or costly to use.

In this paper, we introduce pyDeid, a Python-based refac-
tor of the widely used Perl-based Physionet De-identification 
Software v1.1.10 pyDeid is a modular, open-source tool that 
uses both regular expressions and data dictionaries—as well 
as a named entity recognition (NER) option—for fast and 
accurate PII deidentification. pyDeid is faster than compara-
ble tools, flexible in its deidentification approach, customiz-
able, and has some desirable properties missing from 
comparable tools such as surrogate replacement, custom reg-
ular expressions, and in-memory wordlists. pyDeid fills the 
existing gap in the Canadian health care system, with a 
potential for application outside of the Canadian health care 
context. We present a comparison of both the speed and per-
formance of pyDeid with 2 other rule-based tools, Physionet 
deid10 and Philter,14 on a set of unstructured Canadian 
admission notes and the popular n2c2 benchmark dataset of 
American discharge notes.16,17

Materials and methods
pyDeid
Overview
pyDeid is a Python-based tool that primarily uses regular 
expressions and lookup dictionaries (henceforth referred to 
as “wordlists”) to identify and replace PII with realistic 
surrogates.

It is a refactor of the Perl-based Physionet De-identification 
Software v1.1,10 borrowing many of the same regular expres-
sion rulesets as the original software while adding additional 
rules for the Canadian context (eg, rules to identify Ontario 
Health Insurance Plan [OHIP] numbers, postal codes, etc.). 
Additional rules were also added for edge cases that were not 
captured by the Physionet deidentification software, such as 
compound names and name prefixes (eg, Van der Meer, see 
“Step 1. Find PII”). The implementation is faster to use and 
requires no pre- or post-processing of data into a software- 
specific format and operates directly on raw comma sepa-
rated value (CSV) data. It accepts lists of patient and doctor 
names as arguments to accommodate workflows where these 
data must be read from remote server locations. The package 
is modular and easily modified (see Appendix S2), and it 
allows for optional NER that can find less common or 
region-specific names.

The Health Insurance Portability and Accountability Act 
lists 18 categories of PII, including nontextual identifiers such 
as vehicle license plate numbers, fingerprints, photographs, 
and others. pyDeid currently supports the deidentification of 
8 categories of PII, which cover 7 of the 18 HIPAA identi-
fiers. The supported categories include names, dates, loca-
tions (smaller than the level of province, including cities, 
postal codes, and street names), identifiers such as medical 
reference numbers, social insurance numbers, OHIP numbers 
(which are not considered PII under HIPAA), email 
addresses, and telephone numbers. It can easily be extended 
to additional HIPAA categories such as IP addresses, URLs, 
and vehicle identification numbers.

Algorithm
The pyDeid algorithm can be broken down into 3 major 
“steps”: (1) find PII in the note using the Physionet De- 
identification Software ruleset with some modifications, (2) 
correct for or “prune” overlapping instances of PII, and (3) 
replace the found PII with surrogates.

Step 1. Find PII
1.A. Wordlist lookup. This step begins by splitting the note 
text into continuous alphanumeric strings or “tokens.” The 
tokens are then matched against a set of wordlists and tagged 
with corresponding labels if a match is found. These word-
lists are described below:

� Name lists. Includes lists of common and popular male 
and female first and last names from the publicly available 
Ontario Data Catalogue, and ambiguous female and male 
first names, and ambiguous last names as published with 
the original Physionet De-identification Software v1.1. 
Custom lists of names, such as the list of patients, doctors, 
or nurses from a given health care facility, can also be 
provided as input to pyDeid, without having to be read 
from persistent storage. 

� Prefixes and titles (eg, Mr, van der, de la). 
� Area codes and locations. In our deployment, locations 

primarily include places and neighborhoods in Ontario, 
Canada (eg, Richmond Hill, Bathurst Manor). These lists 
can be modified to suit other locations and contexts as 
well. 

� Common words. Terms that tend to be non-PII. 
� Medical terminology. These include medical phrases 

which contain proper nouns that may otherwise be tagged 
as PII (eg, Douglas’ pouch) and other medical terminology 
(eg, X-ray, trach) from the SNOMED vocabulary (also 
published with the original Physionet De-identification 
Software v1.1). 

