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Abstract

The intelligibility of periodically interrupted speech improves once the silent gaps are filled with noise bursts. This
improvement has been attributed to phonemic restoration, a top-down repair mechanism that helps intelligibility of
degraded speech in daily life. Two hypotheses were investigated using perceptual learning of interrupted speech. If
different cognitive processes played a role in restoring interrupted speech with and without filler noise, the two forms of
speech would be learned at different rates and with different perceived mental effort. If the restoration benefit were an
artificial outcome of using the ecologically invalid stimulus of speech with silent gaps, this benefit would diminish with
training. Two groups of normal-hearing listeners were trained, one with interrupted sentences with the filler noise, and the
other without. Feedback was provided with the auditory playback of the unprocessed and processed sentences, as well as
the visual display of the sentence text. Training increased the overall performance significantly, however restoration benefit
did not diminish. The increase in intelligibility and the decrease in perceived mental effort were relatively similar between
the groups, implying similar cognitive mechanisms for the restoration of the two types of interruptions. Training effects
were generalizable, as both groups improved their performance also with the other form of speech than that they were
trained with, and retainable. Due to null results and relatively small number of participants (10 per group), further research
is needed to more confidently draw conclusions. Nevertheless, training with interrupted speech seems to be effective,
stimulating participants to more actively and efficiently use the top-down restoration. This finding further implies the
potential of this training approach as a rehabilitative tool for hearing-impaired/elderly populations.
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Introduction

Normal-hearing listeners use several top-down mechanisms that

help speech perception in difficult listening environments. They

may, for example, perceptually restore inaudible or masked

portions of temporally interrupted speech, taking advantage of the

context and redundancy in speech signals, as well as using

linguistic rules, prior knowledge, and expectations [1–4]. In the

special case of phonemic restoration, the restoration benefit is

commonly shown by the increase in intelligibility of periodically

interrupted speech when the silent intervals are filled with noise

bursts that would be capable of masking the speech [2–9]. Increase

in intelligibility as a result of adding noise to speech signals is

somewhat counterintuitive. However, in the case of restoration,

the filler noise adds ambiguity for the perceptual system, where the

system then tends towards forming a full object, rather than

perceiving the individual pieces per se, referred to as the Gestalt

principles of closure [2,3]. These closure mechanisms, then,

presumably help with the speech restoration.

A number of hypotheses have been proposed to explain the

underlying mechanisms of restoration that produce the improve-

ment in intelligibility with the filler noise. Huggins [10] noted that

the filler noise masks the distortions that occur due to the sudden

onsets and offsets in interrupted speech, and thus suggested that

the bottom-up processes of the auditory system are entirely

responsible for this benefit. Others, on the contrary, pointed to the

involvement of the high-level cognitive processes, based on the

influence that the context and the type of speech materials used

had on the perception of interrupted speech [5,8,11–15]. Recent

studies that showed a deficit in restoration benefit with (real or

simulated) hearing impairment implied that the restoration may

actually be governed by a combination of the bottom-up

peripheral and top-down cognitive processes [16–22], in agree-

ment with general high-level speech and sound perception

mechanisms in complex listening environments [23–28]. Hence,

the consensus from recent studies is that cognitive processes are

involved in the phonemic restoration mechanism, but up to what

degree is still not clear.

Based on their observations, Verschuure and Brocaar [7]

suggested that the degree of involvement of cognitive processes

might differ in the perception of interrupted speech with silent

intervals from the perception of interrupted speech combined with

filler noise. For example, without the filler noise, the listeners were

anecdotally reported to be aware of the silent intervals in the

signal, and seemed to be forced to guess consciously what could

have been presented to them. With the noise, the listeners

unconsciously filled in the missing speech information. One could

expect different effects of training on tasks that require different
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cognitive resources and that differ in how automatic and effortless

they are [29]. Therefore, exploring learning effects with inter-

rupted speech with or without the filler noise could be used to

show if there is such a difference.

