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Abstract: Animals and plants are increasingly threatened by emerging fungal and oomycete diseases.
Amongst oomycetes, Saprolegnia species cause population declines in aquatic animals, especially fish
and amphibians, resulting in significant perturbation in biodiversity, ecological balance and food
security. Due to the prohibition of several chemical control agents, novel sustainable measures are
required to control Saprolegnia infections in aquaculture. Previously, fungal community analysis
by terminal restriction fragment length polymorphism (T-RFLP) revealed that the Ascomycota,
specifically the genus Microdochium, was an abundant fungal phylum associated with salmon eggs
from a commercial fish farm. Here, phylogenetic analyses showed that most fungal isolates obtained
from salmon eggs were closely related to Microdochium lycopodinum/Microdochium phragmitis and
Trichoderma viride species. Phylogenetic and quantitative PCR analyses showed both a quantitative and
qualitative difference in Trichoderma population between diseased and healthy salmon eggs, which
was not the case for the Microdochium population. In vitro antagonistic activity of the fungi against
Saprolegnia diclina was isolate-dependent; for most Trichoderma isolates, the typical mycoparasitic
coiling around and/or formation of papilla-like structures on S. diclina hyphae were observed. These
results suggest that among the fungal community associated with salmon eggs, Trichoderma species
may play a role in Saprolegnia suppression in aquaculture.
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1. Introduction

Saprolegniosis, caused by Saprolegnia species, results in tremendous losses in wild and cultured
fish species including salmonids such as salmon and trout, and non-salmonids such as tilapia, catfish,
carp, and eel [1]. The typical symptoms of Saprolegniosis are white or grey fungal-like hyphal mats
on fish or their eggs [2]. Yield losses of 10% to more than 50% have been reported in eggs and young
fish [1,3,4].

To control Saprolegniosis, formalin is now commonly applied but is expected to be banned soon
due to adverse effects on the environment [1]. A limited number of chemical and non-chemical
alternative treatments have been tested to control Saprolegniosis, including hydrogen peroxide,
sea water flushes and ultraviolet irradiation, but none of these are as effective as the banned malachite
green [1]. Also, no vaccine is currently available to control this disease [1,5].
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Bacterial genera such as Bacillus, Enterococcus and Lactobacillus have been shown to reduce specific
diseases in aquaculture and several of these beneficial bacteria are being commercialized [6–10].
As a sustainable measure to combat Saprolegniosis, the bacterial genera Aeromonas, Frondihabitans
and Pseudomonas have been proposed [1,11–18]. Alike the probiotic bacteria, several beneficial
fungi and/or their bioactive compounds are applied to control diseases. These fungal species are
isolated either randomly or systematically [19–25]. Amongst commercialized fungi, Aspergillus oryzae,
Coniothyrium minitans, Phlebiopsis gigantea and Trichoderma (teleomorph Hypocrea [26]) spp., are able to
suppress diseases and promote the growth of various hosts, mainly terrestrial crops and some animals
such as cattle [27–30]. For fish, Trichoderma viride enhanced body weight and reduced mortality of Nile
tilapia exposed to Saprolegnia sp. [31]. The commercial product HetroNex, containing Trichoderma viride
and Trichoderma harzianum, has been developed to control fungal and oomycete diseases caused by
Fusarium, Lagenidium and Saprolegnia in aquaculture ponds of fish, prawn and shrimp [32].

In a fungal diversity study of the marine sponge Dragmacidon reticulatum, Trichoderma represented
one of the most abundant genera among the isolated fungi [33]. To date, however, still little is known
about the fungal community in aquaculture or aquatic environments [18,34]. Previously, we showed by
clone library analyses that the oomycete community associated with Saprolegnia-infected (diseased) and
healthy salmon eggs from a commercial fish hatchery were dominated by Saprolegnia with no difference
in the number and pathogenicity of the Saprolegnia isolates present in either diseased or healthy salmon
egg batches [18]. Based on terminal restriction fragment length polymorphism (T-RFLP) analysis
and clone library sequencing, also no obvious differences were observed in the fungal community
composition between the diseased and healthy salmon egg batches [18]. The clone library consisted of
209 fungal clones, the majority of which belonged to the Ascomycota. More specifically, 139 clones
were classified as Microdochium (teleomorph Monographella) [18,35,36]. To elucidate the role of fungi in
the protection of salmon eggs against Saprolegniosis, we isolated and (phylogenetically) characterized
fungi from diseased and healthy salmon eggs. Their abundance in diseased and healthy salmon egg
batches and their activity against Saprolegnia diclina were investigated here.

