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Humans are high-dimensional, complex systems consisting of many components that

must coordinate in order to perform even the simplest of activities. Many behavioral

studies, especially in themovement sciences, have advanced the notion of soft-assembly

to describe how systems with many components coordinate to perform specific

functions while also exhibiting the potential to re-structure and then perform other

functions as task demands change. Consistent with this notion, within cognitive

neuroscience it is increasingly accepted that the brain flexibly coordinates the networks

needed to cope with changing task demands. However, evaluation of various indices

of soft-assembly has so far been absent from neurophysiological research. To begin

addressing this gap, we investigated task-related changes in two distinct indices of

soft-assembly using the established phenomenon of EEG repetition suppression. In a

repetition priming task, we assessed evidence for changes in the correlation dimension

and fractal scaling exponents during stimulus-locked event-related potentials, as a

function of stimulus onset and familiarity, and relative to spontaneous non-task-related

activity. Consistent with predictions derived from soft-assembly, results indicated

decreases in dimensionality and increases in fractal scaling exponents from resting

to pre-stimulus states and following stimulus onset. However, contrary to predictions,

familiarity tended to increase dimensionality estimates. Overall, the findings support the

view from soft-assembly that neural dynamics should become increasingly ordered as

external task demands increase, and support the broader application of soft-assembly

logic in understanding human behavior and electrophysiology.

Keywords: dynamical systems, soft-assembly, repetition priming, fractal scaling, dimensionality,

self-organization, coordination

INTRODUCTION

Humans are high-dimensional, complex systems consisting of many components that must
coordinate in order to perform even the simplest of activities. For example, what might seem to
be a relatively simple behavior of producing a one syllable utterance, can require as many as 70
muscles to produce (Turvey, 2007) and more than seven cortical structures consisting of billions of
neurons (Behroozmand et al., 2015). Further, even if these same muscles and cortical structures are
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recruited, many behaviors, when performed repeatedly, exhibit
subtle, yet measureable differences suggesting a flexible, and
context-dependent organization to perform particular tasks
(Kello and VanOrden, 2009; Kloos and VanOrden, 2009; Holden
et al., 2011). But, the question remains: how do systems with
many components coordinate to perform specific functions while
also exhibiting the potential to re-structure and then perform
other functions as task demands change (Kello and Van Orden,
2009)?

In the movement sciences, attempts to answer this question
have typically been described in terms of synergies (Turvey,
2007). The term synergy implies that certain components of the
system form a temporary grouping capable of performing specific
functions (Kelso, 1997, 2009; Tschacher and Haken, 2007).
For example, a number of the muscles involved in producing
an utterance are also involved in mastication, but there are
discrepancies in muscular recruitment between the two tasks. In
this way, the particular components of the system are recruited
for functionally specific purposes, but they maintain the ability to
change as tasks and/or contexts change. This notion is precisely
what is meant by suggesting that synergies are formed through
soft-assembly mechanisms. The term is primarily meant as a
contrast to systems that are hard-molded where components
of the system are rigid and can only perform fixed functions
(e.g., Kello and Van Orden, 2009; Anderson et al., 2012). The
concept of synergies in this fashion has had a pervasive, although
primarily conceptual, history in physiology (Sherington, 1906;
Bernstein, 1967; Turvey, 1977) and has even been argued as the
key means for linking brain and behavior (Kelso, 2009).

In recent decades, physiologists and neuroscientists have
increasingly viewed the brain in similar terms, particularly
through the use of concepts from dynamical systems theory (e.g.,
Stam, 2005; Rodríguez-Bermúdez and García-Laencina, 2015).
However, while it would seem that the soft-assembly formulation
might be both apt and intuitive to neuroscientists (i.e., neural
networks flexibly coordinate in response to task demands; Jensen
and Colgin, 2007; Buzsáki, 2010), to our knowledge, this line of
reasoning has primarily remained in the explanation of behavior
and has not yet been explicitly articulated, nor operationalized in
terms of candidate neurophysiological markers.

Candidate Markers of Soft-Assembly
One candidate marker of soft-assembly is the presence 1/f scaling
relations or statistical fractals in time series data (VanOrden et al.,
2005). Fractal scaling relations and soft-assembled dynamics can
exist without each other (Kello and Van Orden, 2009). But,
the presence of scaling relations is nevertheless consistent with
an underlying soft-assembly dynamic. In addition, while not a
necessary relationship, observations of 1/f scaling relations are
often interpreted as reflecting a state of self-organized criticality;
or a balance of system constraints that is highly-sensitive to
context and functionally efficient (Bak, 1996; Van Orden et al.,
2003). This is also consistent with the soft-assembly logic.
Not only are these fractal patterns found in behavioral data
(e.g., Holden et al., 2011), but they are also quite pervasive
in physiological measures. For example, fractals in heart beat
dynamics have been a useful differentiator between physiological

states such as sleep and wakefulness, as well as different states
of pathology and aging (Ivanov et al., 1996, 1999a,b; Amaral
et al., 1998; Goldberger et al., 2002). In the more general sense,
scaling relationships in biological systems are often interpreted
as an indicator of healthy and efficient functioning (Goldberger
and West, 1987; Bassingthwaighte et al., 1994; Peng et al., 1995a;
Van Orden, 2007). Note, however, that while 1/f scaling is one of
the most common measures for suggesting that a system exhibits
criticality, it can also emerge from other sources (Ivanov et al.,
1998; Valverde et al., 2015).

Another candidate marker of soft-assembly is derived from
the correlation dimension (D2; Rodríguez-Bermúdez andGarcía-
Laencina, 2015). The correlation dimension is an indicator of
the dimensional complexity of a system with regards to its
topological organization. By unfolding an EEG signal into its
state space, evaluation of its correlation dimension reveals how
complex the organization of the signal is (Pritchard and Duke,
1995). In turn, if a system relies on soft-assembly mechanisms,
it should exhibit dimensional compression, which is a task-related
reduction in the total possible degrees of freedom to the necessary
active degrees of freedom (Kay et al., 1987). Indeed, the degrees
of freedom upon which a system is functioning is analogous to
the dimensionality of the system. Therefore, we can expect that
during more neutral states where intrinsic dynamics dominate
(e.g., a resting state), a system will have higher dimensionality,
and that during task states, the dimensionality should be reduced.
This phenomena has been shown in humanmotor control (Mitra
et al., 1998) and has been postulated to also apply to human dialog
and interaction (Fusaroli et al., 2014).

Prior Research on Potential Soft-Assembly
Markers
Following from seminal work in this area (Pritchard and
Duke, 1995; Linkenkaer-Hansen et al., 2001), a number
of electroencephalography (EEG) studies (Linkenkaer-
Hansen et al., 2004; Smit et al., 2013) and work in other
neurophysiological modalities (He et al., 2010; He, 2011)
have now linked either scaling relations or the correlation
dimension (Rodríguez-Bermúdez and García-Laencina, 2015) to
various functional states or clinical disorders (Hardstone et al.,
2012). However, while this literature has clearly established the
relevance of these phenomena to human brain functioning, most
of the extant work would be considered as showing necessary but
not sufficient evidence for self-organization (Van Orden et al.,
2003) and soft-assembly in the brain (Kloos and Van Orden,
2009).