Other than indicating potentially varying cognitive processes,

perceptual learning effects could reveal other factors relevant to

phonemic restoration. Interrupted speech with silent intervals is

a less ecologically valid signal than interrupted speech with filler

noise, because in real life speech is more often obliterated by noise

than by silence. A difference in intelligibility may then be observed

between the two forms of interruptions, not due to the restoration

benefit per se, but due to the participants being less used to

hearing such artificial manipulations. If the restoration benefit of

adding filler noise were not a real effect but a consequence of such

an artifact, then it would be expected to diminish or disappear

after listeners are exposed to and trained with these artificial

speech stimuli.

The present study explored the effects of perceptual learning,

more specifically the improvement in performance after systematic

long-term training [30–32], on the perception of interrupted

speech. The purpose was to explore the hypotheses that the

cognitive involvement could differ for understanding interrupted

speech with or without the filler noise, and that the restoration

benefit could be an artifact of using interrupted speech with silent

intervals, an ecologically not valid signal produced by an artificial

manipulation. Participants were systematically trained with speech

manipulated with two kinds of interruptions, with silent intervals

or filler noise, and speech intelligibility and perceived mental effort

were measured before, during, and after training. The training

part was designed based on previous studies on perceptual

learning. The performance on many auditory skills improves with

training [30,31,33], commonly given in the form of an explicit

training [34], although improvement due to unattended exposure

is also possible [35]. While humans adapt relatively automatically

to rather simple stimuli [36], more complex ones, such as speech

manipulated with time compression [37], spectral reduction

[38,39], or interruptions [40], may need more effort to adapt to.

Based on the studies listed above and due to the complex nature of

the stimuli, an intensive training with feedback was preferred. If

the cognitive involvement varied between the two kinds of speech

signals, the effort requirement of the two tasks and the effects of

learning on intelligibility and perceived effort would be expected to

differ. If the restoration benefit were due to an artifact of using

interrupted speech with silent intervals, it would be expected to

diminish or disappear at the end of training.

Materials and Methods

A. Listeners
Thirty normal-hearing listeners, ages between 18 and 28 years

(Mage = 21.3 years, SD=2.4 years, 21 women), participated in the

study. During the initial screening, normal hearing via a hearing

test (at test frequencies of 0.5 kHz up to 4 kHz, hearing thresholds

of 20 dB HL or less) and normal development of speech and

language via a questionnaire were confirmed. The listeners, all

native speakers of Dutch, were divided into three groups, matched

on age and gender. The baseline performances were measured

before and after the training sessions. Two groups received

training with feedback between the baseline measurements. The

noise group (NG) was trained with interrupted speech with the

filler noise and the silence group (SG) without. The third group did

not receive any training. They were only tested with baseline

conditions applied at two different days, and thus served as the

control group (CG). From the SG and the NG, 7 and 6 listeners,

respectively, participated in a follow-up testing at a later time to

observe the retainability of the learning effects.

B. Ethics Statement
The study was approved by the Medical Ethical Committee of

the University Medical Center of Groningen. The listeners were

recruited by poster announcements at public places and partic-

ipation was compensated financially. Information about the

experiment was provided and written informed consent was

collected prior to participation.

C. Stimuli
The speech stimuli were Dutch sentences digitally recorded at

44.1 kHz sampling rate and spoken by a male speaker [41]. The

sentences are semantically neutral and represent conversational

speech. The database consists of 39 sets. Each set contains 13

sentences, with 4 to 9 words per sentence, and 74 to 88 words in

total. The sentences were interrupted by a cosine-ramped (ramp

duration of 10 ms) periodic square wave with 1.5 Hz interruption

rate and 50% duty cycle. This resulted in speech portions followed

by interruptions of 333 ms of duration each. Former studies

[6,11,17,21,22] and our pilot study have shown that these

parameters produced low baseline intelligibility of interrupted

speech with silent gaps. Thus, there was ample room for potential

improvement in intelligibility after both adding the filler noise

(restoration benefit) and training the listeners (perceptual learning).

The noise used as filler was the steady speech-shaped noise

generated by Versfeld et al. [41], that matched the long-term

average speech spectrum of the recorded sentences. The filler

noise bursts were produced by applying the same periodic square

wave, except with inverted phase, to the speech-shaped noise. The

interrupted speech and the noise bursts were combined in a way

such that there was sufficient but minimal overlap between the

two, with no apparent change in overall energy during the

transitions (see [9] for details).