1.B. Ruleset matching. The “find PII” step continues by 
matching the note against a set of regular expressions (hence-
forth referred to as “rules”) for each PII category of interest. 
Some tokens are tagged as “ambiguous” if they are found in 
a particular wordlist but do not readily correspond to a rule 
for a given PII category. These rules and examples of ambigu-
ous cases within each PII category are described below:

1. Names. 
a) The token is preceded by or followed by some indi-

cator (“name is,” “Mr,” “MD,” “Professor,” 
“prepared by,” etc.). 
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b) The token is preceded by or followed by an unam-
biguous name, suggesting a “First, Last,” or “Last, 
First” name pattern. 

c) Multiple names are listed in succession (eg, Drs A, B, 
and C), including compound or hyphenated last 
names. 

Tokens that were not tagged in the first pass can be 
tagged as name PII by a set of additional rules. For exam-
ple, names adjacent to certain titles, prefixes, suffixes, 
name indicators (eg, “Mr,” “de la,” “nurse,” “resident,” 
“prepared by,” “name is”), and names present in the 
‘Last name, First name’ format. Additional rules check 
for compound and hyphenated names.

Some checks are run on the names identified by these sce-
narios to reduce false positives, such as for whether the 
tokens are title cased, whether the token and surrounding 
tokens correspond to a medical phrase contained in the Medi-
cal Terminology wordlist, and for compound names, whether 
the token preceding or following it was an unambiguous 
name.

2. IDs. Tokens corresponding to medical record numbers 
and health insurance numbers are tagged using regular 
expressions that match the format of those identifica-
tion numbers, preceded by some indicator that provides 
context to the identifier in the case of an ambiguous 
string of digits. 

3. Contacts. Phone numbers (with or without extensions) 
are tagged as such using regular expressions corre-
sponding to many popular formats. For potential phone 
numbers with missing or additional digits, line breaks, 
and spaces, they are more likely to be tagged as PII if 
the first 3 digits correspond to a Canadian area code 
(eg, 416) to improve deidentification precision. To 
reduce false positives, if numerical tokens are preceded 
by words indicating medical measurements (eg, BP, 
HR), then the following numbers are not tagged as PII. 
Note that pyDeid does not currently identify 

incomplete numbers (eg, 7-digit pager numbers without 
the area code). Regular expressions are also used to 
identify email addresses. 

4. Dates. Regular expressions for many popular date for-
mats are used to identify potential date PII. This 
includes patterns such as “12-Apr-05,” “2005/04,” 
“April 12th,” “12 of April,” and “Apr. of 2005.” In 
ambiguous cases, such as 12/04, false positives are 
reduced by checking that the day, month, and year 
components can form a valid date. That is, the day 
must fall between 1 and 31, month between 1 and 12, 
or “January/Jan” and “December/Dec,” and the year 
must be between some minimum and maximum valid 
year that can be specified by the user. Moreover, the 
date must not appear after a medical term (eg, cc, BP, 
dose).   

Although not considered PII under HIPAA, years are 
found using the context surrounding the token to limit 
false positives. This is to limit the risk that a missed 
year would provide information about which dates in 
the text were replaced with surrogate dates.   

The note is additionally searched for holidays using 
regular expressions that match Canadian holiday 
names, as well as seasons and date ranges. 

5. Locations. Locations are identified using regular expres-
sions for address formats (eg, “1 Main Street”), along 
with prefixes and suffixes that are indicative of an 
address or place (eg, “Avenue,” “Apt”). Postal codes 
are tagged as such using regular expressions for Cana-
dian postal codes (ie, A1B 2C3), though this can be 
modified to suit other formats as well (eg, American zip 
codes, 12345—see Appendix S2). Wordlists are used to 
identify cities and local place names. 

The “find PII” step results in a list of tokens tagged with 
their start and end positions, as well as tags corresponding to 
the rules or wordlists to which the token was matched 
(Figure 1).

Figure 1. Illustrative example of each processing step in the pyDeid algorithm.
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Note that given the text is whitespace tokenized, names 
such as “JohnDoe” would not be tagged as PII. However, PII 
split across new lines is handled appropriately.

Step 2. Prune PII
The list is first sorted by start position. As tokens in this list 
may overlap partially or fully with each other, this additional 
step is used to generate a list of nonoverlapping PII tokens to 
be replaced in the original string. First, tokens with only 
“ambiguous”-type tags are removed from the list. This means 
that the token found no “supporting” rule during the find PII 
step that would address its ambiguity and “strengthen” its 
case as PII. Next, 2 scenarios are checked to resolve poten-
tially overlapping tokens:

1) The next PII in the list is fully contained within the cur-
rent PII. In this case, the “containing” PII takes prece-
dence and the next PII is dropped. For example, in the 
string “20 Bond Street,” “Bond” may be tagged as a 
name, and would be fully contained within “20 Bond 
Street,” tagged as an address. The final PII would be “20 
Bond Street” and is replaced only once, with a surrogate 
address. 