Figure 1. Isolation of salmon egg-associated fungi and oomycetes on potato dextrose agar plates.
One or two salmon eggs from a Saprolegnia-infected batch (diseased, replicate No. 1–6) or a healthy
batch (replicate No. 7–12) were placed onto the agar plates to allow fungal outgrowth.

2. Results and Discussion

2.1. Isolation of Fungi from Diseased and Healthy Salmon Eggs

Previously, Saprolegnia-infected (diseased) and healthy salmon eggs and their corresponding
incubation water were sampled from a commercial fish farm (N = 6 for diseased eggs and N = 6
for healthy eggs) [18]. Per sample, one or two salmon eggs were placed on potato dextrose agar
to allow fungal outgrowth (Figure 1). We obtained and purified 20 fungal isolates in total and by
ITS sequencing identified three different genera, Microdochium, Trichoderma (both Ascomycota) and
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Mortierella (Zygomycota). Microdochium and Mortierella were the most represented genera in our
previous clone library sequence analysis. Interestingly, Trichoderma was not detected in the previous
analysis, probably due to the limited number of sequenced clones, the specificity of the primers or the
efficiency of the PCR reaction [18]. The two Mortierella isolates (BLAST identity of 100% in Genbank
database) were isolated from only one healthy salmon egg sample. Here we aimed at comparing
isolates obtained from multiple replicate samples of diseased and healthy eggs. Therefore, we focused
on the Ascomycota isolates for the subsequent analyses described below.

2.2. Microdochium

Microdochium species are known as snow molds, and some are pathogenic to plants [37–44].
Microdochium nivale and Microdochium majus are two of the main causative agents of Fusarium head
blight [42], whereas Microdochium lycopodinum and Microdochium phragmitis were isolated from plants
without causing disease [45,46]. M. phragmitis was endophytic in common reed and was more present
in flooded habitats than the closely related Microdochium bolleyi [45]. Some Microdochium species were
antagonistic to the plant pathogen Verticillium dahliae [47]. Amongst our nine Microdochium isolates,
five were isolated from diseased and four from healthy salmon eggs (Table 1). The origin of our
Microdochium isolates was possibly from the catchment area, which was the water source for the
salmon egg incubators [18]. Based on the phylogenetic analyses of internal transcribed spacer (ITS)
sequences, all the nine Microdochium isolates are closely related to M. lycopodinum and M. phragmitis,
and no distinct separation is observed between isolates from diseased or healthy salmon eggs (Figure 2).
Quantitative PCR using M. lycopodinum/M. phragmitis specific primers showed and confirmed that
M. lycopodinum/M. phragmitis was detected in equal amounts in total DNA samples obtained from
diseased and healthy salmon egg samples (Figure 3). One Microdochium isolate (749F1) inhibited
the hyphal growth of Saprolegnia diclina on 1/5th strength potato dextrose agar (1/5PDA) (Table 1,
Figure 4a) suggesting the secretion of enzymes or other bioactive metabolites.

Table 1. In vitro activity of Microdochium or Trichoderma isolates against hyphal growth of Saprolegnia
diclina 1152F4. The fungal isolates were retrieved from Saprolegnia-infected (diseased) or healthy salmon
egg samples.

Genus Strain No. Salmon Egg
Sample

Activity of
Culture Filtrate

Dual Culture
Assay on 1/5PDA

Hyphal Interaction with
S. diclina Microscopically

Microdochium

41F2 Diseased Not inhibitory Not inhibitory Not observed
684F5 Diseased Not inhibitory Not inhibitory Not observed

736F1a Diseased Not inhibitory Not inhibitory Not observed
736F1b Diseased Not inhibitory Not inhibitory Not observed
1056F2 Diseased Not inhibitory Not inhibitory Not observed
765F1a Healthy Not inhibitory Not inhibitory Not observed
765F1b Healthy Not inhibitory Not inhibitory Not observed
749F1 Healthy Not inhibitory Inhibitory Not observed
749F2 Healthy Not inhibitory Not inhibitory Not observed