The root mean square intensity was normalized to the same

fixed value for all sentences. The presentation levels of the speech

and the filler noise were calibrated to 60 and 70 dB SPL (based on

[21]), respectively, when measured at an approximate position of

the participant’s head.

D. Experimental Procedure
The participants were seated in an anechoic chamber, facing

the free-field loudspeaker and the monitor that presented the

visual feedback at a distance of 1 m. The digitized processed

stimuli were directed from an external AudioFire 4 soundcard of

Echo Digital Audio Corporation to a Tannoy 8D Precision active

near-field speaker. The experimenter was seated outside the

anechoic chamber and listened to participants’ responses via

a headphone connected to the digital voice recorder, DR-100

digital by Tascam, of the anechoic room. As the stimuli were

presented in free field, the experimenter inadvertently also heard

the stimuli. Any potential bias that may have been caused by this

single-blind design must have been negligible, as the restoration

effect observed in the present study was comparable to the

restoration effects observed in double-blind versions conducted by

our research group [21].

The experimental procedure consisted of initial and final

baseline measurements of intelligibility and perceived effort, with

training sessions in-between (Table 1; details below). The

difference in the baseline scores before and after training thus

showed the improvement in performance due to perceptual

learning as a result of training. The interval between the initial and

final baseline measurements varied slightly, between 2 and 3 days,
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depending on the availability of the participants. The training was

spread over three days and the entire experiment, including the

participant screening and initial and final baseline tests, was

completed in less than one week. At a later time, 6 to 18 weeks

after the training was completed, a follow-up baseline test was

conducted to observe how the training effects were retained. In the

entire study, we used a MATLAB program to process the stimuli

online and to present the processed stimuli and audio and visual

feedback to the participants via a graphical user interface.

In the baseline measurements before and after training, all three

groups were tested on speech intelligibility and perceived mental

effort with interrupted speech, with and without the filler noise. In

each condition of the baseline measurements, 2 sets (26 sentences)

were randomly selected from the 39 sets. As a result, participants

were exposed to 52 unique sentences before and 52 unique

sentences after training. In baseline measurements and during

training, no sentence was heard more than once. In the

intelligibility tests, the participants listened to one sentence at

a time, and they were instructed to repeat all of the words they

heard, even if this led to nonsense sentences. Guessing the missing

words was encouraged as the purpose of the test was to assess the

reconstructed perception of the sentence, rather than what is

heard per se. The participants were instructed to tell the

experimenter when they were ready for the next sentence (by

saying Next). Scoring of correctly repeated words was first

performed in real time by the experimenter, and was later

double-checked by offline listening to digital recordings of

participants’ responses. All words were included in the scoring.

The percentage of correctly identified words was calculated as the

ratio of the total number of correctly repeated words to the total

number of words within the sets. The participants heard a set of

sentences only once, and they were not familiar either with the

speech material used or with listening to interrupted speech in

general before their participation in this study.

During the training sessions, as shown in Table 1, the NG and

SG were trained with different stimuli. The CG received no

training, nor did they attend the training sessions. They

participated only in two sessions of baseline measurements. The

duration between the two sessions was comparable to the duration

between the two baseline measurements (before and after training)

of the trained groups. In each of the 5 training sessions, 26

sentences were used, so that the SG and NG were trained with 130

sentences. Hence, in total, the CG was exposed to 104 unique

sentences and the SG and NG to 234 unique sentences. The

difference in the training sessions compared to the baseline

measurement sessions was that during the training feedback was

provided. After receiving the participant’s response, first the

unprocessed then the processed sentence were played back (based

on [33]), while the text of the sentence was simultaneously

displayed on the computer screen.

At the end of each session (baseline or training) and for all

participants, the perceived mental effort was measured using the

Visual Analogue Scale (VAS), a subjective measure shown to be

sensitive to small differences in mental effort [42,43]. This method,

while not evaluated objectively in previous studies, was selected

due to the ease of use. The participants were instructed to rate the

effort of the comprehension for the entire session by a mark on

a 10 cm long scale, varying from ‘‘effortless’’ (0 on VAS-scale) to

‘‘effortful’’ (10 on VAS-scale) on paper. Listening to a known

poem in quiet (effortless) and having a conversation in loud noise

(effortful) were given as examples to the participants to interpret

the full range of the VAS scale.