2) The start position of the next PII occurs after the start 
position of the current PII, but before the end position of 
the current PII, and the end position of the next PII is 
after the end position of the current PII. In this case, we 
combine the PII, taking the string starting at the start 
position of the current PII, and ending at the end position 
of the next PII. For example, consider the PII “20th of 
March,” followed by the PII “March, 2020.” In this 
case, the “prune PII” step would collapse these PII into 
“20th of March, 2020” and perform 1 replacement in the 
string. If there is a type mismatch between the 2 overlap-
ping strings, the type is flagged as a generic <PII> type. 

The “prune PII” step results in a list of nonoverlapping PII 
sorted by start position.

Step 3. Replace PII
The sorted list of PII is looped through sequentially. For each 
PII found and its corresponding PII type, the substring 
defined by the start and end positions of the PII is cut from 
the note and in its place, a randomly generated surrogate for 
that PII type is inserted. In the special case of dates, to pre-
serve the medical timeline of events, surrogate dates are 
shifted by the same amount of time within a particular note 
(a single CSV cell of free text). For instance, if a patient was 
admitted on November 11 and had an X-ray done on 
November 17, 2016, then the surrogate dates for those events 
would maintain the difference of 6 days in between the 2 
dates (eg, April 5 and April 11, 2022). Other PII are ran-
domly replaced by a surrogate PII of the same type without 
specific constraints. PII for which the type cannot be deter-
mined are replaced with a generic surrogate such as <PII>. 
Additionally, if multiple instances of the same name are iden-
tified as PII, the same surrogate will be used for both.

Input. pyDeid expects tabular data in CSV format as input.

Output. pyDeid generates 2 output files: (1) a deidentified 
file with the same structure as the original in CSV format and 
(2) a PII replacement file in CSV or JSON format. The PII 
replacement file contains the list of PII generated during the 

“prune PII” step with their start and end positions in the orig-
inal note, as well as their surrogates generated during the 
“replace PII” step, with their start and end positions in the 
new deidentified note.

Customization. pyDeid can easily be modified or extended to 
generalize to a variety of contexts with minimal effort. 
Within a particular context, such as Canadian health care, 
pyDeid also allows the ability to capture custom regular 
expressions by specifying them during runtime. Thus, users 
can add their own rules or wordlists to suit their context or 
use case (Appendix S2).

Named entity recognition. Named entity recognition is an 
“information retrieval” task to identify structured informa-
tion such as people and locations in unstructured text.18

pyDeid allows for an additional NER step following step 1.B. 
using the spaCy Python library from Explosion. Personally 
identifiable information identified by NER is treated the 
same as PII found using the regular expression rules, and 
receive the same pruning and replacement defined in the basic 
algorithm. By default, pyDeid uses the pretrained small, CPU 
optimized, English NER pipeline.

Data description
Our primary analysis used 700 admission notes from patients 
admitted to General Internal Medicine at St Michael’s Hospi-
tal in Toronto, Ontario, Canada between May 2014 and 
October 2017.

Each admission note was manually annotated by a subject 
matter expert for PII and subsequently reannotated by a sec-
ond rater. The following categories of PII were specified 
based on prior work and HIPAA guidelines: names and ini-
tials, identifying numbers, contact information, locations, 
and dates (see Table S1 in Appendix S1 for more details).

There were 797 072 tokens in the dataset, of which 48 491 
represented instances of PII. On average, there were 1139 
tokens in each note, of which approximately 96 tokens repre-
sented PII (6.08%). A complete breakdown of the number 
and percentage of PII tokens in each category is provided in 
Appendix S1.

In order to evaluate the generalizability of pyDeid to other 
regions and contexts, deidentification performance was eval-
uated on medical notes from the test split of the n2c2 dataset, 
which is a widely used corpus of medical discharge 
summaries obtained from American health care institu-
tions,17,18 with ground truth labels relevant for comparison 
(see Appendix S2).

Evaluation metrics
First, the following descriptive measures of overall perform-
ance at the token level are provided by comparing deidentifi-
cation results to the manual token annotations.