Trichoderma

684F1 Diseased Not inhibitory Not inhibitory Coiling, papilla-like structure
1056F1 Diseased Not inhibitory Not inhibitory Papilla-like structure
1152F1 Diseased Not inhibitory Not inhibitory Inconclusive
762F1a Healthy Not inhibitory Not inhibitory Coiling
762F1b Healthy Not inhibitory Not inhibitory Coiling
762F2 Healthy Not inhibitory Not inhibitory Papilla-like structure
764F1 Healthy Inhibitory Not inhibitory Papilla-like structure
764F2 Healthy Not inhibitory Not inhibitory Coiling, papilla-like structure
764F3 Healthy Not inhibitory Not inhibitory Coiling, papilla-like structure
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Figure 2. Phylogenetic tree of ITS rRNA sequences of nine Microdochium isolates from salmon eggs and
reference strains. The phylogenetic analyses were conducted in Mega 5 using the Kimura 2-parameter
method [48] to compute evolutionary distances. The bootstrap values indicated at the nodes are based
on 1000 bootstrap replicates. Branch values lower than 50% are hidden. Closed and open circles
indicate Microdochium isolates from Saprolegnia-infected (diseased) or healthy salmon egg samples,
respectively. Red, blue and black colors indicate strains from terrestrial/plant, aquatic and unknown
sources of isolation, respectively. The scale bar indicates an evolutionary distance of 0.01 nucleotide
substitution per sequence position. Twenty-five ITS sequences of good quality and at least 550 bp of
reference strains of Microdochium were downloaded from GenBank; their strain names are preceded by
the accession numbers.

Figure 3. Detection of total fungi, Microdochium and Trichoderma in salmon egg samples by
quantitative PCR. Total fungal community was detected using ITS4-ITS9 primers, Microdochium
lycopodinum/Microdochium phragmitis species were detected by MPF-MPR primers, and Trichoderma
species were detected by ITS1TrF-ITS4TrR primers. The concentration of DNA template of each sample
was normalized at 5 ˘ 1 ng¨µL´1. Closed and open circles indicate DNA samples extracted from
Saprolegnia-infected (diseased) or healthy samples, respectively. The lane on the left is the size marker
and the band size (bp) is indicated next to each band.
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To date, not much is known about Microdochium in aquatic environments, aquaculture or aquatic
animals [18]. Also not much is known about the bioactive compounds produced by Microdochium.
Bhosale et al. (2011) reported that the active compound cyclosporine A, extracted from an estuarine
M. nivale, has the potential to be applied pharmaceutically to control diseases caused by some
dermatophytes and Aspergillus species in human and animals [49]; Santiago et al. (2012) reported that
the extract of M. phragmitis, which was isolated from Antarctic angiosperms, showed cytotoxic activity
against a human tumoral cell line [50]. Therefore, further experiments are needed to decipher the
bioactive potential capacity of our Microdochium isolates, especially their interaction with pathogens
from cold water environments, like Saprolegnia spp.

Figure 4. In vitro activities of Microdochium and Trichoderma isolates. (a) Dual culture of Microdochium
isolate 749F1 or Trichoderma isolate 762F1b with Saprolegnia diclina 1152F4 on 1/5th strength potato
dextrose agar (1/5PDA). S. diclina and the fungal isolates were pre-grown on 1/5PDA. A hyphal plug
of S. diclina was inoculated on the left side of the fresh 1/5PDA and a hyphal plug of Microdochium
isolate 749F1 or Trichoderma isolate 762F1b was inoculated on the right side. The dual cultures were
incubated for six days at 20–25 ˝C. The black arrows indicate S. diclina plugs and the white arrows
indicate Microdochium or Trichoderma plugs; (b) Microscopic pictures of the hyphal interaction between
Trichoderma and S. diclina. The black arrows indicate hyphae of S. diclina. The white arrows indicate the
coiling of Trichoderma hyphae around S. diclina hyphae (top pictures) or the formation of papilla-like
structure of Trichoderma hyphae around S. diclina hyphae (bottom pictures). Scale bars represent 10 µm.
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2.3. Trichoderma