In contrast, in line with the aforementioned theory,
more compelling evidence for soft-assembly should take the
form of task-related changes to fractal scaling relations and
dimensionality. However, while it is central that such system
metrics should change in relation to task demands (Mitra et al.,
1998), it is somewhat rare within neurophysiology to examine
this explicitly (Molnar et al., 1995; He, 2011). Even in such
cases, it is typical for studies to examine only a small number of
electrodes or to adopt analytic procedures that do not account for
interdependencies of multiple observations and measurements
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per participant. In addition, while dynamic approaches to
neuroscience are becoming increasingly sophisticated (Palva
et al., 2013; He, 2014), in general, studies that apply these
methods often face ambiguities about the direction and
magnitude of expected effects under various conditions.

Present Study
For all the reasons above, this study aimed to advance and
better integrate these literatures by testing specific, directional
predictions, informed by the logic of soft-assembly, about the
effects of task–related changes to dynamical characterizations
of EEG signals. Whereas most prior work has examined either
extended time series or task-related activity vs. resting states,
by focusing on event-related change relative to spontaneous
activity, the present study will help address an important gap
in the literature. In particular, the findings should inform
more detailed predictions regarding experimental effects on the
present set of dynamic neural measures and how these measures
characterize brain states (Stam, 2005). Additionally, given the
large literature implicating event-related alpha dynamics in task-
related processing, and the generation of ERPs (Makeig et al.,
2002; Hanslmayr et al., 2007; Klimesch et al., 2007; Sauseng
et al., 2007), and the potentially complicating effects of narrow-
band oscillations on estimated scaling exponents (Hu et al.,
2001; Perakakis et al., 2009; Kelty-Stephen et al., 2013), the
relationship between alpha oscillations and fractal scaling will
also be explored.

To those ends, we used repetition priming to assess evidence
for changes in D2 and fractal scaling of human EEG during
stimulus-locked ERPs both as a function of stimulus onset
and familiarity, and relative to rest. Further, we estimated
each of these measures for all electrodes and accounted for
their interdependence using multilevel modeling. Because soft-
assembly dictates dimensional compression, we hypothesized a
reduction in the D2 between rest and pre-stimulus activity, with
a further reduction following stimulus onset, followed by smaller
decreases with greater stimulus familiarity. Given that decreases
in dimensionality reflect the system becoming more ordered,
we in turn hypothesized that scaling exponents should increase
between rest and pre-stimulus activity, with further increases
following stimulus onset, and with increasing familiarity. Finally,
we explored the potential relevance of event-related changes in
alpha dynamics with regard to the obtained results, and provide
an initial account of the potential physiological relevance of the
changes in the various markers.

MATERIALS AND METHODS

Participants
Fourteen university students (ages 22.36 ± 3.48, range: 18–31;
9 female) participated in the experiment for course credit and
provided informed consent prior to participating. The study was
conducted in accordance with ethical standards detailed in the
1964 Declaration of Helsinki and was reviewed and approved
by the University’s Institutional Review Board. No participants
reported any history of diagnosed neurological or psychiatric
illnesses and no current psychoactive medication use.

Repetition Priming and Resting Tasks
Participants were seated in a dimly lit room for EEG acquisition,
and completed a 3.5 min eyes-open resting task prior to the
repetition priming experiment. For the resting task, participants
were instructed to sit comfortably and maintain their gaze on
a location in front of them without straining. The priming
task then consisted of participants being shown a series of
black and white line drawings of common, everyday objects
(e.g., animals, tools, articles of clothing, musical instruments,
etc.) and being asked to make a decision regarding whether
or not the real-life version of the object would fit inside
of a shoebox. The images were randomly selected from the
Center for Research in Language’s International Picture Naming
Project (Bates et al., 2003) such that every participant saw a
different set of images. Each participant viewed a set of 100
pictures each a total of six times. One hundred novel, non-
repeated stimuli were also inserted randomly throughout each
participant’s stimulus set to facilitate vigilance during the task.
Altogether, each participant completed a total of 700 trials (across
repetitions) involving exposure to 200 individual stimuli. Each
trial began with a fixation cross which was displayed for a
randomly variable interval of between 750 and 1,500ms, followed
by the presentation of a line drawing. The image then remained
onscreen for 250 ms, after which participants indicated their
decision by pressing a button with their right index finger as
quickly as possible. The response options, yes and no, were
counter-balanced across participants. The entire task lasted ∼20
min, and participants were given the opportunity to take a break
every 75 trials.

EEG Data Acquisition
Sixty-four channels of EEG data were acquired via the ANT-
Neuro amplifier system (Advanced Neurotechnology; Enschede,
The Netherlands), using Ag/AgCl electrodes mounted in
Waveguard caps, arranged according to the 10-5 system
(Oostenveld and Praamstra, 2001). Data were referenced online
to the average of all active unipolar electrodes (64 in all cases),
which was maintained offline. Electrode AFz was the ground.
Data were sampled online at 1,024 Hz with no high-pass filter
and a digital FIR low-pass filter at 240.8 Hz. This filtering
scheme enabled preservation of low gamma range frequencies
(i.e., <100Hz; Jensen et al., 2007), which was important for
obtaining accurate estimates of the D2 (Pritchard and Duke,
1995). All electrode impedances were maintained below 25 k�.
Vertical and horizontal eye movements were monitored via two
bipolar electrodes placed above and below the left eye (VEOG),
and at the external canthi of each eye.

EEG Data Processing
Data were loaded into ASA-lab software (ANT Neuro; version
4.9.1) for visual inspection and cleaning. A high-pass filter at
0.1 Hz was applied to facilitate calculation of ERPs. Although,
it is generally recommended to perform detrended fluctuation
analysis (DFA) on extended time-series for the purposes of
characterizing any filter integration effects on the obtained
scaling exponents (Hardstone et al., 2012), since the present
study is focused on change across conditions and all conditions
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were filtered identically, any such effects should only alter
the estimated fractal scaling exponents themselves, rather than
comparisons between them. Channels exhibiting significant
drift or other noise were interpolated via the spherical spline
method implemented in ASA. Representative ocular artifacts
were visually identified from VEOG channels and removed using
the topographical PCA-based method implemented in ASA-lab
(Ille et al., 2002). The continuous data were then epoched from
−1,000 to 1,000 ms relative to the onset of the stimulus for the
priming task, and in analogous 2,000 ms intervals for the resting
data.

Epochs were then manually inspected to exclude artifactual
trials and loaded into MATLAB (version R2012b; Natick,
MA) for further processing via custom routines. Epochs were
then individually linearly detrended and an automated script
rejected any remaining trials containing voltages exceeding an
absolute threshold of 100 or 75µV between successive averaged
windows of 100 ms. The lowest common denominator of
the remaining trials was calculated across the six stimulus
exposure conditions, and a random sample of that number
of epochs was then taken across conditions (71.86 ± 14.26,
range: 44–91). This procedure served to equalize trial counts
across conditions within subjects, and also mitigates the
potential that systematic stimulus-lag effects (Henson et al.,

2004) could influence the calculation of D2 or scaling
exponents.