� Overall accuracy. Defined by identifying whether a token 
represents PII or not: 

True PositivesþTrue Negatives
True PositivesþTrue NegativesþFalse PositivesþFalse Negatives 

� Category accuracy. Of those tokens identified as PII, the 
proportion assigned to the correct PII category (ie, catego-
rizing a name as a name instead of a date): 
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True Positives PII type identified ¼ True PII type

True Positives 

� Precision. 
� Recall. 
� F1: The harmonic mean of precision and recall. 

F1 ¼ 2×
precision× recall
precisionþ recall 

� Speed. Speed was assessed as the total time taken to dei-
dentify the set of 700 admission notes as well as the aver-
age time taken to process each note. Each tool was run 10 
times to obtain an average estimate of the time it took to 
process all 700 notes. All runs were performed on a Win-
dows 10 system with 16GB of RAM, and an AMD Ryzen 
5 PRO 4650U CPU, using Python v3.8.8 and Perl 
v5.32.1. A one-way analysis of variance was conducted to 
test the difference in speed across the 3 tools, and between 
different configurations of pyDeid. 

Comparison of tools
We compare the performance of pyDeid against 2 popular, 
regular expression-based tools for deidentification of clinical 
text:

deid
deid is the open-source, Perl-based automated deidentifica-
tion software on which pyDeid is based. It uses a combina-
tion of regular expressions and lexical matching to identify 
PII in clinical text and was developed on a corpus of nursing 
notes from the MIMIC II database.10 The 1.1 version of the 
software was used for this comparison, without any modifi-
cation for the Canadian context.

Philter
Protected Health Information filter (Philter) is an open- 
source Python package, which uses a combination of pattern 
matching, statistical modeling, exclusion lists and inclusion 
lists to identify PII in clinical text and was developed at the 
University of California San Francisco.14 Protected Health 
Information filter was chosen as the comparator tool because 
it is freely available, open source, entirely regex based, and 
modifiable to other regions and contexts. Although tools 
such as MIST and NLM-Scrubber have been shown to per-
form faster than either deid or Philter,19 and are freely avail-
able, neither tool is easily modified to other contexts. MIST is 
a machine-learning-based tool and NLM-Scrubber is not 

available open source, making them inappropriate as alterna-
tives to pyDeid.

Configuration of tools
pyDeid is assessed in 4 configurations: (1) basic configuration, 
(2) basic configuration with NER enabled, (3) basic configura-
tion with custom name lists of doctors and patients included, 
and (4) a configuration with both NER and custom name lists.

Protected Health Information filter produces an internal 
coordinate map, with start and end positions, and PII for all 
found instances of PII. This map was used to compare against 
the 700 manually annotated admission notes. Protected 
Health Information filter did not easily allow for the specifi-
cation of a particular subset of PII categories to identify and 
so the default settings were used.

Physionet’s deid allows in its configuration file to turn on or 
off particular broad categories of PII. Filters for age, ethnicity, 
state names, country names, company names, and hospital names 
were turned off as they are not considered to be PII in Canada.

Pre- and postprocessing of notes for comparison
Electronic health record data are commonly extracted by hos-
pital sites in CSVs format and many downstream extract, 
transform, and load pipelines accept CSV files as input. 
pyDeid was optimized for CSV files with this in mind. Other 
programs may require preprocessing to reformat the CSV 
prior to deidentification.

1) pyDeid. No additional pre- or postprocessing was 
required from the original CSV file. 

2) deid. The program requires the notes to be read from 
and written to a single, continuous text file separated by 
a custom header and footer pattern. 

3) Philter. Each note was parsed from the original CSV to 
be read from and written into individual text files. 

Analysis of relative performance between tools was done 
by comparing the manual annotations with a tool-specific 
output file that contained information about the start and 
end position of each PII token found in the note, as well as 
the type of PII. The format of this file varied between tools. 
For example, Philter did not classify found PII to the same 
level of granularity as deid or pyDeid.