Most Trichoderma species are applied in agriculture as biocontrol agents against various
plant-associated bacterial, fungal and oomycete pathogens, such as Clavibacter, Fusarium and
Phytophthora [26,51,52]. Trichoderma species are capable of producing a range of extracellular
compounds to suppress plant pathogens, such as enzymes, fungicidal compounds and antibiotics;
they can also promote plant growth via symbiotic association with plant hosts [26,51,53–55].
Trichoderma is commonly isolated from terrestrial environments, such as soil and wood [26], but
also from aquatic environments like freshwater (drinking water) and marine water [33,56–60]. Marine
Trichoderma atroviride and Trichoderma asperelloides suppressed disease caused by Rhizoctonia solani on
beans and enhanced defence responses against pathogenic Pseudomonas syringae pv. Lachrimans
on cucumber seedlings [57]. Some other marine-derived Trichoderma strains were capable of
producing antagonistic compounds against cancer, diabetes, cancer cell lines or pathogenic
Staphylococcus epidermidis; such compounds include tandyukisins from Trichoderma harzianum
OUPS-111D-4, pyridones from Trichoderma sp. MF106, and trichoketides from Trichoderma sp.
TPU1237 [58,61,62].

It was suggested that Trichoderma may have the potential to also control infectious diseases in
aquaculture [63]. Among our nine Trichoderma isolates, three were isolated from diseased and six from
healthy salmon eggs (Table 1). Quantitative PCR with Trichoderma-specific primers showed that
Trichoderma was present in higher abundance in total DNA samples of healthy than of diseased salmon
eggs (Figure 3), although some variation in results were observed between replicated PCR reactions
on the same DNA samples (Supplementary Material, Figure S1). The total fungal community did
not differ in abundance between healthy and diseased salmon eggs (Figure 3). Collectively, these
results suggest that Trichoderma is more enriched in healthy salmon egg samples than in diseased
salmon egg samples. Phylogenetic analyses based on ITS sequences showed that all nine Trichoderma
isolates belonged to the Trichoderma section [64] and no apparent separation was observed between
isolates from diseased or healthy salmon eggs based on ITS sequences (Figure 5). However, phylogeny
based on sequences of the translation elongation factor 1 alpha (tef1) clearly separated the Trichoderma
isolates from diseased and healthy salmon eggs (Figure 6). Our nine Trichoderma isolates and the
Trichoderma viride reference strains [65,66] formed three clades of Trichoderma viride. These results
suggest that next to a quantitative difference also a qualitative difference in Trichoderma populations
from diseased and healthy salmon eggs.

In terms of extracellular activity, we observed that the culture filtrate of only one Trichoderma
isolate showed inhibition of hyphal growth of S. diclina (Table 1). Dual culture assays did not show
inhibition of hyphal growth of S. diclina by any of the Trichoderma isolates tested (Table 1, Figure 4a).
However, the hyphae of most Trichoderma isolates coiled around or produced a papilla-like structure
on the hyphae of S. diclina (Table 1 and Figure 4b) [26]. The coiling and papilla-like structures suggest
attachment of Trichoderma hyphae to S. diclina hyphae. Coiling is required for mycoparasitism but
not all coiling leads to mycoparasitism [26,54,55,67]. The formation of papilla-like structures in the
interaction with S. diclina could indicate the start of mycoparasitic invasion by Trichoderma; these
structures have been shown to induce hyphal breakdown of various hosts [26,54,55,68,69].
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Figure 5. Phylogenetic tree of ITS rRNA sequences of nine Trichoderma isolates and reference strains. The
phylogenetic analyses were conducted in Mega 5 using the Tamura 3-parameter method [70] to compute
evolutionary distances. The bootstrap values indicated at the nodes are based on 1000 bootstrap
replicates. Branch values lower than 50% are hidden. Closed and open circles indicate isolates from
Saprolegnia-infected (diseased) or healthy samples, respectively. Red, blue and black colors indicate
strains from terrestrial/plant, aquatic and unknown sources of isolation, respectively. The scale bar
indicates an evolutionary distance of 0.01 nucleotide substitution per sequence position. Outer labels
describe section names based on the list of species in ISTH website [64] and only sections contained
at least five strains are indicated. 104 ITS sequences of good quality and at least 550 bp of reference
strains of Trichoderma were downloaded from GenBank; their corresponding strain names are preceded
by the accession numbers. Strain names followed by “(T)” indicate type strains.
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Figure 6. Phylogenetic tree of tef1 sequences of nine Trichoderma viride isolates and reference strains.
The phylogenetic analyses were conducted in Mega 5 using the Tamura-Nei method [71] to compute
evolutionary distances. The bootstrap values indicated at the nodes are based on 1000 bootstrap
replicates. Branch values lower than 50% are hidden. Closed and open circles indicate isolates from
Saprolegnia-infected (diseased) or healthy samples, respectively. Red, blue and black colors indicate
strains from terrestrial/plant, aquatic and unknown sources of isolation, respectively. The scale bar
indicates an evolutionary distance of 0.01 nucleotide substitution per sequence position. 11 sequences
of good quality and at least 1200 bp of reference strains of Trichoderma were downloaded from GenBank;
their strain names are preceded by the accession numbers. Strain name followed by “(T)” indicates
type strain.