Trials were then averaged within conditions to generate
ERPs. No baseline correction or filters were applied to the
ERPs for use in calculating D2 or scaling exponents. For
the purposes of conventional ERP analysis and visualization
(see Figure 1), those same epochs were baseline corrected by
subtracting the average value 100–300 ms prior to the stimulus
onset, and low-pass filtered at 30 Hz for electrodes PO7 and
PO8, which were averaged together. The latency of the P100
ERP component (P1) was calculated as the time (relative to
stimulus onset) of the maximum value in the first 200 ms,
with the mean amplitude of the P1 calculated as the average
across 10 ms on either side of the peak. The N1 was calculated
in a similar manner, as the minimum value after the P1, but
before the period 200 ms post-stimulus. The P2 was likewise
calculated, as the maximum value following the N1, but before
the period 400 ms post stimulus. Reaction time was calculated
as the difference between the onset of the stimulus and the
participant’s manual response. The EEGlab function topoplot.m
was used for visualizing scalp maps (Delorme and Makeig,
2004). For the resting data analyses, two random 2-s epochs
were selected from the first and second half of the full 3.5
min resting interval, each of which was further divided into

FIGURE 1 | Event related potentials demonstrating repetition suppression effect and scalp topography. ERPs based on the average of channels PO7 and PO8, for

each exposure (1–6) to the stimuli, are depicted in the left panel. The dotted lines indicate (from left to right) the onset of the stimulus and the peak amplitude of the

grand-average ERP across exposures, corresponding to the P1 component. The right panels depict topographic plots for pre- (top right) and post-stimulus (bottom

right) activity, with the stars indicating the electrodes that were averaged to obtain the ERPs depicted in the left panel. The post stimulus scalp map depicts the activity

136 ms post stimulus, corresponding to the peak amplitude in the grand average ERP.
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first and second halves (1,000 ms each) for perfect congruence
with ERP sampling times. The distinction between the early
and late portions of the resting interval and the respective sub-
segments allowed for examining differences within the overall
resting state data, and also within each of the sampled resting
epochs themselves.

In order to evaluate the potential contribution of alpha
oscillations to the estimated scaling exponents (i.e., due to
concerns about “cross-overs” wherein a dominant oscillation
alters the slope the scaling exponent, thereby invalidating
the meaningful interpretation of a single scaling exponent;
Peng et al., 1995b; Perakakis et al., 2009), or of alpha-
desynchronization (ERD; Pfurtscheller and Lopes Da Silva,
1999) to changes in fractal scaling, alpha power and task-related
power change (TRPC) were calculated for all conditions.
Specifically, the FFT was applied to the Hann-tapered pre-
and post-stimulus activity from every single trial. The
resulting spectra were squared to obtain power and then
averaged over trials to improve the reliability of the estimates.
Alpha power was then quantified as the average power
from 8 to 13 Hz (Klimesch, 1999) in each condition for
the pre- and post-stimulus activity. Resting alpha power
was calculated in a similar manner by taking the first half
(1,024 samples) of each resting epoch, and then tapering,
obtaining power and averaging over trials and then within
alpha band. Finally, TRPC, which provides a measure analogous
to alpha event-related synchronization/desynchronization
(ERS/ERD), was obtained by taking the difference between
the log-transformed post- and pre-stimulus alpha values
(and analogously for the pre-stimulus and resting alpha
values) in a manner similar to that of Benedek et al.
(2014).

Correlation Dimension
We calculated the correlation dimension (D2) using the corrDim
function in the R nonlinearTseries package (Garcia and Sawitzki,
2015) on each stimulus-locked ERP, at each of the 64 electrodes,
for each of the six familiarity conditions, prior to and following
the stimulus onset. ERPs were 2,048 samples long with the
1,025th sample being the stimulus onset. There were a total of
768 task-related D2 estimates per participant. We also estimated
D2 for each of the four resting state intervals.

The R package we used relies on the Grassberger-Procaccia
algorithm (Grassberger and Procaccia, 1983) to calculate D2

and we followed the guidelines set by Pritchard and Duke
(1995) for calculating D2 on EEG data (as detailed below).
While explicit details and formulas for this calculation can
be found elsewhere (Grassberger and Procaccia, 1983; Jeong
et al., 1998), we briefly describe the process here. Estimation
of D2 involves expanding each time series into a phase space
that corresponds to where the data move over time (Takens,
1981). Phase space reconstruction involves the selection of an
appropriate tau (delay) and embedding dimension. In order
to determine the optimal values for these parameters, we
used the estimateEmbeddingDim and timeLag functions in
the nonlinearTseries package (Garcia and Sawitzki, 2015). The
appropriate tau was determined by taking the first minimum of

the averaged mutual information function and the embedding
dimension was estimated using the averaged false neighbors
method (Cao et al., 1998). We allowed tau to have a maximum
value of 60 and the embedding dimension to have a max
value of 15. Thus, each D2 estimate was calculated using the
optimal parameters for that ERP and avoided known issues
with parameter selection detailed by Pritchard and Duke (1995).
Additionally, we specified a regression range to estimate the
linear scaling region across radii with values from 0.01 to the first
value of 0.99 to avoid issues with a maximization at values of one
that remain constant (Pritchard and Duke, 1995). We also used
the Theiler correction to ensure pairs of points that are highly
temporally correlated are excluded (Theiler, 1986).

Given proper unfolding of the time-series into phase space,
D2 is calculated in two primary steps. A correlation integral is
calculated by taking the trajectory of points in the phase space
and using a radius (r) around each pair of points to calculate the
relative number of point pairs that are separated by a distance
less than the radius. The next step is to estimate the linear
scaling relation as the radius limit goes from zero to infinity
for the log of the correlation integral over the log of the radius.
The D2 estimate indicates how many variables are required to
described the system (Chae et al., 2004) and thus, changes in D2

indicates whether the system requires more or fewer variables to
describe it.

Detrended Fluctuation Analysis
We calculated the fractal scaling exponents using the DFA
function in the R nonlinearTseries package (Garcia and Sawitzki,
2015) that takes advantage of signal summation conversion to
handle both fractal Gaussian noise (fGn) and fractional Brownian
motion (fBm; Eke et al., 2000) on each stimulus-locked ERP, at
each of the 64 electrodes, for each of the six familiarity conditions,
prior to and following each stimulus onset point. We used an
ERP signal with length 2,048 in which the 1,025th sample was
the stimulus onset. There were a total of 768 task-related scaling
exponent estimates per participant. We followed the guidelines
for utilizing DFA on EEG data specified by Hardstone et al.
(2012) and for time domain fractal analysis, more generally (Eke
et al., 2012). This included the pre-processing of the EEG signals
detailed above while also taking into consideration appropriate
window size, time-series length, and verification of results by
comparison with exemplar noise types (i.e., white, pink, and
brown), both with and without signal summation conversion
(Eke et al., 2000). Additionally, as a validation of applying our
analyses to ERP data, which could be influenced by event-related
oscillations (Chen et al., 2005; Perakakis et al., 2009; Schmitt
et al., 2009) we systematically assessed the potential influence
of alpha oscillations on our scaling exponents (see Relation
of Alpha Power to Scaling Exponents and Dimensionality
Section).

DFA involves removal of the linear trend from a signal
for increasing larger window sizes upon which the average
fluctuation per window is calculated. The averaged fluctuation
per window size is then plotted in log-log metric. A line of
best fit for the log-log plot is then calculated. We set a range
of window sizes from 4 to 256 samples to estimate the linear
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scaling relationship from a series of 252 points1. The slope
is an estimate of the scaling exponent (α) where estimates
of 0.5 are known to exhibit white noise that characterizes a
random process, 0.5 < α < 1 are known to exhibit fractal
long-range temporal correlations in the form of pink noise, and
α > 1 corresponds to Brownian noise (fBm) that is temporally
correlated although increasingly non-stationary (Eke et al., 2012).
We also estimated the α exponents for each of the resting state
intervals.