Results

A. Speech Intelligibility
The top panel of Fig. 1 shows the mean percent correct scores

for all sessions (baseline and training), as well as the follow-up

baseline measurement; the bottom panel shows the increase in

percent correct for all sessions, relative to the silence (S) condition

of the baseline measurement before training. The purpose of the

normalization in the lower panel was to better visualize the change

in intelligibility due to training, as well as due to the addition of the

filler noise. The baseline speech intelligibility scores measured

before and after the training are shown in the first and third

segments of Fig. 1, respectively, in both top and bottom panels

(also summarized in Table 2). These data show that there was

a restoration benefit before training with each listener group, and

even though the training increased the scores in both S and noise

(N) conditions, a similar restoration benefit could still be observed

after the training. In the initial baseline measurement, on average,

there was a restoration benefit of 9.2%, as shown by the increase

in scores with the addition of the filler noise (‘N’ column compared

to the ‘S’ column in ‘‘before training’’ scores in Table 2). After the

training, a similar restoration benefit was observed with, on

average, 8.7% (middle column of Table 2). Repeated measures

ANOVAs were performed with both forms of the percent correct

scores, the absolute percent correct scores in Fig. 1, top panel, and

the relative percent correct scores in Fig. 1, bottom panel, with

addition of filler noise and training as within-subjects factors and

participant group as the between-subjects factor. The ANOVAs

showed that this restoration benefit was significant

(F(1,27) = 106.4, p,0.001, partial g2 = 0.798, power= 1). The

improvement after the training sessions is shown in the increase of

scores in S and N conditions from before to after baseline

measurements in Fig. 1, and also in the rightmost columns of

Table 2. The training produced significant overall improvement

Table 1. Experimental procedure, shown for the noise (NG), silence (SG) and control (CG) groups, along with the number of
participants (n).

Groups Baseline measurement before Training
Baseline measurement
after

Follow-up baseline
measurement

SG (n = 10) Silence and noise Five silence training sessions Silence and noise (n = 7), silence and noise

NG (n = 10) Silence and noise Five noise training sessions Silence and noise (n = 6), silence and noise

CG (n = 10) Silence and noise No training or testing session Silence and noise

‘‘Silence’’ denotes testing with interrupted sentences with silent intervals, and ‘‘noise’’ denotes testing with interrupted sentences that are combined with filler noise
bursts. The CG did not receive training; they were only tested with the baseline measurements at two different times, with an in-between time comparable to that of
the training duration.
doi:10.1371/journal.pone.0058149.t001
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(F(1,27) = 28.3, p,0.001, partial g2 = 0.512, power = 1), varying

from 7.2 to 12%, for both training groups and for both testing

conditions of S and N. Although the CG improved in performance

as well, their improvement was smaller, 2.4% to 4%. The analysis

performed with the absolute percent correct scores (top panel)

showed no significant difference between the three groups

(F(2,27) = 1.2, p = 0.307, partial g2 = 0.084, power = 0.25) and

no significant interaction effect. The analysis performed with the

relative percent correct scores (bottom panel), however, showed

a significant difference between the three groups (F(2,27) = 3.6,

p = 0.041, partial g2 = 0.211, power = 0.62) and no significant

interaction effect. Note that the SG started from a lower baseline

performance level than the NG and CG (Fig. 1, top panel). Hence,

the training effect was highest for the SG (Fig. 1, lower panel).

The middle section of the top panel of Fig. 1 shows the absolute

percent correct scores measured during the training sessions where

the feedback was provided; the bottom panel shows the same,

except that the scores are normalized relative to the S condition of

the baseline measurement before training. These data show that

training increased the scores with interrupted speech with or

without the filler noise, but the intelligibility of interrupted

sentences combined with filler noise was always higher than the

interrupted sentences with silent intervals. This means that the

restoration benefit observed in the baseline measurement before

the training was retained throughout the training. Repeated

measures ANOVAs were performed with both absolute and

relative percent correct scores, with the training sessions as within-

subjects factor and the addition of filler noise as between-subject

factor. These showed that the improvement in both absolute and

relative scores between the five training sessions was not significant

(F(4,15) = 2.0, p= 0.145, partial g2 = 0.106, power = 0.47). The

same was true for both absolute and relative scores, as the

normalization did not change this effect. But the restoration

benefit due to added noise occurred for both absolute

(F(1,18) = 35.9, p,0.001, partial g2 = 0.667, power= 1) and

relative percent correct scores (F(1,18) = 10.9, p= 0.004, partial

g2 = 0.377, power = 0.88). There was no significant interaction

effect.