Even though Trichoderma species are commonly considered beneficial fungi, some
Trichoderma strains, including T. harzianum, Trichoderma koningii, Trichoderma longibrachiatum,
Trichoderma pseudokoningii and Trichoderma viride, maybe pathogenic to human [72–87]. Some marine
Trichoderma were associated to contaminated mussels and some were even toxic to aquatic animals,
such as Artemia larvae [25,88]. Therefore, evaluations of the adverse effects of our Trichoderma isolates
on the environment and humans are needed.

Previous work by Abdelhamid et al. (2007) indicated that T. viride can enhance body weight and
reduce mortality of Nile tilapia treated with Saprolegnia sp. [31]. Our isolates belong to the T. viride
clade and are, to our knowledge, the first characterized Trichoderma from salmon eggs. Collectively,
our results pointed to both quantitative and qualitative differences in Trichoderma population between
diseased and healthy salmon eggs. These analyses suggest a potential role of Trichoderma species in the
protection of salmon eggs from S. diclina. Hence, our Trichoderma isolates and/or their metabolites,
especially isolate 764F1 and its bioactive compounds, may have the potential to be applied in
aquaculture. To this end, in vivo experiments should be conducted to determine the beneficial effects
of our Trichoderma isolates in controlling Saprolegniosis and other aquaculture diseases.

3. Experimental Section

3.1. Phylogenetic Analysis of Microdochium and Trichoderma Isolates

Fungal isolation from salmon eggs was described previously by Liu et al. [18]. DNA isolation,
internal transcribed spacer (ITS) rRNA sequencing and phylogenetic analyses of fungal isolates were
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conducted as described by Liu et al. [18]. For Trichoderma isolates, additional phylogenetic analysis was
conducted with translation elongation factor 1 alpha (tef1) sequences. The tef1 gene was amplified by
primer set EF1-728F [89] and TEF1LLErev [90]. The evolutionary distances of the phylogenetic trees
were computed using the Kimura 2-parameter method [48] for Microdochium ITS sequences, Tamura
3-parameter method [70] for Trichoderma ITS sequences and Tamura-Nei method [71] for tef1 sequences.

3.2. Culture Filtrate Activity of Microdochium and Trichoderma Isolates

One agar plug of each Microdochium and Trichoderma isolate was pregrown in 6 mL 1/5th
strength potato dextrose broth (1/5PDB, Difco™, Franklin Lakes, NJ, USA) for one week at 20–25 ˝C.
Each culture was lyophilized, the pellet dissolved in 6 mL fresh 1/5PDB and filter-sterilized through a
0.2 µm filter (Whatman™, Freiburg, Germany). 1 mL culture filtrate solution was added into a well of
24 well suspension culture plate (Greiner bio-one, Cellstar®, Frickenhausen, Germany) and one agar
plug of Saprolegnia diclina 1152F4 was added into each well. After incubation at 14–15 ˝C for four days
the effect of the culture filtrates on hyphal growth of S. diclina was determined.

3.3. Dual Culture Assay

One agar plug of each of the Microdochium or Trichoderma isolates and one agar plug of S. diclina
were placed at two opposite sides of 1/5th strength potato dextrose agar (1/5PDA). After incubation
for 6 days at 20–25 ˝C, inhibition of hyphal growth of S. diclina was determined and plates were stored
for one to two months at 4 ˝C until microscopic analyses were performed. Hyphal interactions were
observed under a Nikon 90i epifluorescence microscope (Nikon Instruments Europe BV, Amsterdam,
The Netherlands) with brightfield settings and accomplished with Nikon NIS-elements.