Results
Performance
The performance of each tool, including the different 
configurations of pyDeid, is reported in Table 1, with the 

Table 1. Performance of all deidentification tools on 700 Canadian admission notes.a

pyDeid configuration

Basic NER Name lists Name listsþNER Philter deid

Overall accuracy 0.987 0.970 0.988 0.971 0.972 0.981
Category accuracy 0.986 0.977 0.987 0.977 — 0.964
Precision 0.889 0.688 0.877 0.686 0.710 0.798
Recall 0.906 0.934 0.932 0.950 0.924 0.874
F1 0.879 0.792 0.904 0.797 0.803 0.834
Speed (min) mean (SD) 5.55 (0.04) 5.78 (0.06) 6.08 (0.16) 9.63 (0.63) 74.43 (5.39) 10.84 (0.76)
Speed (s/note) mean (SD) 0.48 (0.003) 0.50 (0.005) 0.52 (0.013) 0.83 (0.054) 6.38 (0.462) 0.93 (0.065)

Abbreviation: NER, named entity recognition.
a Performance measures (except for speed) are calculated at the token level (as opposed to spans of text). Bolded cells indicate the best-performing tool for 

a given performance metric.
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results broken down by category reported in Table S2 
(Appendix S1).

The base configuration of pyDeid had higher precision 
than Philter and deid (0.889 vs 0.710 and 0.798, respec-
tively). The recall score of the base configuration of pyDeid 
was lower than Philter (0.906 vs 0.924), but pyDeid configu-
rations with NER improved recall beyond the performance of 
Philter (0.950 and 0.934 vs 0.924). Recall was higher for the 
base configuration of pyDeid than deid (0.906 vs 0.874). F1 
scores were better for pyDeid than both Philter and deid 
(0.879 vs 0.803 and 0.834). P-values for all precision, recall, 
and F1 score comparisons were less than .001 based on ran-
domization tests for differences20 on 1 050 000 
permutations.

pyDeid generally performs as well or better in PII identifi-
cation than the other tools measured, with dramatic increases 
in speed. The NER configurations achieve a small improve-
ment in recall with a large decrease in precision. However, 
pyDeid with custom name lists performs better on all metrics 
measured than any of the compared tools.

We also measure the performance of the base configuration 
of pyDeid on the n2c2 benchmark dataset, to validate the 
generalizability of the software to other regions and contexts. 
Protected Health Information filter outperforms pyDeid on 
recall and F1 score, whereas pyDeid outperforms Philter on 
the precision measure. Conversely, deid outperforms pyDeid 
on precision, but not recall or F1 score (see Appendix S2 for 
more details) (Table 2).

Speed
There was a significant main effect of deidentification tool on 
speed, F(5, 54)¼1494, P <.001. Posthoc tests with a Tukey 
adjustment for multiple comparisons indicated that Philter 

was considerably slower than deid (P< 001) and all versions 
of pyDeid (Ps<.001). deid was slower than the basic, Name 
List, and NER versions of pyDeid (Ps<.001) but did not dif-
fer significantly in speed from the Name ListsþNER configu-
rations of pyDeid (Ps>.200).

Across the 4 configurations of pyDeid, the NER configura-
tion was significantly slower than the basic configuration 
(P¼.033) and the configuration with name lists (P¼.004), 
and the configuration with Name Lists and NER was slower 
than with name lists only (P<.025).

Lastly, we compared the deidentification speed of pyDeid 
and deid using synthetic medical notes of different sizes gen-
erated with 6% PII prevalence using ChatGPT (Appendix 
S3). The focus of this comparison is to assess the speed with 
which the tools process a given note, and does not consider 
the deidentification performance. Protected Health Informa-
tion filter was excluded as it was the slowest deidentification 
tool (Table 1). As the size of the medical notes increased, deid 
was considerably slower than pyDeid (Figure 2).

Discussion
We present pyDeid: an updated, open-source tool for deiden-
tification of PII in free-text medical notes. pyDeid fills a gap 
in the deidentification space for a tool that is fast and scalable 
to large notes, is customizable to other contexts, performs 
surrogate replacement, and is able to take advantage of in- 
memory name lists containing data that cannot be securely 
written to and read from persistent storage. Additionally, 
pyDeid is flexible in its approach to use regular expressions 
and NER to balance between precision and recall as appro-
priate for the use case, and is able to accept user-specified 
custom regular expressions while achieving a deidentification 
performance that is comparable to or better than existing 
tools.

Notably, the base configuration of pyDeid outperformed 
deid—the rule-based Perl software on which pyDeid is 
based,10 in precision, recall, and the F1 score. This is mostly 
attributable to the regional differences in PII in the Canadian 
medical notes on which these tools were tested compared to 

Table 2. Base pyDeid performance on the n2c2 dataset.