Analytic Strategy
As preliminary steps, we analyzed the effect of repeated
stimulus exposure on reaction times (RT) and the averaged ERP
amplitudes and latencies of the P1, N1, and P2 components using
a repeated-measures ANOVA. We then conducted a series of
multi-level models in SPSS Mixed 21 to investigate the effects
that the stimulus onset and familiarity had on the estimated
scaling exponents and correlation dimensions while accounting
for variability due to electrode location. Multilevel modeling is
designed to specifically handle nested data sets such as having 64
electrodes per participant (Cohen et al., 2013). For all analyses,
the D2 estimates and α exponents were treated as dependent
variables in the separate models. The stimulus onset was dummy-
coded to indicate whether or not the given estimates were
prior to, or following the stimulus onset. Familiarity was coded
with values increasing from 0 to 5 corresponding to the six
levels of familiarity participants encountered in the priming task.
Stimulus onset and familiarity were included in the models as
fixed effects and we allowed for the interaction of these two
variables. We also allowed for a random intercept and random
effect for stimulus onset that captured the variability due to
electrode (i) for a given individual (j). An example level 1
equation of this model is shown below where D2ji represents
the estimate of the correlation dimension at a given electrode
(i) for a given individual (j). Generally, β estimates represent
either the overall intercept or level 1 estimates of the slope, γ

estimates represent the level 2 slope coefficients, and ω estimates
represent the error terms associated with deviance from the
overall intercept. Additional details of these common parameters
and multilevel modeling methods, more generally, can be found
in a number of texts (e.g., Cohen et al., 2013; Tabachnick and
Fidell, 2013; Page-Gould, 2016) The equations are the same for
the scaling exponents with replacement of D2ji with αji.

D2ji = β0i + β1i StimOnsetji + β2i Familiarityji

+ β3i StimOnsetji · Familiarityji + eji

1We originally estimated the scaling exponents up to the maximum possible

window size of 1,024. However, based on discussion with one of our reviewers,

the max 256 (N/4) window size was deemed more suitable given the relatively

short length of the time series (Peng et al., 1994, 1995a). The overall pattern of

results was the same, with the exception that there was a significant familiarity

effect that was relatively small and ceased to persist with the modified max window

size. Therefore, we view the results in their present form as more conservative than

the initial analyses.

Where the level 2 equations are:

β0i = γ00 + ω0i

β1i = γ10 + ω1i

β2i = γ20

β3i = γ30

Additionally, to examine the influence of alpha power, we ran
several diagnostic analyses and two models. The models were
similar to those described above, however, now change in scaling
exponents (Post-stimulus α – Pre-stimulus α) was used as the
outcome variable and TRPC of the alpha band was included as
a level 1 predictor, along with the familiarity condition, and an
interaction term between the two.

RESULTS

Reaction Times
Reaction times were analyzed with a repeated measures
ANOVA with two within—subject factors, familiarity (Six levels:
Exposures 1–6) and response (Two levels: Yes and No), with
all reported values using the Greenhouse-Geisser correction for
violation of sphericity. Table 1 depicts the means and standard
deviations of all RT and ERPmeasures, as well as D2 and α. There
was a significant main effect of familiarity [F(1.814, 23.84) = 32.075,
p < 0.001, ηp

2 = 0.712], such that the median RT decreased
with increasing stimulus exposures. There was no significant
main effect of response [F(2.932, 38.114) = 1.415, p = 0.254,
ηp

2 = 0.098], nor a significant interaction [F(1, 13) = 0.253,
p= 0.623, ηp

2 = 0.019]. Post-hoc comparisons for the familiarity
effect were Bonferroni corrected, and revealed a pattern where
RT in Exp1 were significantly different than all other conditions
(highest p = 0.001), Exp6 was significantly different from all
conditions (highest p = 0.001) except for Exp5 (p = 0.550),
Exp4 and Exp5 were only significantly different from one another
(highest p = 0.009), and no other differences were significant.
Since, as expected, there were no significant differences in RT
between yes and no responses, this factor was collapsed for all
subsequent analyses.

ERP Amplitudes and Latencies
The latency and mean amplitudes of the P1, N1, and P2 were
each analyzed with repeated-measures ANOVAs with one factor
(familiarity; Exposures 1–6) with all tests corrected for violation
of sphericity with the Greenhouse-Geisser method. There was
not a significant effect of familiarity on the mean amplitude
of the P1 [F(3.067, 36.805) = 2.009, p = 0.128, ηp

2 = 0.143],
nor the latency of the P1 [F(2.785, 33.417) = 2.557, p = 0.076,
ηp

2 = 0.176]. There was not a significant effect of familiarity on
the mean amplitude of the N1 [F(2.013, 24.160) = 1.868, p = 0.176,
ηp

2 = 0.135], nor the latency [F(2.171, 26.048) = 0.669, p = 0.533,
ηp

2 = 0.053]. There was a significant effect of familiarity on
the amplitude of the P2 [F(2.776, 33.308) = 8.052, p <0.001,
ηp

2 = 0.402] such that it decreased with successive stimulus
exposures. Post-hoc comparisons for the P2 amplitude effect were
Bonferroni corrected and revealed that Exp1 was significantly
different than Exp3, Exp4, and Exp5 (highest p= 0.038), with no
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TABLE 2 | Model results from prediction of correlation dimension and scaling

exponent from stimulus onset and familiarity.

Estimate D2 task model α task model

FIXED EFFECTS

Intercept 4.786 (0.025)*** 1.103 (0.007)***

StimOnset −0.396 (0.030)*** 0.259 (0.004)***

Familiarity 0.015 (0.006)** −0.001 (0.001)

StimOnset·Familiarity 0.007 (0.008) 0.003 (0.001)**

RANDOM EFFECTS

Intercept 0.021 (0.005)*** 0.035 (0.001)***

StimOnset 0.021 (0.006)*** 0.012 (0.001)***

All standard errors are shown in parentheses following the estimate. *p< 0.05; **p< 0.01;

***p < 0.001.

other significant comparisons. There was not a significant effect
of condition on P2 latency [F(3.093, 37.122) = 0.962, p = 0.423,
ηp

2 = 0.074].

Correlation Dimension and Fractal Scaling
Relations
Results from examining the effects of stimulus onset and
familiarity on D2 (D2 Task Model) and on the scaling exponents
(α Task Model) are shown in Table 2. For D2 specifically, there
was a significant main effect for stimulus onset. As hypothesized,
following the stimulus onset, D2 decreased. Further, there was
a significant main effect for familiarity such that as familiarity
increased the dimensionality also increased. There was no
interaction between stimulus onset and familiarity. There were
significant random effects on the intercept and stimulus onset
suggesting that these results varied significantly as a function of
electrode location.

Figure 2 shows the observed D2 estimates as a function
of stimulus onset, familiarity condition, and electrode location
to illustrate this observed variability. Given the significant
random effects combined with the scalp maps, the observed
dimensionality prior to the stimulus onset ranges from 4.6 to 6.
However, following stimulus onset the estimates were reduced to
a range of approximately below 4 to a max of 4.8.