3.4. Quantification of Total Fungi, Microdochium and Trichoderma in Salmon Egg Incubation Water

DNA extraction from salmon egg samples and storage was described in Liu et al. [18]. All DNA
samples were thawed on ice and normalized to 5 ˘ 1 ng¨µL´1. To quantify total fungi in the water
samples, ITS rRNA genes were amplified with ITS4 [91] and ITS9 [92] primers in 12 µL volumes, each
consisted of 5 µL of DNA template, 5.8 µL BIOLINE 2x SensiFAST SYBR No-ROX mix, 0.1 µL ITS4
primer (10 mM), 0.1 µL ITS9 primer (10 mM) and 1 µL BSA (0.1 mg¨ mL´1). The quantitative PCR
program consisted of 1 cycle at 95 ˝C for 5 min, 45 cycles at 95 ˝C for 20 s, 55 ˝C for 20 s, 72 ˝C for 30 s,
82 ˝C for 15 s. To quantify Microdochium lycopodinum/Microdochium phragmitis in the water samples,
MPF (51-AAGGTACCCGAAAGGGTGCTGG-31) and MPR (51-GAATTACTGCGCTCAGAGTACGT-31)
primers were designed and firstly the accuracy was verified by PCR using the genomic DNA
isolated from M. phragmitis CBS 285.71 and Microdochium nivale var. nivale CBS 110.94 as template
(Supplementary Material, Figure S2). The quantitative PCR program consisted of 1 cycle at 95 ˝C for
5 min, 45 cycles at 95 ˝C for 20 s, 60 ˝C for 20 s, 72 ˝C for 30 s, 82 ˝C for 15 s. To quantify Trichoderma in
the water samples, Trichoderma specific genes were amplified with ITS1TrF and ITS4TrR primers [93]
and QIAGEN Rotor-Gene® SYBR® Green PCR Master Mix 2x was used. The quantitative PCR program
consisted of 1 cycle at 95 ˝C for 5 min, 45 cycles at 95 ˝C for 10 s, 51 ˝C for 10 s, 72 ˝C for 20 s, 82 ˝C
for 10 s. Genomic DNA of Trichoderma isolates 1152F1 and 762F1b, and Microdochium isolates 736F1a
and 749F1 was isolated with PowerSoil® DNA isolation kit (MO BIO Laboratories, Inc., Carlsbad,
CA, USA) according to the manufacturer’s instructions. Dilution series of DNA of each strain was
prepared at 5, 5 ˆ 10´1, 5 ˆ 10´2, 5 ˆ 10´3, 5 ˆ 10´4, 5 ˆ 10´5, 5 ˆ 10´6, 5 ˆ 10´7 ng¨µL´1 and used
as standards (Supplementary Material, Figure S3).

3.5. Nucleotide Sequence Accession Numbers

All DNA sequences have been deposited in GenBank. The accession numbers for the
internal transcribed spacer sequences of Trichoderma, Microdochium and Mortierella are KU202214-22,
KU202223-31 and KU202232-33, respectively. The accession numbers for the sequences of translation
elongation factor 1 alpha of Trichoderma isolates are KU202234-42.
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4. Conclusions

Aquaculture has become one of the fastest developing animal food sectors [94], partly due to
regulations to protect wild fish populations from overfishing and the increased demand for fish
products [1]. To support this increase in food demand, aquaculture production is gradually
intensifying, but effective and sustainable strategies are needed to suppress emerging diseases
including Saprolegniosis. Very few studies have demonstrated the beneficial activity of fungi against
aquatic pathogens [31,95]. Our study is, to our knowledge, the first to establish correlations between
the frequency/occurrence of indigenous fungal communities (Trichoderma and Microdochium species)
and the health status of salmon eggs in a commercial hatchery. Our study is also the first to assess
the diversity among Trichoderma and Microdochium isolates from aquaculture samples. The traditional
plate assays provided informative results showing the potential antagonistic activity of our Trichoderma
isolates obtained from salmon eggs against the pathogen Saprolegnia diclina. These results demonstrated
the basic characters of our Trichoderma isolates, which provide a good starting point for future analyses
on the molecular basis of Trichoderma-Saprolegnia interactions. Further in vitro and in vivo tests are
needed to confirm their beneficial protective activity in situ. The role of Trichoderma in Saprolegnia
disease suppression is especially interesting, since Trichoderma was shown to be more abundant in
healthy salmon eggs than in diseased ones and showed a mycoparasitic interaction with Saprolegnia.
Our study provides a framework to isolate and monitor putative protective fungi in Saprolegnia control
and possibly other emerging diseases in aquaculture.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/
17/1/140/s1.
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