The right segments of Fig. 1 show the intelligibility of the follow-

up testing, performed with 7 participants from the SG and 6

participants from the NG, at 42 to 127 days (M=92 days, SD=27

days) after the second baseline measurement. These data show

that the restoration benefit was still significant, and overall, the

scores were more similar to the trained-level scores than the initial

un-trained level scores. Repeated measures ANOVAs were

conducted on this subset of listeners only, with the within-subjects

factors of testing time (after training or follow-up) and adding the

filler noise, and the between-subjects factor of the participant

group. There was no significant effect of testing time (F(1,11) = 1.4,

p = 0.265, partial g2 = 0.111, power = 0.19), but a significant effect

of restoration benefit (F(1,11) = 23.6, p = 0.001, partial g2 = 0.682,

power = 0.99), for both representations of data. There was no

significant interaction effect. The analysis performed with the

absolute percent correct scores (F(1,11) = 0.04, p = 0.853, partial

g2 = 0.003, power= 0.05, top panel) and with the relative percent

correct scores (F(1,11) = 3.2, p = 0.101, partial g2 = 0.226, pow-

er = 0.37, bottom panel) showed no significant difference between

the two groups.

B. Perceived Mental Effort
The top panel of Fig. 2 shows the mean perceived mental effort

scores for all testing sessions, and the bottom panel shows the

mean perceived mental effort scores normalized over the average

of the S and N conditions before training. The purpose of this

normalization, different than Fig. 1, was to minimize the

variability in the utilization of the VAS-scale between the

participants. Therefore, the scores were not normalized with

respect to ‘S’, but instead, with respect to participants’ own

baseline ratings. The first and third segments of both panels of

Fig. 2 represent the perceived mental effort of the baseline

measurements before and after the training sessions, respectively.

These data show that while there was a tendency for the N

condition to be perceived less effortful compared to the S

condition, during and after the training sessions, there were also

some exceptions, such as the S condition after the training. In the

initial and final baseline measurements, there was on average

a significant decrease in perceived mental effort with the addition

of the filler noise (‘N’ column compared to the ‘S’ column in

‘‘before training’’ and ‘‘after training’’ scores in Table 3;

F(1,27) = 7.0, p = 0.014, partial g2 = 0.205, power = 0.72, for both

absolute and normalized VAS-scores). The training significantly

reduced the perceived mental effort, shown by the decrease in

Figure 1. Intelligibility of interrupted speech with and without
filler noise. The absolute mean percent correct scores from all listener
groups are shown for baseline and training sessions in the top panel.
The relative mean percent correct improvement, calculated by
normalizing the absolute scores with respect to the ‘S’ condition
before training, is shown in the bottom panel, The ‘S’ (Silence) and ‘N’
(Noise) on the horizontal axes denote the conditions with interrupted
sentences with silent intervals and with filler noise in the interruptions,
respectively. The open, filled, and gray data points represent the results
from the silence (SG), noise (NG), and control (CG) groups, respectively.
The panels from left to right show the results of baseline measurements
before training, measurements made right after each training session
during the training, baseline measurements after training, and the
follow-up baseline measurements conducted at a later time (also see
Table 1). The CG received no training and were only tested with the
baseline measurements. Error bars denote one standard error of the
mean.
doi:10.1371/journal.pone.0058149.g001
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VAS between ‘‘before’’ and ‘‘after’’ baseline measurements in

Fig. 2, and also in the rightmost columns of Table 3 (F(1,27) = 8.0,

p = 0.009, partial g2 = 0.228, power = 0.78, for both representa-

tions of the VAS-scores). There was no significant difference

between the three groups both when represented in absolute

(F(2,27) = 2.35, p= 0.114, partial g2 = 0.148, power = 0.43) and

normalized VAS-scores (F(2,27) = 2.20, p = 0.130, partial

g2 = 0.140, power= 0.41). There was no significant interaction

effect.