The D2 values predicted by our model are shown in Figure 3.
That is, these are the expected values of D2 for each electrode
given the parameters and variables included in our multi-
level model with the best fitting line added for pre- and post-
stimulus. Specifically, they illustrate the observed results as
a function of familiarity and stimulus onset. First, note the
differences in intercepts between pre- and post-stimulus. With
no stimulus familiarity, D2 is much lower following stimulus
onset. As familarity increases, so too do the predicted D2 values.
However, the slope coefficient for post-stimulus is stronger.
While the interaction was not significant, the pattern of predicted
values from the model shows that as familiarity increases, the
dimensionality following the stimulus onset is converging toward
the values of dimensionality prior to stimulus onset, which is
also similar to estimates of dimensionality during resting states
(described below).
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FIGURE 2 | Group-averaged correlation dimension scalp maps. The maps show the estimated correlation dimension (D2) across increasing levels of familiarity (left to

right) prior to (top) and following (bottom) stimulus onset. Exp = exposure.

FIGURE 3 | Predicted correlation dimension values. The figure shows the

predicted Correlation Dimension (D2) values across increasing levels of

familiarity (left to right along the x axis) and segmented by pre- (red triangles)

and post-stimulus (blue circles).

For the scaling exponents derived using DFA, we observed a
significant main effect for stimulus onset. There was a general
increase in α following stimulus onset. Given the intercept
estimate of 1.1 and the 0.26 estimate for stimulus onset, the
time series were becoming more fractal, but moving toward
brown noise that has some non-stationary drift as well as
random-walk properties (see Hardstone et al., 2012). Further,
there was no significant effect for familiarity. There was,
however, a significant interaction between stimulus onset and

familiarity such that following the stimulus onset, there was
an overall increase in the exponents that slightly increased
further as familiarity increased. Lastly, there were significant
random effects for the intercept and stimulus onset suggesting
that these results varied significantly as a function of electrode
location.

Figure 4 shows the observed α exponent estimates as a
function of stimulus onset, familiarity condition, and electrode
location to illustrate this observed variability. While the overall
model suggests an α exponent that was just slightly above 1,
the combination of significant random effects and scalp maps of
the observed estimates highlights the case that at some locations
prior to stimulus onset the α exponents were <1 and thus, falling
into the pink noise range. However, following stimulus onset
almost all estimates change to a value of 1 or greater.

The α values predicted by our model are shown in Figure 5.
First, note the differences in intercepts between pre- and post-
stimulus. With no stimulus familiarity, α is lower prior to
stimulus onset. As familarity increases, the predicted values
of α generally remain constant. However, for the significant
interaction effect, whereas the fractal scaling prior to stimulus
onset remains largely the same as familiarity increases, the small
positive slope coefficient suggests that the post-stimulus scaling
is very slightly increasing as familiarity increases. Yet, Figure 5
shows this difference might be quite negligible.

Resting State Comparisons
Analyses of the various resting data segments indicated that
neither D2 nor scaling exponents differed as a function of
whether the resting epochs were taken from early or later
segments of the recording period, nor whether the first vs.
second half of the epoch was analyzed. Thus, we included all
rest estimates for comparison with all event-related (i.e., ERP)
time-series data, pre- and post-stimulus onset. Table 3 shows
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FIGURE 4 | Group-averaged scaling exponent scalp maps. The maps show the estimated scaling exponents (α) across increasing levels of familiarity (left to right)

prior to (top) and following (bottom) stimulus onset. Exp = exposure.

FIGURE 5 | Predicted scaling exponent values. The figure shows the

predicted scaling exponents (α) across increasing levels of familiarity (left to

right along the x axis) and segmented by pre- (red triangles) and post-stimulus

(blue circles).

the results from a series of models testing these Rest-Task
comparisons. Overall, we observed significant effects for rest
suggesting that the spontaneous EEG differed not only from the
post-stimulus task-related ERP, but also from the pre-stimulus
period as well (see Figure 6). D2 was significantly higher during
rest than during the pre- and post-stimulus task-related ERP.
Further, the α exponents were significantly lower during rest
than during the pre-stimulus period and the post-stimulus ERP.
There were also significant random effects on the intercept
for all analyses, suggesting that D2 and the α exponent varied
significantly as a function of electrode location.

TABLE 3 | Model results from resting state EEG compared to task-related ERP.

Estimate D2 Rest-pre- α Rest-pre- D2 Rest-post- α Rest-post-

stim. model stim. model stim. model stim. model

FIXED EFFECTS

Intercept 4.824 (0.015)*** 1.027 (0.015)*** 4.445 (0.017)*** 1.294 (0.016)***

Rest 0.051 (0.014)*** −0.021 (0.003)*** 0.430 (0.015)*** −0.287 (0.004)***

RANDOM EFFECTS

Intercept 0.010 (0.002)*** 0.015 (0.003)*** 0.013 (0.003)*** 0.016 (0.003)***

All standard errors are shown in parentheses following the estimate. *p< 0.05; **p< 0.01;

***p < 0.001.

Relation of Alpha Power to Scaling
Exponents and Dimensionality
Given that alpha oscillations are often the dominant oscillatory
processes in broadband EEG, their potential effects on scaling
exponents and D2 warrant particular focus for two reasons. First,
some scaling exponents may be affected by cross-overs (i.e., a
change in the scaling relationship) due to the sinusoidal nature
of alpha band oscillations (Hu et al., 2001; Perakakis et al., 2009;
Kelty-Stephen et al., 2013). Second, since alpha oscillations are
also subject to the well-established ERD phenomenon involving
decreases in alpha power following stimulus onset (Klimesch
et al., 2007), it is possible that the observed scaling exponent
estimates simply reflect ERD-related changes in the power
spectrum as opposed to a genuine shift in the scaling relations.
Post-hoc analyses were run to address these possibilities2.

We observed that average alpha power across all electrodes
and conditions was 0.555 µV2 (range = 0.028–13.15). For
rest, the average was 0.542 w/µV2 (range = 0.047–6.40). For
pre-stimulus, the average was 0.994 µV2 (range = 0.042–
13.15). Finally, for post-stimulus, the average was 0.663 µV2

2These post-hoc analyses were developed and included based on important issues

raised in the review process.
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FIGURE 6 | Group-averaged correlation dimension and scaling exponents scalp maps comparing rest to pre- to post-stimulus. The maps show the estimated

correlation dimension (top) and scaling exponents (bottom) as a function of resting conditions (left), prior to (middle) and following (right) stimulus onset.

(range = 0.028–4.58). As a way to examine those instances
where alpha power may be atypically high across all electrodes,
participants, and conditions, we used modified z-scores >3.5 to
determine those alpha power scores that greatly deviated from
the median (Iglewicz and Hoaglin, 1993). Overall, we observed
that only 1.25% of cases (N = 146) exceeded this threshold
and, on average, these high alpha power cases were 5.74 µV2

(range= 3.89–13.15). Of this 1.25% of cases,∼15.07% were from
the resting interval, 82.19% were pre-stimulus cases, and 2.74%
were post-stimulus cases. Of this 1.25% of cases, 86% were from
parietal, occipital, or parieto-occipital electrodes, 11% were from
medial electrodes, and 3% from a fronto-central electrode.

While the prevalence of cross-overs appeared minimal, in
order to test their influence on our results, we excluded
each of the scaling exponent estimates that exceeded our
threshold for having high power. We then re-ran the original
model excluding these cases with potentially problematic scaling
estimates (Table 4). The overall pattern of results was the same.