Category  
accuracy

Overall  
accuracy Precision Recall F1

Base pyDeid 0.991 0.760 0.821 0.777 0.798

Figure 2. Speed comparison between the original Physionet deid tool and pyDeid.
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the American context for which deid was developed, which 
led most notably to lower false positive rates for Names. 
However, we note that deid has higher precision and F1 score 
than the NER versions of pyDeid, primarily due to the high 
false positive rate for names in the NER configuration. We 
additionally show that the non-NER configurations of 
pyDeid are nearly twice as fast as the deid software on the 
700 admission notes containing an average of 1139 tokens 
per note. For high volume operational workflows, this differ-
ence in speed is crucial. Additionally, pyDeid can scale much 
better as the size of each individual note increases from 1000 
tokens to 10 000 tokens (Figure 2).

Protected Health Information filter14 similarly uses a rule- 
based approach combined with a natural language processing 
pipeline to categorize tokens as PII. Recall performance was 
high and comparable between Philter and pyDeid, indicating 
that the probability of missing PII was not markedly different 
between the 2 tools. Precision was comparable between Phil-
ter and the NER configurations of pyDeid, whereas pyDeid 
outperformed Philter with its base and Name List configura-
tions. Low precision in the deidentification process can be 
problematic for some downstream research use cases because 
valuable, non-PII information may be lost through inadver-
tent deidentification. Moreover, Philter was considerably 
slower than pyDeid, which limits its use in high volume 
workflows. Additionally, pyDeid offers surrogate replace-
ment, which Philter does not. Surrogate replacement is a 
desirable property for the protection of patient privacy, in 
that missed PII is indistinguishable from found and replaced 
PII.

Another advantage of pyDeid is the availability of different 
configuration options that can be used to satisfy the needs 
and constraints of different deidentification use cases. When 
patient and doctor name lists are available, we show that 
there are meaningful gains to software recall, reducing missed 
PII for increased privacy, with very little tradeoff in precision 
and speed. If a use case allows for a sacrifice to speed and pre-
cision, enabling the NER option further improves recall. 
Another important property of the NER is that it is more 
effective at identifying uncommon or nontraditionally Cana-
dian names that may not be contained in public name lists, 
which is valuable for the equity of patient privacy. If avail-
able, the use of custom doctor and patient name lists can also 
help mitigate this bias.

There are several methodological limitations of pyDeid. 
First, although pyDeid is conceptualized as a Python-based 
refactor of the Physionet deid tool, we iteratively reviewed 
pyDeid’s performance and added additional rules to the regex 
ruleset as needed, such as accounting for compound names 
(eg, “Van der Meer”) and name prefixes (eg, “Dr”). This is 
because Ontario is one of the most diverse places in the world 
with respect to race, language, ethnicity, and country of ori-
gin. Thus, any tool designed to detect PII must be able to han-
dle and identify a diverse range of names without resulting in 
differential handling of privacy along the above axes of mar-
ginalization. Incorporating these additional rules into pyDeid 
ensures that equity-deserving populations have their privacy 
preserved. Nonetheless, we acknowledge that this process 
may have led to some bias in our tool comparison process, 
specifically, between deid and pyDeid.

Second, the largest error rate was associated with identify-
ing locations (up to 50%, Table S3 in Appendix S1), because 
many locations in the medical notes were explicitly named as 

proper nouns (eg, the name of a nursing home) rather than 
street addresses. Future versions of pyDeid can enable loca-
tion tagging in the NER step to identify named locations with 
greater accuracy. Third, when the NER option is enabled, 
there is a marked increase in the number of names falsely 
identified as PII (Table S2 in Appendix S1). This is likely due 
to the use of spaCy, which generally identifies named entities 
and may not distinguish them from medical terms, for 
instance. Future versions of pyDeid with NER can be 
improved by incorporating medspaCy that similarly identifies 
named entities in the clinical domain.21 We provide a short 
tutorial demonstrating how medspaCy components can be 
incorporated into pyDeid on the Github page for pyDeid.22

Finally, we report performance primarily in data from a sin-
gle health care organization in Canada. Our confidence in the 
tool’s performance is strengthened by its strong performance 
in the publicly available n2c2 dataset from Partners Health-
Care System in Boston, but additional validation across other 
health care organizations would be valuable.

Conclusion
Our results show that pyDeid performs as well as or better 
than existing deidentification tools across various use cases 
and is easily generalizable to other contexts. We also show 
that there are significant speed differences between existing 
regular expression-based implementations of deidentification 
tools and pyDeid, demonstrating scalability of pyDeid with 
increasingly large datasets. Thus, pyDeid serves as a fast, 
modular, and accurate tool for removing PII in free-text clini-
cal notes and medical data.
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