The middle sections of Fig. 2 show the VAS-scores measured

during the training, after each training session. These data show

that there was no significant change in VAS scores during the

training (F(4,15) = 1.4, p = 0.269, partial g2 = 0.049, power = 0.34,

for both absolute and normalized VAS-scores). The absolute VAS-

scores show that the SG rated the perceived effort lower than the

NG, but the difference was not significant (F(1,18) = 0.54,

p = 0.472, partial g2 = 0.029, power= 0.11). This difference is

also not significant for the normalized VAS-scores (F(1,18) = 0.37,

p = 0.550, partial g2 = 0.020, power= 0.09). There was no

significant interaction effect.

Discussion

Before training, a baseline intelligibility of interrupted

sentences, with and without the filler noise, was measured.

These pre-training results were comparable to previous studies

on intelligibility of interrupted speech [16,22,44,45], and on

restoration benefit observed with additional filler noise in silent

intervals [5,6,7,9].

The first interest of the present study was to observe the effect of

training on the perception of interrupted speech with silent

intervals and with the filler noise, as a way of exploring the

similarity in the underlying cognitive mechanisms involved in the

perception of the two types of stimuli (with or without the filler

noise). Verschuure and Brocaar [7] hypothesized, based on their

observations during their study, that the perception of speech

interrupted by silence involves other cognitive processes than the

perception of interrupted speech combined with filler noise. We

further hypothesized that if the cognitive involvement varied in the

perception of the two kinds of speech signals, they would be

learned at different rates with training. The speech intelligibility

results showed that the percent correct scores increased during the

training sessions similarly for both training groups. In other words,

speech with both forms of experimental manipulations could both

be learned, and in a similar manner too. Hence, the results imply

Table 2. The absolute (top rows) and relative (bottom rows) mean percent correct (PC) scores of the baseline measurements
before and after training of the SG and NG (left and middle columns), and overall improvement taken from Fig. 1 (right column).

Groups Absolute PC scores baseline before (%) Absolute PC scores baseline after (%) Improvement (%)

S N S N S N

SG (n = 10) 57.9 68.1 69.9 76.6 12.0 8.5

NG (n = 10) 62.1 70.2 69.2 77.9 7.2 7.7

CG (n = 10) 61.4 70.5 63.8 74.5 2.4 4.0

Relative PC scores baseline before (%) Relative PC scores baseline after (%) Improvement (%)

S N S N S N

SG (n = 10) 0.0 10.2 12.0 18.7 12.0 8.5

NG (n = 10) 0.0 8.1 7.2 15.8 7.2 7.7

CG (n = 10) 0.0 9.1 2.4 13.1 2.4 4.0

The CG received no training and were only tested with the baseline measurements, to see the potential learning effects due to the exposure to testing paradigm only, in
the lack of a targeted training. ‘S’ and ‘N’ refer to testing conditions with interrupted sentences with silent intervals or with filler noise, respectively.
doi:10.1371/journal.pone.0058149.t002

Figure 2. Perceived mental effort. The absolute and normalized
mean mental effort scores are shown in the top and bottom panels,
respectively. These scores are measured by means of a visual-analogue
scale (VAS), varying from ‘‘effortless’’ (0 on VAS-scale) to ‘‘effortful’’ (10
on VAS-scale). The first and the third panels show the scores measured
before and after the training, respectively. The middle panel shows the
scores during the training sessions. Error bars denote one standard
error of the mean.
doi:10.1371/journal.pone.0058149.g002
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that speech perception with both forms of interruptions (with

silence or with filler noise) involves similar cognitive mechanisms.

In addition to speech intelligibility, perceived mental effort was

also measured. Processes requiring cognitive awareness are

suggested to be more effortful than unconscious processes [46].

Based on the observations by Verschuure and Brocaar [7],

therefore, we had hypothesized that if cognitive mechanisms

differed between the perception of interrupted speech with or

without the filler noise, we would see a difference in the perceived

effort scores with the two forms of speech. In fact, the analysis of

the perceived mental effort showed on average a small, though

significant, decrease in VAS-score with the addition of the filler

noise, both before and after training. However, because of

irregularities in the scoring between the groups, such as the high

score of the NG for the S condition after training, we reckon that

these differences in VAS-scores, although normalized, stem from

the individual preferences of different groups, rather than a direct

result of the experimental manipulation. There was no systematic

change in effort scores during training. However, when the scores

were compared for before and after training, there was a decrease

in the rating of the perceived mental effort, and in similar values

for the two forms of interruptions. These results on perceived

effort, hence, only partially support the hypothesis.