The only notable, yet negligible, difference is the reduction of

the intercept estimate closer to a value of one. Thus, because

these results are largely the same, we can conclude that our

interpretations based on a single meaningful scaling exponent

are generally valid. However, in the very small percentage of

localized cases where alpha power was higher, there is likely some

multifractal behavior (perhaps, only bi-fractal; cf Kelty-Stephen
et al., 2013) being exhibited with two or more distinct scaling
relationships contingent upon the scale (i.e., below and above the
alpha range).

To examine the degree to which alpha ERD may have

contributed to the observed changes in scaling exponents, alpha

TABLE 4 | Model results comparing scaling exponents with all cases included and

with those cases that denoted high alpha power removed.

Estimate α Task model α Task model

(Original model) (High power alpha removed)

FIXED EFFECTS

Intercept 1.103 (0.007)*** 1.029 (0.007)***

StimOnset 0.259 (0.004)*** 0.258 (0.004)***

Familiarity −0.001 (0.001) −0.001 (0.001)

StimOnset·Familiarity 0.003 (0.001)** 0.003 (0.001)**

All standard errors are shown in parentheses following the estimate. *p< 0.05; **p< 0.01;

***p < 0.001.

TRPC was included as a predictor in a model predicting change
in scaling exponents (See Table 5). Because this variable was
computed as post-stimulus minus pre-stimulus alpha power (log
transformed), negative values correspond to ERD. Conversely,
since fractal scaling exponents increased following stimulus
onset, the post-stimulus minus pre-stimulus change variable
generally reflects positive values. Thus, if the obtained changes
in α scaling exponents are the result of alpha ERD, we would
expect a negative relationship between the two change variables
(i.e., TRPC should inversely predict scaling increases). In contrast
to this expectation, results demonstrated a positive relationship
between alpha TRPC and change in scaling exponents in both
rest-to-pre and pre-to post models. Thus, while ERD may occur
at some electrode sites (most likely the posterior-occipital sites
with higher alpha power), at the whole brain level in the sample
as a whole it appears that increases in fractal scaling are associated
with increased alpha power.
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TABLE 5 | Model results from alpha power on task related changes in fractal

scaling.

Estimate 1α Rest-to-Pre 1α Pre-to-Post

FIXED EFFECTS

Intercept 0.101 (0.004)*** 0.179 (0.004)***

Familiarity −0.004 (0.001)*** 0.0003 (0.001)

TRPC 0.027 (0.005)*** 0.023 (0.006)***

Familiarity * TRPC −0.003 (0.001)*** −0.009 (0.001)***

RANDOM EFFECTS

Intercept 0.015 (0.001)*** 0.011 (0.001)***

All standard errors are shown in parentheses following the estimate. *p< 0.05; **p< 0.01;

***p < 0.001.

DISCUSSION

The soft-assembly metaphor provides a conceptual framework
for understanding how systems with many components may
flexibly structure themselves in response to shifting task demands
(Kello and Van Orden, 2009). In this study, we aimed to test the
applicability of soft-assembly logic for characterizing task-related
changes in human brain states. Specifically, we investigated
changes in fractal scaling exponents and dimensionality estimates
obtained from the spontaneous scalp-recorded EEG during a
resting state vs. pre- and post-stimulus periods from ERPs
recorded during a repetition priming task. We expected to
observe systematically increasing fractal scaling exponents and
decreasing dimensionality estimates upon stimulus onset and as
perceptual familiarity increased. Our results were largely, but
not unequivocally, consistent with our predictions. However,
we argue that such a pattern of results provides initial support
for applying soft-assembly logic in characterizing experimental
effects on gross-level neural dynamics.

First, and most importantly, there was an overall increase
in scaling exponents and decrease in the correlation dimension
from rest to pre- to post-stimulus. These findings indicate that,
consistent with our hypotheses, as task demands increasingly
constrain a participant’s behavioral state, the overall EEG
dynamics become increasingly ordered, as interpreted from the
soft-assembly perspective. Second, however, effects of stimulus
familiarity on our measures did not track expectations in
the predicted direction. With regard to our hypothesis that
increasing stimulus familiarity would result in greater scaling
exponents, there was no effect of familiarity on the scaling
exponents. By contrast, although D2 did decrease both from
rest to the pre-stimulus period and again following stimulus
onset, counter to our expectation, familiarity resulted in an
increase in D2 for both pre- and post-stimulus periods. Although,
unexpected, these familiarity effects are unlikely to reflect a
failed manipulation because the main effect of familiarity on RT
replicated the classic behavioral finding in repetition priming
studies (Bentin and McCarthy, 1994), while the main effect of
familiarity on P2 amplitude replicated a common repetition
suppression effect (Ben-David et al., 2011; Hsu et al., 2014).
Thus, the results as a whole link classic repetition priming
effects in RT and ERPs to event-related changes in dynamic

measures, but suggest the need for a nuanced interpretation
of their inter-relations. Taken together, we view these findings
as supporting the potential utility of the soft-assembly logic
for characterizing experimental neurophysiological effects. We
expand on the theoretical basis for this interpretation relative to
each of our measures in the following sections.

Fractal Scaling
With regard to the observed changes in fractal scaling, both
the physiological and behavioral literatures provide evidence for
adaptive, intrinsic coordination in human physiological systems.
For example, research on heartbeat dynamics has demonstrated
that healthy individuals exhibit long-range temporal correlations
in the pink noise range, with a breakdown of these dynamics
characterizing various pathological states (Peng et al., 1995a;
Goldberger et al., 2002). As noted above, scaling exponents
consistent with pink noise have been interpreted as a plausible
indicator for a state of criticality within the system (Cannon
et al., 1997), with the “resting” human EEG typically also
exhibiting scaling relations in this pink noise range (Pereda
et al., 1998; Linkenkaer-Hansen et al., 2001; Palva et al., 2013;
Euler et al., 2016), including in the present data. Notably, the
natural variability exhibited in human behavior has also been
shown to exhibit fractal patterns in this range (Van Orden
et al., 2003, 2005; Kello et al., 2008), where again the observed
long range temporal correlations imply a coordination reflecting
the intrinsic system dynamics (Van Orden et al., 2003; Holden
et al., 2011). Thus, examination of resting states in physiological
studies and variability in behavioral studies primarily capture
the system’s endogenous variation, and consistently suggest what
may be optimized patterns of intrinsic dynamics (cf. Likens et al.,
2015).

However, when prompted to complete a behavioral task such
as respond to stimuli, the intrinsic behavioral and physiological
dynamics of the system are perturbed (Van Orden et al., 2003;
Holden et al., 2011). The system then shifts from exhibiting
its coordinated, intrinsic dynamics, and fluidly reorganizes to
perform the task. On that basis, the observed increases in
scaling exponents between periods of rest, pre-, and post-
stimulus in the present study are conceptually consistent
with this general pattern where task demands perturb the
intrinsic electrophysiological dynamics. However, whereas we
had predicted a straightforward relationship with increased
fractal scaling indicating increased “orderliness” within the
system, the results imply the need for a more nuanced
interpretation. Specifically, during rest, the scaling exponents
suggest a highly persistent and thus, coordinated system
exhibiting pink noise (∼ α = 1.01), whereas during pre-stimulus
periods, the dominant pattern appears as strongly anti-persistent
fractional Brownian motion (fBm; ∼ α = 1.10). When the
coordination shifts from persistent to anti-persistent in this way,
it suggests a change from long range positive correlation to
long range negative correlation (Delignieres et al., 2011), which
although the sign changes, still reflects coherent and coordinated
organization. Speculatively, it is interesting to consider whether
a transition to persistent vs. anti-persistent coordination reflects
the fact that the dynamics are still being “intrinsically” structured
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in an anticipatory physiological state, but in a way that reflects the
direction of neural resources toward external rather than internal
events. Following stimulus onset, however, we observed further
increases in the scaling estimates (∼α = 1.28). Thus, whereas the
results indicated that the dynamics became increasingly fractal
as external demands increased, the further increase toward fBm
is not necessarily consistent with increasing order within the
system.

Consistent with other research, fBm has been observed in
a number of reports on task-related brain activity (Buiatti
et al., 2007; cf. Vega and Fernandez, 2012; Sleimen-Malkoun
et al., 2015). However, in contrast to the present findings,
work done by He and colleagues with electrocorticography (He
et al., 2010) and functional MRI (fMRI; He, 2011) has typically
shown task-related decreases in fractal scaling of broadband
signals, apparently including from fBM to the pink range, or
from the pink to the white noise range. Similarly, for narrow-
band electrophysiological signals, Palva et al. (2013) observed
non-significantly decreased scaling exponents between rest and
threshold-detection tasks (see their Figure S2), while Smit
et al. (2013), observed generally increased exponents for finger-
tapping vs. rest, albeit with decreased exponents at scalp locations
that had previously showed the greatest task-related fractal
scaling (see their Figure 3A).

While there are likely many reasons for the inconsistencies
within this literature (Hardstone et al., 2012; Smit et al., 2013),
variability in the estimated fractal scaling exponents across
studies seems to be the norm, and draws attention to outstanding
questions for research on scaling relationships (Kello et al.,
2010; Holden et al., 2011). Overall, such discrepancies highlight
the need to establish predicted patterns of effects according
to the various tasks (Vega and Fernandez, 2012), recording
modalities (He, 2014), signal processing methods (Kello et al.,
2010), measurement contexts (Holden et al., 2011), and analytic
strategies employed (Euler et al., 2016). While the present
study took a step in that direction (by supporting directional
predictions derived from soft assembly), it is notable that not
only do those results contrast with other literature, but the
empirical exponents themselves (i.e., moving from pink noise
to fBm) raise additional questions about their interpretation
and significance. Most importantly for present purposes, the
most common approach of characterizing scaling exponents
obtained from extended resting or task intervals (and thus
obtaining metrics that encompass numerous individual events
and responses) may not capture the same dynamics as the
present event-related approach, thereby possibly explaining our
discrepant results. Considering that soft-assembled systems are
inherently defined by the fluid and functional recruitment of
resources in relation to an event, it follows that event-related
approaches may better capture more fine grained aspects of the
neurophysiological dynamics.

Correlation Dimension
While D2 has previously been used to evaluate the complexity
of EEG signals, it has not been explicitly linked to the soft-
assembly characterization of neurophysiological dynamics. Our
findings are consistent with a seemingly robust phenomenon

that states of goal oriented behavior have lower dimensionality
relative to resting conditions (Sammer, 1996; Aftanas et al.,
1998; Anokhin et al., 1999; but see Lamberts et al., 2000).
To our knowledge, only two neurophysiological studies have
explored event related changes in D2 and found, consistent
with the present results, a reduction in dimensionality following
stimulus onset (Molnar et al., 1995; Molnar, 1999). However, in
that work, a very limited number of electrodes were examined
(compared to our dimensionality estimates for every electrode),
and dependencies between electrodes were not accounted
for. Regardless, even despite the different tasks employed
in those studies (infrequent oddball) and the present study
(repetition priming), the consistent event-related reduction in
dimensionality likely reflects a general feature of stimulus-
related processing, rather than a specific effect of certain task
requirements.

Task-related reductions in D2 could indicate the brain is
suppressing task-irrelevant processes to achieve a less complex
system, consistent with the finding that meditation also reduced
D2 (Aftanas and Golocheikine, 2002). Despite recent debates
(Shah et al., 2004; Mazaheri and Jensen, 2006; Telenczuk
et al., 2010), ERPs have been classically viewed as the linear
combination of spontaneous and evoked activity (Arieli et al.,
1996). This characterization is consistent with a hard-molded
system where increasing demands drive the addition of specific
processes to the system (Kloos and Van Orden, 2009). As applied
to ERPs, we reasoned that a hard-molded system would exhibit
task-related increases in D2 during the transitions from rest
to pre- and post-stimulus activity, as a result of the additive
contribution of evoked to spontaneous activity. In contrast, based
on our presumption of neural soft-assembly, and fMRI evidence
for non-linear interactions of evoked and spontaneous dynamics
(He, 2013), we expected to observe task-related reductions.

Although, the results regarding more global task effects
reflected such a pattern, our finding that D2 increases with
familiarity was contrary to our prediction. Specifically, we
expected that increasing levels of familiarity with the stimuli, and
thus increased skill at the task, would correspond to decreasing
dimensionality estimates. As a result, we are left with a puzzling
question as to why degrees of freedom would actually increase
as the same task is repeated? One plausible interpretation is that
the intrinsic dynamics become less and less perturbed in the
course of processing the stimuli as participants become more
familiar with them. That is, the system may more readily return
to the pre-stimulus state following a perturbation by a familiar
stimulus, making the post-stimulus time-series as a whole appear
less ordered or more “noise-like.” In general, this interpretation
would be supported by the fact that the dimensionality of the
post-stimulus period trends toward the dimensionality of the rest
period as familiarity with the task increases.

That said, as an alternative explanation, prior work has
shown that correlation dimension estimates are affected by the
presence of noise. While EEG data can never be noise-free,
EEG based dimensionality estimates are acceptable as long as
they are interpreted in relative terms (Pritchard and Duke,
1995). But, because ERPs specifically aggregate across many
observations to improve the signal-to-noise ratio, it is possible
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that the decrease in ERP amplitude as familiarity increases (i.e.,
repetition suppression) allows for increased levels of noise to
be evident in the signal from trials where familiarity is greater.
This could contribute to increased variability during phase space
reconstruction and in turn, increased dimensionality estimates.
One complication for this interpretation, however, is that we
observed only a main effect of familiarity, suggesting that even
in the pre-stimulus periods, where there is no ERP amplitude,
dimensionality tended to increase as well. This main effect would
seem to challenge the above interpretation as well, potentially
suggesting a time on task effect on both the pre- and post-
stimulus dynamics. Ultimately, future experimental work should
examine whether dimensionality increases over increasing levels
of familiarity arise from true changes in the task’s effect on
intrinsic system dynamics, vs. more mundane signal-to-noise
effects of repetition suppression, or other possibilities.

Potential Relevance of Alpha
Desynchronization
The influence of pre-stimulus alpha activity on post-stimulus
neural activity is a well-documented phenomenon (Haig and
Gordon, 1998a,b; Barry et al., 2000), primarily in the form of
event-related alpha desynchronization (Hanslmayr et al., 2007;
Min et al., 2007). We found a positive relationship between
changes in alpha power and changes in scaling exponents. This
suggests that increases in scaling exponents and dimensional
compression in the brain is related to alpha ERS as opposed to
ERD, contrary to expectations. That said, while the present study
examined a whole brain approach to soft assembly and alpha
dynamics, there is likely task and regional specificity in these
effects, which if uncovered, could further integrate the dynamical
systems and neurophysiological literatures. Future research could
begin to explore these nuances to elaborate whether (and how)
neural soft-assembly mechanisms may change under various
circumstances.