The second hypothesis of the study was that if the restoration

benefit was due to an artifact of using interrupted speech with

silent intervals, an unusual and less ecologically valid form of

speech, it would be reduced or entirely disappear at the end of

training. This idea was also suggested by Verschuure and

Brocaar [7], who reported that participants did not benefit from

adding noise in the silent intervals when they were familiar (i.e.

trained) with this type of interrupted speech. The suggestion was

only anecdotal, as their data were limited due to the ceiling

effects and there was no systematic investigation of learning

effects. The results from the present study are in contradiction

to the observations by Verschuure and Brocaar [7], because

training did not bring the intelligibility of the two forms of

interrupted stimuli to the same level. By training the partici-

pants, we observed a relatively similarly increasing curves in the

overall percent correct scores of the SG and NG, and the

restoration benefit persevered. The baseline measurements after

the training showed that the restoration benefit of adding noise

was still present after training, indicating that the restoration

benefit is not an effect due to the artificiality of interrupted

speech with silent intervals.

During the training, a plateau was observed in the scores, in

a similar manner between the two training groups. We interpreted

this as that the groups reached the limit of learning with these

stimuli and that sufficient training was given. We made our

conclusions based on this interpretation. However, there were

perhaps some additional factors that affected the results. For

example, we cannot exclude the possibility that a part of the

increase in performance can be explained by the familiarity of the

participants with the talker’s voice [47,48], as we used sentences

spoken by one talker only. Because the SG and NG were trained

with different stimuli, stimuli-specific effects might also have

additionally (but perhaps only slightly) influenced the shape of the

increasing curves of these groups. Further, null results combined

with a relatively small number of subjects indicate that the

paradigm used in the present study was perhaps not sufficient to

fully validate the conclusions, and further research with more

statistical power would be needed to more confidently make such

conclusions.

The findings of the present study may have practical

implications. The training results show a potential benefit of the

specific training paradigm used in the study. Note that the amount

of speech information provided and the distortions in the signals

caused by interruptions were the same across training sessions, and

yet, the intelligibility of interrupted speech, with or without the

filler noise, increased significantly as a result of the training. This

outcome not only suggests that the restorative mechanisms for

understanding interrupted speech are probably highly cognitive,

but also that our training paradigm seems to train the listeners

effectively to make better use of the top-down repair mechanisms.

The training was generalizable; participants showed an increase in

performance also for the other speech manipulation than the one

they were trained with. Additionally, the training effects were

retained, in line with earlier perceptual-learning studies [49–52];

several weeks after the training the percent correct scores were not

significantly different from the baseline measurements taken

immediately after the training. Perceptual learning, a relatively

permanent change of perception as a result of training [30], was

hence achieved. These observations point to the potential benefits

of the type of training used in the present study as a tool for speech

Table 3. Similar to Table 2, except the scores shown are the absolute mean perceived mental effort scores (top rows) and the
normalized mean perceived mental effort scores with respect to the baseline measurements before training (bottom rows),
measured by means of a visual-analogue scale (VAS).

Groups VAS scores before VAS scores after Improvement

S N S N S N

SG (n = 10) 6.1 5.8 4.9 4.8 1.3 1.0

NG (n = 10) 6.6 6.8 6.6 5.6 0.0 1.3

CG (n = 10) 5.5 4.9 5.6 4.7 20.1 0.2

Normalized VAS scores before Normalized VAS scores after Improvement

S N S N S N

SG (n = 10) 0.14 20.14 21.11 21.14 1.25 1.00

NG (n = 10) 20.10 0.10 20.12 21.18 0.02 1.28

CG (n = 10) 0.33 20.33 0.42 20.49 0.09 0.16

doi:10.1371/journal.pone.0058149.t003
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perception rehabilitation, for example, for the (elderly) users of

hearing aids and cochlear implants [53–57].
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