Connecting Behavioral and
Neurophysiological Perspectives on
Soft-Assembly
A final outstanding question concerns the relation of our present
argument for neural soft assembly, to soft-assembly within the
behavioral literature, where it has typically been discussed. From
a behavioral perspective, our participants completed a task that
requires them to exhibit the same behavior repeatedly (i.e.,
respond with a key press to the stimuli). While the observed
reaction times decreased with increasing familiarity, at a molar
level, the actual behavior (pressing one key or another) changes
very little from trial to trial. In this way, our task is similar to
behavioral studies that have examined repetitions of the same
behaviors (e.g., uttering the same syllable repeatedly; Kello et al.,
2008). Recall that Kloos and Van Orden (2009) posited that a
soft-assembled system is characterized by a state of criticality,
and that the subsequent recruitment of resources is toward a
functional outcome in a fluid and temporary fashion. Across
behavioral and neural studies, the presence of fractal scaling
relations has been interpreted as an indicator that the intrinsic

dynamics are in a critical state and thus, provide an indicator
that the system is likely soft-assembled (Kello and Van Orden,
2009). We sought to extend this empirical basis by focusing on
changes, not only in fractal scaling due to task demands, but
also changes in the dimensionality. However, while we focused
on a neurophysiological context, we can see two different ways in
which soft-assembly may connect behavior and neurophysiology.

First, soft-assembly implies functional changes to the way a
system is organized and coordinated, concomitant with changes
in tasks demands. Specifically, the focus of this study has
been on this first idea where we argued and evaluated the
idea that dimensional compression and increasing order should
occur within the neurophysiological system as task demands
increase. In our study, the major changes to behavior took
the form of participants either resting or performing the task,
and we observed corresponding changes in the organization
and coordination of the neurophysiological system. While we
can connect soft-assembly in neurophysiology to behavior
in this way, these kinds of changes can also occur in the
behaviors themselves as a function of varying task constraints
and task engagement (Likens et al., 2015). So this first notion
of soft-assembly is really that the system, in behavior and/or
neurophysiology, changes quite fluidly and we should observe
these changes in measures reflecting system organization and
coordination.

Second, in themost general sense, a soft-assembled system can
engage in the same global behavior, but its way of accomplishing
it can vary substantially. More technically, this notion implies
that a system can re-configure itself to reach a consistent global
outcome from anywhere in its state-space, yet its more minute
dynamics might importantly vary across different instances of
producing the same molar response. In a behavioral context, this
type of soft-assembly is observed when a hammer or other tool
is wielded repeatedly yielding the same results, but the joints
never precisely following the same trajectories (Bernstein, 1967;
Biryukova and Bril, 2015). Or, it is also observed when producing
the same utterance repeatedly, yet there are differences in the
acoustic properties (Kello et al., 2008), as well as when the task
is to simply respond to a certain stimulus thousands of times
and yet there is meaningful variability in those reaction times
(Van Orden et al., 2003). The idea of the system being able
to re-configure is supported even further by evidence of rapid
compensatory mechanisms, such as studies of speech production
where even when unexpected perturbations to the jaw are made,
there is no perceivable distortion to the observed speech (Kelso
et al., 1984; see also Bardy et al., 2007; Riley et al., 2012; Harrison
and Stergiou, 2015). In this way, the observed variability would
often be taken as noise (Van Orden et al., 2003) while in fact
those different underlying configurations may nevertheless be
meaningfully facilitating the same global outcome.

Within neuroscience, we also see evidence in the literature for
this view of soft-assembly as different paths to the same global
outcome. One example supporting this is Walter Freeman’s
classic work on electrophysiological responses to olfactory
stimuli (Freeman, 1991). There, he demonstrated that while there
are detectable consistencies in the observed EEG signals when
the same odor is perceived repeatedly, the signals often vary in
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meaningful ways (e.g., the average amplitude can be higher or
lower). Importantly, the observed consistencies, derived from
perception of the same stimuli, only account for approximately
one to three quarters of the total population activity comprising
the signal (Freeman, 1991). Thus, the variability in responding to
the same stimulus across repeated presentations can vary asmuch
as, if not more than, it is consistent.

While the latter aspect of soft-assembly was not the focus of
the current paper, our results may provide initial and tentative
support for it as well. That is, the pattern of results shown in
the EEG scalp maps for the correlation dimension may at first be
interpreted as noise and inconsistency across levels of familiarity,
yet they may nevertheless reflect the soft-assembly of brain
activity to reach a consistent outcome. Again, even as participants
becomemore familiar with the stimuli, the task remains the same.
Although, we did not test a spatial model (cf. Euler et al., 2016),
we can visually observe variability in the dimensional complexity
across electrodes. We expect that examining variability in the
recruitment of neurophysiological resources, while task demands
remain more or less constant (cf. Likens et al., 2015), would be
worth examining in future research to show how global outcomes
can be reached with varying neurophysiological configurations.

In a more general context, we expect that considering
these two aspects of soft-assembly in both behavioral and
neurophysiological contexts, as well as relations between the
modalities, can aid in substantively advancing this science and
addressing the question of how many-component systems can
become coordinated across a variety of scales. We have taken a
first step toward this end by recognizing that fractal scaling is
a necessary, but not sufficient, characteristic of a soft-assembled
system, and demonstrating how task demands can influence such
scaling relations in a directional and theoretically-consistent way,
while also showing complementary changes in dimensionality
estimates. Nevertheless, like behavioral research on soft-assembly
(e.g., Van Orden et al., 2003), the use of only twomarkers for soft-
assembly can be improved further. Specifically, while combining
changes in dimensionality with changes in fractal scaling is novel,
and both reflect necessary conditions of soft-assembly, future
work can explore additional markers. For example, we would
also expect changes in lacunarity (Plotnick et al., 1996), which
differentiates the spatial patterns of fractals, and further, that
different models of change should characterize the observed
temporal patterns the system exhibits (e.g., oscillations). Future
research can also build upon the present results by examining

a larger variety of tasks and connecting the behaviors with their
associated brain states. This may include investigating familiarity
effects more exhaustively, as well as by developing more
temporally precise measures. Finally, whereas soft-assembly logic
dictates dimensional compression and a more ordered system
following the transition to a task state, much more work can
be done to characterize how factors such as cognitive load, task
complexity, context, and individual differences moderate task-
related change in measures.

CONCLUSION

In short, our results suggest that dimensionality estimates
and fractal scaling exponents systematically change during the
transition from the spontaneous non-task related (“resting”)
EEG state to that of the task-related pre-stimulus period and
the post-stimulus ERP. These findings satisfy some of the
necessary and initial conditions for establishing that human
brain activity exhibits soft-assembly. That is, the notion that
neural networks can fluidly and flexibly coordinate to function
effectively. We envision that the conceptual framework provided
by soft assembly, and its associated analytic approaches, may
help to augment present approaches to characterizing task-
related behavioral and neurophysiological change. In turn, this
knowledge can further our understanding of the ways in which
the highly-dimensional human system is able to functionally and
flexibly coordinate so many components to meet environmental
demands.
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